1. (10 points) Consider the subspace L spanned by the vector \[
\begin{bmatrix}
1 \\
2 \\
3 \\
4 \\
5
\end{bmatrix}
\] in \mathbb{R}^5. Find a basis of the orthogonal complement L^\perp of L.

2. (30 points) State whether each of the following statements are TRUE or FALSE. You do not need to show your work.

a. If A and B are two invertible matrices, then $(A^{-1}B)^{-1} = AB^{-1}$.

b. If the kernel of a matrix A consists of the zero vector only, then the column vectors of A must be linearly independent.

c. If V and W are subspaces of \mathbb{R}^n, then their union $V \cup W$ must be a subspace of \mathbb{R}^n as well.

d. If $AB = 0$ for 2×2 matrices A and B, then BA must be the zero matrix as well.

e. If vectors $\vec{v}_1, \vec{v}_2, ..., \vec{v}_m$ span \mathbb{R}^n, then m must be equal to n.

f. If $A^2 = A$ for an invertible $n \times n$ matrix A, then A must be I_n.

g. If vectors $\vec{v}_1, \vec{v}_2, ..., \vec{v}_m$ are linearly independent in \mathbb{R}^n, then m must be equal to n.

h. If A and B are two invertible matrices, then $(A + B)^{-1} = A^{-1} + B^{-1}$.

i. If vectors $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4$ are linearly independent, then $\vec{v}_1, \vec{v}_2, \vec{v}_3$ must be linearly independent.

j. If A is $n \times m$ matrix and B is $p \times m$ matrix, then AB is $n \times p$ matrix.

3. (30 points) Consider a linear transformation T from \mathbb{R}^2 to \mathbb{R}^2. We are told that the matrix of T with respect to the basis \[
\begin{bmatrix}
3 \\
5
\end{bmatrix}, \begin{bmatrix}
5 \\
8
\end{bmatrix}
\] is \[
\begin{bmatrix}
1 & 9 \\
9 & 7
\end{bmatrix}
\].

Find the standard matrix of T.

HEY, THERE’S MORE—TURN THE PAGE OVER!
4. (30 points) Consider the matrix

\[A = \begin{bmatrix} 0 & 1 & 2 & 0 & 3 \\ 0 & 0 & 0 & 1 & 4 \end{bmatrix} \]

a. Find a basis of the kernel of \(A \), and thus determine the dimension of \(\ker A \).

b. Use your answer in part (a) to find \(\text{rank}(A) \), and then determine a basis of \(\text{im}(A) \).