
Physics 100A      Homework 7 – Chapter 8  
 
Where’s the Energy? 
 
In this problem, we will consider the following situation as depicted in the diagram: A block of mass m slides at a 

speed v along a horizontal smooth table. It next slides down a smooth ramp, descending a height h, and then 

slides along a horizontal rough floor, stopping eventually. Assume that the block slides slowly enough so that it 

does not lose contact with the supporting surfaces (table, ramp, or floor).  

You will analyze the motion of the block at different moments using the law of conservation of energy. 

 
 
 
 
 
 
 
 
 
A) Which word in the statement of this problem allows you to assume that the table is frictionless? 
 
Smooth 
If the problem had friction it would say “rough”. 
 
B) Expression of conservation of energy. 
 
Without friction there is no non-conservative work. Energy is conserved: 
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2 21 1
2 2i i f fmv mgh mv mgh+ = +

0i top i top f bottom f bottomv v v h h h v v h h= = = = = = =

 

 
C) As the block slides down the incline 
K increases, U decreases, E stays the same 
 
D) Speed at the bottom. 
 
The answer assumes 

 
 
From the conservation of energy equation in part B) 
 

2( 2 )bv v gh= +  
E) From the bottom of the ramp until the block stops. 
 
The potential energy is zero, since in this case the  floor has been chosen for U=0. 
The initial kinetic energy is diminished due to the action of friction.  
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Work Energy Theorem 
 

nc f f i iW K U K U= + − −  
 -nc f iW K K=  

i ncK W K+ = f  

2 21 1
2 2i ncmv W mv+ = f    

 
F) As the block slides across the floor 
K decreases, U stays the same, E decreases 
 
G) Friction is responsible for the decrease in  mechanical energy. 
 
H) Since the block comes to a stop at the level where U=0, the energy lost to friction is 

21
2

E mv mg= + h  

8.2 Calculate the work done by gravity as a 3.2 kg  object is moved from point A to point B in the figure along 

paths 1, 2, and 3. 
 
8.2  
2.  Picture the Problem: The three paths of the object are depicted at right. 

 Strategy: Find the work done by gravity W mgy=  when the object is moved 
downward, W  when it is moved upward, and zero when it is moved 
horizontally.  Sum the work done by gravity for each segment of each path. 

mg= − y

 Solution: 1. Calculate the  
work for path 1: 

[ ]
( ) ( ) ( )

( ) ( )( )

1 1 2 3

2

0 0
4.0 m 1.0 m + 1.0 m

3.2 kg 9.81 m/s 2.0 m 63 J

W mg y y y
mg

W

= − + + + +
= − +⎡ ⎤⎣ ⎦
= − =1 −

 

 
 2. Calculate W for path 2: ( )[ ] [ ]( ) 2

2 40 0 3.2 kg 9.81 m/s 2.0 m 63 JW mg y= − + = − = −
 

 3. Calculate W for path 3: ( )[ ] ( ) ( ) ( )2
3 5 60 3.2 kg 9.81 m/s 1.0 m 3.0 m 63 JW mg y y= + − = − = −⎡ ⎤⎣ ⎦

 
 Insight: The work is path-independent because gravity is a conservative force. 
 
8.4 A 4.1 kg block is attached to a spring with a force constant of 550 N/m , as shown in the figure . 

Find the work done by the spring on the block as the block moves from A to B along paths 1 and 2. 
 
 
4.  Picture the Problem: The physical situation is depicted at right. 

 Strategy: Use equation 21
2W kx= (equation 7-8) to find the work done 

by the spring, but caution is in order:  This work is positive when the 
force exerted by the spring is in the same direction that the block is 
traveling, but it is negative when they point in opposite directions.  One 
way to keep track of that sign convention is to say that 

( 2 21
i fW k x x= − )2 .  That way the work will always be negative if you 

Copyright © 2010 Pearson Education, Inc.  All rights reserved. This material is protected under all copyright laws as they currently exist. No 
portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

8 – 2 



Chapter 8: Potential Energy and Conservation of Energy  James S. Walker, Physics, 4th Edition 
 

start out at because the spring force will always be in the 

opposite direction from the stretch or compression. 
i 0x =

 Solution: 1. (a) Sum the work done by 
the spring for each segment of path 1: 

( ) ( )
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( ) ( ) ( ) ( ){ }
( ) ( )

