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1 Introduction

The study of vibrating membranes is an aspect of mathematical physics that
is primarily concerned with the geometries of the membrane corresponding to
its frequencies. Membranes consisting of two materials of different densities
are called composite membranes.

We are interested in determining the shape of membranes with minimal
eigenvalues; in particular the first eigenvalue, or fundamental frequency, of
such membranes.

In this paper1 we will be studying a membrane Ω divided into two subsets,
a lower density D and a higher density Dc. The boundary between D and
Dc is a hypersurface and will be called Γ. We will first look at the associated
Dirichlet boundary PDE problem.

We will review the Spectral Theorem, which is an important result re-
lated to our work and then consider variations that fix the boundary of Ω
and preserves the volume of D and show that such variations do exist under
our given specifications.

The main purpose of this paper is to determine conditions on D and its
corresponding first eigenfunction, u, for the critical points of the smallest
eigenvalue, λ. We will also prove that for any critical point of λ, Γ is a level
set of u.

1Partially supported by NSF grant OISE: 0526008.
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2 The Dirichlet Problem

The composite membrane eigenvalue problem for a bounded domain Ω ⊂ Rn

is the Dirichlet boundary PDE problem:

(∗)Ω,α,D

{
−∆u+ αχDu = λu in Ω

u = 0 in ∂Ω

u is a normalised eigenfunction of the above problem, D is the region
of Ω previously defined, and we are interested in minimising λ0, the lowest
eigenvalue or lowest possible value of λ for a given D. We will only worry
about the eigenfunction u associated with λ0, and we want to find what
configurations of u and D will make λ′0 = 0.

χD is the characteristic function:

χD(x) =

{
0 if x ∈ Dc (= Ω−D)
1 if x ∈ D

Let Ω ⊂ Rn be an open, connected and bounded set. We define N as the
boundary of Ω, i.e., ∂Ω = N . Here N is smooth and a C∞ hypersurface. In
fact, N = f−1(a), where a is a regular value of the function f : U → R with
N ⊂ U .

F : (−ε, ε)× Ω̄ → Rn a C∞ function is the variation of Ω. If is necessary,
we can consider the extension of F : F̄ : (−ε, ε) × U → Rn a C∞ function
and Ω̄ ⊂ U ⊂ Rn is an open set.

We define now the follwing function that for each time:

Ft = F (t, ·) : Ω̄ → Rn

Ft(Ω̄) = Ω̄t

Restricting the time if necessary, one always has that Ft : Ω̄ → Rn is a
diffeomorphism onto its image:

Ft : Ω̄ → Ω̄t

For each time we consider N = ∂Ω and Nt = ∂Ω̄t also a C∞ hypersurface.
And Γ = ∂D ∩ Ω.

Ft : N → Nt is also a diffeomorphism.
Let’s start by defining some functions. We previously defined F : (−ε, ε)×

Ω̄ −→ Ω̄.

Definition 1. For some fixed t ∈ (−ε, ε), we define Ft : Ω̄ −→ Ω̄ as Ft =
F (t, x).
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Figure 1: The membrane

Let’s place some constraints on our Ft: For any t1, t2, (t1 + t2) ∈ (−ε, ε):

Ft1 ◦ Ft2 = Ft1+t2

This structure makes things nice for us–it makes the Fts associative, and
gives us for each Ft an inverse, so that Ft ◦ F−t = F0 = F . We will refer to
F0 as F from here on out. Defining Ft leads to a natural definition of Dt and
thus χDt , and prompts us to redefine the first eigenfunction:

Definition 2. For some fixed t ∈ (−ε, ε), we define ut : Ω̄ −→ R as ut =
u(t, x). We will newly define u = u0.

A few observations: We want to rewrite χDt as a deformation of χD. We
notice that if x = Ft(y), y = F−t(x) = F−1

t (x) and

χD(y) = χDt ◦ Ft(y)

χD ◦ (Ft)
−1(x) = χDt(x) = χD ◦ F−t
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2.1 Spectral Theorem

Usually one also has a boundary condition coming from the original problem.
We will consider the case where the membrane is fixed along ∂Ω,i.e., Ft(x) =
0 for all x ∈ ∂Ω and all t ∈ R. This gives rise to the same condition for u,
the Dirichlet boundary condition. Thus, one is bound to study the possible
solutions of the PDE problem{

−∆u = λu in Ω
u = 0 in ∂Ω

Analogous to the linear algbra concepts, a nontrivial u satisfyng such
conditions will be called an eigenfunction of the Laplacian and the associated
real number λ an eigenvalue.

