Exam I Spring 2007 Physics 100B

Student's Name:

Problem	Value	Score
I	35	
II	20	
III	25	
TOTAL	100	

- 1. Giving or receiving aid in any examination is cause for dismissal from the university.
- 2. Perform the necessary calculation in the spaces provided. If additional space is required, use the backs of the questions sheets.
- 3. All work must be shown in order to receive **FULL** credit. Work must be legible and comprehensible, and answers should be clearly indicated.

USEFUL EQUATIONS AND CONSTANTS

$$\begin{split} & k = 8.99 \; X \; 10^9 \; \frac{\mathit{Nm}^2}{\mathit{C}^2} \qquad \mathcal{E}_0 = 8.85 \times 10^{-12} \; \mathit{C}^2 \, / \, N \cdot m^2 \\ & q_e = -1.6 \; X 10^{-19} \; C \qquad q_p = + \; 1.6 \; X 10^{-19} \; C \\ & m_e = 9.1 \; X \; 10^{-31} kg \qquad m_p = 1.7 \; X \; 10^{-27} kg \qquad \qquad 1 \; eV = 1.60 \; x \; 10^{-19} J \end{split}$$

Coulomb's Law:
$$F = k \frac{|q_1||q_2|}{r^2}$$
 $k = 8.99 \times 10^9 \text{ N} \cdot \text{m}^2 / \text{C}^2$

Superposition:
$$\vec{F}_1 = \vec{F}_{12} + \vec{F}_{13} + \vec{F}_{14}$$
 Vector Sum

Electric Field:
$$\vec{F} = q\vec{E}$$
 Definition

Electric Field:
$$E = k \frac{|q|}{r^2}$$
 Magnitude (for point charge)

Superposition:
$$\vec{E} = \vec{E}_1 + \vec{E}_2 + \vec{E}_3$$
 Vector Sum

Potential Difference:
$$\Delta V = \frac{\Delta U}{a} = -\frac{\Delta W_{\text{by electric force}}}{a}$$
 Definition

Potential Energy
$$U = q V$$

$$\Delta V = -E\Delta s \cos \theta$$
 Uniform Electric Field

Electric Potential:
$$V = k \frac{q}{r}$$
 Point Charge

$$V = k \frac{q_1}{r_1} + k \frac{q_2}{r_2} + k \frac{q_3}{r_3}$$

Superposition

Energy Conservation:

$$\Delta K + \Delta U = 0$$

$$K = \frac{1}{2}mv^2$$

Capacitance:

$$C = \frac{Q}{V}$$

Definition

$$C = \varepsilon_0 \frac{A}{d}$$

Parallel Plate,

Dielectric:

$$C = \kappa C_0$$

 κ = Dielectric Constant

Energy Stored:

$$U = \frac{1}{2}QV = \frac{1}{2}CV^{2} = \frac{1}{2}\frac{Q^{2}}{C}$$

Energy Density:

$$u = \frac{1}{2} \varepsilon_0 E^2$$

Ohm's Law:

$$\mathcal{E} = IR$$

Current:

$$I = \frac{\Delta Q}{\Delta t}$$

Ohm's Law:

$$V = IR$$

Resistance:

$$R = \rho \frac{L}{A}$$

$$\rho$$
 = Resistivity

Power:

$$P = IV = I^2R = V^2 / R$$

Resistors in Series:

$$R_{\rm eq} = R_1 + R_2 + R_3 + \dots$$

Resistors in Parallel:

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots$$

Capacitors in Series:

$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots$$

Capacitors in Parallel:

$$C_{\text{eq}} = C_1 + C_2 + C_3 + \dots$$