2 2 2 21
1 1 2 2 32

2 22 21
2

1

550 N/m 0 0.040 m 0.040 m 0.020 m

0.44 J 0.33 J 0.11 J

W k x x x x

W

⎡ ⎤= − + −⎣ ⎦

⎡ ⎤ ⎡ ⎤= − + −⎣ ⎦ ⎣ ⎦

= − + = −

 

 2.  Sum the work done by the spring  
for each segment of path 2: 

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
{ }

2 2 2 21
2 1 4 4 32

2 22 21
2

2

550 N/m 0 0.020 m 0.020 m 0.020 m

0.1 J 0 J 0.11 J

W k x x x x

W

⎡ ⎤= − + −⎣ ⎦

⎡ ⎤ ⎡= − − + − − ⎤
⎣ ⎦ ⎣

= − + = −

⎦

 3. (b) The work done by the spring will stay the same if you increase the mass because the results do not depend on the 
mass of the block. 

 Insight: The work done by the spring is negative whenever you displace the block away from x = 0, but it is positive 
when the displacement vector points toward x = 0. 

 
Introduction to Potential Energy  
 
The work energy theorem:  W K   total f iK= −

i

A) A force acting on a particle over a distance changes the kinetic energy of the particle. 
B) To calculate the change energy, you must know the force as a function of distance.  

x  to C) To illustrate the work-energy concept, consider the case of a stone falling from fx  under the influence 
gravity. 
Using the work-energy concept, we say that work is done by the gravitational force,  resulting in an increase of 
the kinetic  energy of the stone. 
 
The work of conservative forces can be written in terms of  the change in potential  energy: 

( )iW U U= −Δ = −

total ncW W K= + Δ

ncW U− Δ =
W K E= Δ +

c fU−

cW =
KΔ
UΔ = Δ

 

 
 

 nc

 
D) Rather than ascribing the increased kinetic energy of the stone to the work of gravity, we now (when using 

potential energy rather than work-energy) say that the increased kinetic energy comes from the change  of the 

potential  energy. 

E) This process happens in such a way that total mechanical energy, equal to the sum  of the kinetic and 

potential energies, is conserved. 
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Stretching a Spring  
As illustrated in the figure, a spring with spring constant k is stretched from (x=0) to (x=3d) , where (x=0) is the 
equilibrium position of the spring.  (Intro 1 figure)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A)Remember that the amount of work  done by the spring is equal to the negative of the change in 
potential energy.  The work done by us is opposite to the one of the spring. 
$W_{hand}=-W_{spring}=U_{f}-U_{i}$ 
 

From x=0 to x=d:         2 21 1 1( ) (0)
2 2 2hand

2d k kd= − =W k  

 

From x=d to x=2d:         2 21 1 3(2 ) ( )
2 2 2hand

2d k d kd= − =W k  

 

From x=2d to x=3d:         2 21 1 5(3 ) (2 )
2 2 2hand

2d k d kd= − =W k  

B) The same energy is needed to compress or stretch the spring. 
 

From x=0 to x=d: 2 21 1 1( ) (0)
2 2 2hand

2d k kd= − =W k  

From x=0 to x=-d: 2 21 1 1( ) (0)
2 2 2hand

2d k kd= − − =W k  

C) Now consider two springs A and B that are attached to a wall. Spring A has a spring constant that is four times 

that of the spring constant of spring B. If the same amount of energy is required to stretch both springs, what can 

be said about the distance each spring is stretched? 

 
4A Bk k=        Given condition 

21 1
2 2

2
A A Bk x k x= B

B B

      The energies are equal 
2 24k x k x=         B A

2 A Bx x=   

Spring A must stretch half the distance spring B stretches. 
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D) Two identical springs are attached to two different masses, AM  and BM  , where AM  is greater than BM  . 

The masses lie on a frictionless surface. Both springs are compressed the same distance, d  , as shown in the 

figure. Which of the following statements describes the energy required to compress spring A and spring B?  (Part 

D figure)   
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The energy associated with a spring is independent of mass. Spring A requires the same amount of energy as 
spring B. 
 

8.10 Find the gravitational potential energy of an 88 kg  person standing atop Mt. Everest at an altitude of 8848 m. 

Use sea level as the location for y=0.  
 
10.  Picture the Problem: The climber stands at the top of Mt. Everest. 

 Strategy: Find the gravitational potential energy by using equation 8-3. 

 Solution: Calculate U m : gy= ( )( )( )2 688 kg 9.81 m/s 8848 m 7.6 10  J 7.6 MJU mgy= = = × =  

 Insight: You are free to declare that the climber’s potential energy is zero at the top of Mt. Everest and −7.2 MJ at sea 
level! 