Recall that given two functions φ and ψ in Ω wich go to zero at its
boundary, their L2 - inner product is given by

〈φ, ψ〉 =

∫
Ω

ϕψdx dy

One then has the classical

Theorem 2.1. (Spectral Theorem for the Laplacian with the Dirich-
let boundary condition). There is an unbounded discrete set of (positive)
eigenvalues

(0 <)λ1 < λ2 ≤ λ3 ≤ . . .

and associated set of eigenfunctions ui, which may be taken mutually orthog-
onal and with norm equal to 1, with respect to the L2 inner product in Ω,
which is complete in the sense that any smooth function v : Ω → R such that
v = 0 at ∂Ω may be written as the Fourier series

v =
∞∑
i=1

〈v, ui〉ui

Remark. In the case of one space variable, i.e., of a vibrating string, the
u′is are given by sine functions, the original Fourier series situation.

Observe that the (orthonormal) system of eigenfunctions plays the usual
role of an orthonormal basis in finite dimensional linear algebra, when we use
orthogonal projection to write a vector in that basis (in that case one has a
finite sum of projected vectors). It is also called a Hilbert basis for the space
os functions in Ω (with the Dirichlet boundary condition).

The numbers λi give the frequency of the basic solutions (called harmon-
ics) for the vibrating membrane. For this reason, λ1, the first eigenvalue, is
also called the fundamental frequency or pitch of the membrane
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3 Variations

We say that F preserves the volume if

vol(Dt) = vol(D) ∀ t ∈ (−ε, ε)

Since Γ bounds D, there exists ν : Γ → Rn, such that:

1. ‖ν(p)‖ = 1

2. ν points to exterior of D

3. ν(p) ⊥ TpΓ

Where TpΓ is the tangent plane at p to Γ. ν is the exterior unit normal
vector field along Γ.

Now, let F : (−ε, ε)× Ω̄ and p ∈ Ω̄. We will denote by

X(p) =
∂F

∂t
(0, p) ∈ Rn

the variation vector of F . X(p) is the initial velocity of variation at points
of Ω̄. X : N → Rn is a C∞ vector field on N .

We have a formula for the volume of Dt:

v(t) =

∫
Dt

dx

Now we have the following important lemma.

Lemma 3.1.

v′(0) =

∫
D

divX dx =

∫
Γ

〈X, ν〉 dx

Proof. We will show two different proofs.
(1)
As in the formula above, we have:

v′(t) =
d

dt

(∫
Dt

dx

)
=

∫
Ω

(χDt)
′ dx =

∫
Ω

(χDt ◦ F−t)
′ dx

The function χD is not smooth neither continuous. Then we consider a
smooth function gδ : Γ → R. dgδ : Rn → R is a linear application. Also we
have:

lim
δ→0

gδ = χD
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Now we can compute this integral∫
Ω

(gδ ◦ F−t)
′ dx

Remember that X = ∂F
∂t

is the variation vector. Then we have:∫
Ω

∂

∂t

∣∣∣∣
t=0

gδ(F (−t, x)) dx =

∫
Ω

dgδ(x)
∂F

∂t
(0, x).(−1) dx

= −
∫

Ω

〈∇gδ(x), X(x)〉 dx = −
∫

Ω

X(gδ)(x) dx

But we have
div(gδX) = 〈∇gδ, X〉+ gδdivX

And ∫
Ω

div(gδX) =

∫
∂Ω

gδ〈X, ν〉 = 0

because X is zero along the boundary ∂Ω. As we have limδ→0 gδ = χD,
then the integral converges too. It means∫

Ω

(χD ◦ F−t)
′ dx =

∫
Ω

(χD)divXdx =

∫
Γ

〈X, ν〉 dS

(2)
Using change of variables we have:

v(t) =

∫
D

JFtdy

Where JFt = |det(dFt)|. Then

v′(t) =
d

dt

∫
Dt

dy =
d

dt

∫
D

JFt dx =

∫
D

d

dt
JFt dx

Now, we will work only with d
dt
JFt. dFt is the Jacobian matrix for the

function Ft.
Ft : Ω ⊂ Rn → Rn

Ft(x1, x2, . . . , xn) = (F 1
t x, F

2
t x, . . . , F

n
t x)

Where x = (x1, x2, . . . , xn) and t ∈ (−ε, ε).

dFt =


(F 1

t )1 (F 1
t )2 · · · (F 1

t )n

(F 2
t )1 (F 2

t )2 · · · (F 2
t )n

...
...

...
(F n

t )1 (F n
t )2 · · · (F n

t )n


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Where (F i
t )j =

∂F i
t

∂xj
and i, j = 1, . . . , n.