 
 

8.17 A 0.33 kg  pendulum bob is attached to a string 1.2 m long. 

What is the change in the gravitational potential energy of the system as the bob swings from point A to point B in 
the figure  
 

17.  Picture the Problem: The pendulum bob swings from point A to point B and loses 
altitude and thus gravitational potential energy.  See the figure at right. 

 Strategy: Use the geometry of the problem to find the change in altitude yΔ of the 
pendulum bob, and then use equation 8-3 to find its change in gravitational potential 
energy. 

 Solution: 1.  Take the apex of the  

Pendulum as the place for y=0. Let 

L

s

 be the length of the pendulum. 

coi Ay y L θ= = −  

f By y L= = −  

 2. Find : UΔ
f iU U UΔ = −  

f iU mgy mgyΔ = −  

 -( ( cos ))U mg L L θΔ = − −  
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( )
( ) ( ) ( ) ( )2

cos 1
0.33 kg 9.81 m/s 1.2 m cos35 1

0.70 J

U mgL

U

θΔ = −

= ° −

Δ = −  
 Insight: Note that  the change in height yΔ

(8)(9.8)(0.15) 11.76= =
(1)(9.8)(0.6) 5.88= =
(2)(9.8)(0.6) 11.76= =
(3)(9.8)(0.45) 13.23= =

is negative because the pendulum swings from A to B.  Likewise, the 
change in height is positive and the pendulum gains potential energy if it swings from B to A. 

 
 

Conservation of Energy Ranking Task  
 
A) Rank each pendulum on the basis of its initial gravitational potential energy (before being released). 
 
Possible combinations for potential energy 
 
a) m=8 kg; h=15 cm;  U J 
b) m=1 kg; h=60cm;  U J  
c) m=2 kg; h=60 cm;  U J 
d) m=3 kg; h=45 cm;  U J  
e) m=4 kg; h=30 cm;  J  (4)(9.8)(0.3) 11.76U = =
f) m=2 kg; h=30 cm;  J  (2)(9.8)(0.3) 5.88U = =
 
From largest to smallest:  d, (a,c,d), (b,f) 
 
B) Rank each pendulum on the basis of the maximum kinetic energy it attains after release. 
 
Energy is conserved. All the potential energy converts into kinetic, when  the maximum kinetic is 
reached. So the  order of the pendulums according to  possible kinetic energies is the same as above.  
 
C) Rank each pendulum on the basis of its maximum speed. 
Converting the potential into kinetic energy 
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2

mv mgh=

2 2v gh=

 

 
 
The larger the height the larger the speed, independent of the mass. 
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1nc

2nc

nc2

8.42 Starting at rest at the edge of a swimming pool, a 72.0 kg  athlete swims along the surface of the water and 
reaches a speed of 1.20 m/s by doing the work W  = 161 J . 

Find the nonconservative work, W  , done by the water on the athlete. 
 

42.  Picture the Problem: The athlete accelerates horizontally through the water from rest to 1.20 m/s while doing 
nonconservative work against the drag from the water. 

 Strategy: The total nonconservative work done on the athlete changes his mechanical energy according to equation 8-9. 
This nonconservative work includes the positive work done by the athlete’s muscles and the negative work  
done by the water. Use this relationship and the known change in kinetic energy to find . 

nc1W nc2W

nc2W

 Solution: Set the nonconservative work equal to  
the change in mechanical energy and solve for W .   
The initial mechanical energy is zero: ( )( ) ( )

nc nc1 nc2 f i f
21

nc2 f nc1 f nc12
21

0

72.0 kg 1.20 m/s 161 J 109 J

W W W E E E K
W K W mv W

2

= + = Δ = − = −
= − = −

= − = −  
 Insight: The drag force from the water reduced the swimmer’s mechanical energy, but his muscles increased it by a 

greater amount, resulting in a net gain in mechanical energy. 
 
 
8.50 An 81.0 kg  in-line skater does 3420 J  of nonconservative work by pushing against the ground with his 
skates. In addition, friction does -715 J  of nonconservative work on the skater. The skater's initial and final 
speeds are 2.50 m/s and 1.22 m/s, respectively. 
 
 
50.  Picture the Problem: The skater travels up a hill (we know this for reasons given below), changing his kinetic and 

gravitational potential energies, while both his muscles and friction do nonconservative work on him. 
 Strategy: The total nonconservative work done on the skater changes his mechanical energy according to equation 8-9.  