If we look at the determinant of dFt by its columns, we get:

det(dFt) = det[(Ft)1 (Ft)2 · · · (Ft)n]

Now, we can differentiate with respect to t:

d

dt
det(dFt) = det[(Ft)

′
1 (Ft)2 · · · (Ft)n] + · · ·+ det[(Ft)1 (Ft)2 · · · (Ft)

′
n]

Where (Ft)
′
k is the derivative of the k-th column with respect to t. We

can take a look at one of the terms of the sum above:

det[(Ft)1 · · · (F 1
t )′k · · · (Ft)n] = det


(F 1

t )1 · · · (F 1
t )′k · · · (F 1

t )n

(F 2
t )1 · · · (F 2

t )′k · · · (F 2
t )n

...
...

...
(F n

t )1 (F n
t )′k · · · (F n

t )n


We can compute the determinant of the matrix above as a sum as below,

where P is the set of all permutations of the index i and σ is its permutation.∑
σ∈P

εσ(F 1
t )σ(1)(F

2
t )σ(2) · · · (F k

t )′σ(k) · · · (F n
t )σ(n)

Where εσ = ±1 is the signal of the permutation.We need this computation
only when t = 0. In this time we have for i, j = 1, ..., n:{

(F i
0)j = 0 i 6= j

(F i
0)i = 1

This means that F0 = Id|Ω̄. So, it is clear that:

d

dt
det dFt |t=o = (F 1

0 )′ + (F 2
0 )′ + · · ·+ (F n

0 )′

It is easy to see that(
∂

∂x1

,
∂

∂x2

, · · · , ∂

∂xn

)
·
(
dF 1

0

dt
,
dF 2

0

dt
, · · · , dF

n
0

dt

)
= ∇ · F0

The end of this proof it is made by the Gauss-Green Theorem. If we
called F i

0 = Xi for i = 1, ..., n and div X = X ′
1 + ...+X ′

n:

v′(0) =

∫
D

div X dx =

∫
Γ

〈X, ν〉 dS
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4 Variations With Fixed Boundary

Lemma 4.1. Let f : Γ → R be a piecewise smooth function such that∫
Γ

fdS = 0

then there exists a volume-preserving normal variation whose variation vector
is fN . If, in addition, f ≡ 0 on ∂Ω, the variation can be chosen so that it
fixes the boundary ∂Ω.

Proof. Let g = 0 on ∂Ω and
∫

D
gdM 6= 0. We can let g = 1 on Γ. Now, in

order to extend tf + t̄g over all of Ω̄, Take any point q ∈ Ω̄. We will define
d(Γ, q) to be the length of the normal vector to Γ passing through q (touching
Γ at point p; thus we also define a function p(q) mapping Ω̄ to Γ.) We also
define d(p, ∂Ω) for any point p ∈ Γ as the length of the vector normal to Γ
at p whose endpoint is on ∂Ω (we will say that the length is negative if q is
inside Γ.) We will also define the ”bump” function,

B : [0, 1] → R

so that B(x) = 1 if x ≤ 1
3
, B(x) = 0 if x ≥ 2

3
, and B(x) is C∞ on [0, 1].

We then define our extension function,

φ(q) = B

(
d(Γ, q)

d(p(q), ∂Ω)

)
It is easily shown that φ(q) is uniformly 1 on Γ, 0 on ∂Ω, and C∞ on Ω̄.
Now, set x(t, t̄) = x0 + φ(q)(tf + t̄g)N , g : Ω̄ → R is a piecewise smooth

function.
The volume function is

VD(t, t̄) =

∫
Γ

〈x,N〉 dS

Since we are considering the case where the volume is constant, we have

VD(t, t̄) = VD(0, 0)

Then we have
∂VD

∂t̄

∣∣∣∣
(0,0)

=

∫
D

dM 6= 0

Now we want to apply the Implicit Function Theorem.
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We have VD(t, t̄) = VD(0, 0) so, let

G : R× R → R

G := VD(t, t̄)− VD(0, 0)

continuously differentiable on an interval containing (0, 0) and G(0, 0) = 0.
The Jacobian is

dVD =

[
∂VD

∂t

∂VD

∂t̄

]
So, our M =

[
∂VD

∂t̄

]
det(M) |t̄=0=

∂VD

∂t̄

∣∣∣∣
t̄=0

=

∫
D

gdM 6= 0 by definition.

Then, by the Implicit Function Theorem, there is an open set (−ε, ε) ⊂ R
containing t̄ = 0 such that ∀tε(−ε, ε) ∃! ϕ(t)ε(−ε, ε) such that ϕ(t) = t̄ and
G(t, ϕ(t)) = 0 ⇒ V (t, ϕ(t)) = VD(0, 0).
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5 Critical Eigenvalues

Theorem 5.1. Let D ⊂ Ω ⊂ Rn be bounded, measurable and with a smooth
boundary Γ,u,f as defined above. Then

λ′(0) = α

∫
Γ

u2f dS

Proof. Observe that

−∆u0 + αχDu0 = λu0

−∆ut + αχDtut = λut

We multiply the first equation by −ut and the second by u, then add
them and integrate both side over Ω̄ to obtain

∫
Ω

ut∆u0 − u0∆ut + α

∫
Ω

(χDt − χD)u0ut = (λ(t)− λ)

∫
Ω

u0ut

The first integrand on the left-hand side of the equation is equal to the
divergence of u∇ut − ut∇u. By the divergence theorem, this integral has
value 0 since both u and ut are uniformly 0 on ∂Ω. Our equation reduces to

α

∫
Ω

(χDt − χD)u0ut = (λ(t)− λ)

∫
Ω

u0ut

We take the derivative of both sides with respect to t, and then terms
cancel out when we evaluate at t = 0:

α

(∫
Ω

d

dt

(
χ′Dt

)
u0ut +

∫
Ω

χDtu0u
′
t −

∫
Ω

χDu0u
′
t

)
=

= λ′(t)

∫
Ω

u0u
′
t + λ(t)

∫
Ω

u0u
′
t − λ0

∫
Ω

u0u
′
t

Evaluate at t = 0:

α

∫
Ω

d

dt

(
χ′Dt

)
t=0

u2 = λ′(0)

∫
Ω

u2 = λ′(0)

since the L2-norm of u is 1. The question remains, how can we take the
derivative of a non-differentiable function? Well, we can approximate χD by
a C∞ function, gε, by defining gε to be equal to χD on all points p ∈ Ω where
d(p,Γ) ≥ ε and C∞ on all points (on the ring around Γ, g slopes from 0 to
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1). Clearly as ε → 0, gε → χD, but gε is still a C∞ function which we can
differentiate.

α

∫
Ω

d

dt
(χDt)t=0 u

2 = α

∫
Ω

d

dt
(χD ◦ F−t)t=0 u

2 ≈ α

∫
Ω

d

dt

(
u2gε ◦ F−t

)
t=0

= −α
∫

Ω

u2X (gε) = −α
∫

Ω

〈u2X,∇gε〉

where X is the vector field associated with F . Now, by the properties of
divergence,

div(gε ◦ u2X) = 〈u2X,∇gε〉+ gεdiv(u
2X)∫

Ω

gεdiv(u
2X) =

∫
Ω

div(gε ◦ u2X)−
∫

Ω

〈u2X,∇gε〉

=

∫
∂Ω

gεu
2〈X,µ〉 −

∫
Ω

〈u2X,∇gε〉 = −
∫

Ω

〈u2X,∇gε〉

since u ≡ 0 on ∂Ω. Thus

λ′(0) = −α
∫

Ω

〈u2X,∇gε〉 = α

∫
Ω

gεdiv(u
2X)

≈ α

∫
Ω

χDu
2divX = α

∫
D

u2divX = α

∫
∂D

u2〈X, ν〉

by the Divergence Theorem. We previously stated that f = 〈X, ν〉. ∂D
is made up of two parts, Γ and ∂Ω. On ∂Ω, u ≡ 0, so the previous result
reduces to

λ′(0) = α

∫
Γ

u2fdS

which is a nice simple expression for λ′(0).

Definition 3. (Ω, D) is a critical point if for all variations f where
∫

Γ
fdS =

0 we have λ′(0) = 0.

Proposition 5.2. (Ω, D) is a critical point for our problem if and only if
Γ = u−1(c) where c is a constant.
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Proof. (⇒) Assume, in order to prove the contra-positive, that u is not con-
stant over Γ. ⇒ u2 is not constant over Γ. Then define

ū2 =

∫
Γ
u2dS∫
Γ
dS

Now define positive, smooth functions φ, ψ such that

φ = 0 when u2 − ū2 ≤ 0 and,

ψ = 0 when u2 − ū2 ≥ 0

Then let f = (φ+ ψ)(u2 − ū2)

⇒
∫

Γ

(φ+ ψ)(u2 − ū2) = 0

Consider
∫

Γ
u2fdS∫

Γ

u2fdS =

∫
Γ

u2(φ+ψ)(u2−ū2) =

∫
Γ

(φ+ψ)(u2−ū2)2+

∫
Γ

ū2(φ+ψ)(u2−ū2)

Then since ū2 is constant, we can factor it out and that term goes to zero by
our definition of f , leaving∫

Γ

u2fdS =

∫
Γ

(φ+ ψ)(u2 − ū2)2 6= 0

(⇐) Trivial, since if u = c constant, λ′(0) is clearly 0.
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