This nonconservative work includes the positive work done by his muscles and the negative work  done bnc1W nc2W y the 

friction. Use this relationship and the known change in potential energy to find .yΔ  

 Solution: 1. (a) The skater has gone uphill because the work done by the skater is larger than that done by friction, so 
the skater has gained mechanical energy.  However, the final speed of the skater is less than the initial speed, so he has 
lost kinetic energy.  Therefore he must have gained potential energy, and has gone uphill. 

 2. (b) Set the nonconser- 
vative work equal to the  
change in mechanical  
energy and solve for :yΔ   

( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ){ }
( )( )

nc nc1 nc2 f i
2 21

nc1 nc2 f f i i f i2

2 21
nc1 nc2 f i2

2 21
2

2

3420 J 715 J 81.0 kg 1.22 m/s 2.50 m/s
3.65 m

81.0 kg 9.81 m/s

W W W E E E
W W K U K U m v v mg y

y W W m v v mg

= + = Δ = −
+ = + − + = − + Δ

⎡ ⎤Δ = + − −⎣ ⎦
⎡ ⎤+ − − −⎣ ⎦= =

 
 Insight: Verify for yourself that if the skates had been frictionless but the skater’s muscles did the same amount of 

work, the skater’s final speed would have been 4.37 m/s.  He would have sped up if it weren’t for friction! 
 
 
8.30 A 2.9 kg  block slides with a speed of 1.6 m/s  on a frictionless horizontal surface until it encounters a spring. 
 

A) If the block compresses the spring 4.8 cm before coming to rest, what is the force constant of the spring?  

B) What initial speed should the block have to compress the spring by 1.2cm?  
 
 

30.  

Picture the Problem: A block slides on a frictionless, horizontal surface and encounters a horizontal spring.  It 
compresses the spring and briefly comes to rest. 

 Strategy: Set the mechanical energy when sliding freely equal to the mechanical energy when the spring is fully 
compressed and the block is at rest.  Solve the resulting equation for the spring constant k, then repeat the procedure to 
find the initial speed required to compress the spring only 1.2 cm before coming to rest. 
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i f Solution: 1. (a) Set  where the initial  
state is when it is sliding freely and the final  
state is when it is at rest, having compressed  
the spring. 

E E=

( )( )
( )

i i f f
2 21 1
i max2 2

22
i

2 2
max

0 0

2.9 kg 1.6 m/s
3200 N/m 3.2 kN/m

0.048 m

K U K U

mv kx

mvk
x

+ = +

+ = +

= = = =

 
2. (b) Solve the equation from step 1 for  i :v

( )( )22
max

i

3200 N/m 0.012 m
0.40 m/s

2.9 kg
kx

v
m

= = =  

 Insight: The kinetic energy of the sliding block is stored as potential energy in the spring.  Moments later the spring 
will have released all its potential energy, the block would have gained its kinetic energy again, and would then be 
sliding at the same speed but in the opposite direction. 

 
 
8.49 A 1250 kg  car drives up a hill that is 16.2 m  high. During the drive, two nonconservative forces do work on 
the car: (i) the force of friction, and (ii) the force generated by the car's engine. The work done by friction is 
−3.11×105 J ; the work done by the engine is 6.44×105 J . 
 
49.  Picture the Problem: The car drives up the hill, changing its kinetic and gravitational potential energies, while both the 

engine force and friction do nonconservative work on the car. 
 Strategy: The total nonconservative work done on the car changes its mechanical energy according to equation 8-9.  

This nonconservative work includes the positive work done by the engine and the negative work  done by the 
friction. Use this relationship and the known change in potential energy to find .

nc1W nc2W
KΔ  

 Solution: Set the nonconservative  
work equal to the change in me- 
chanical energy and solve for :KΔ   

( ) ( ) ( )
( )

( ) ( ) ( )( )( )

nc nc1 nc2 f i

nc1 nc2 f f i i f i

nc1 nc2 f i
5 5 2

5

6.44 10  J 3.11 10  J 1250 kg 9.81 m/s 16.2 m

1.34 10  J 134 kJ

W W W E E E
W W K U K U K mg y y

K W W mg y y

K

= + = Δ = −
+ = + − + = Δ + −
Δ = + − −

= × + − × −

Δ = × =  
 Insight: The friction force reduces the car’s mechanical energy, but the engine increased it by a greater amount, 

resulting in a net gain in both kinetic and potential energy.  The car gained speed while traveling uphill. 
 


