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Abstract

Incompressible, circularly symmetric fluid flow in a two-dimensional
annulus A = {x ∈ R2|1 < |x| < 2} with fixed outer boundary and ro-
tating inner boundary is analyzed in the low-viscosity limit. We con-
clude that in the inviscid limit, velocity solutions to the governing equa-
tions are solutions to the corresponding Euler zero-viscosity equations.
However, the vorticity production proves to be non-zero in the inviscid
limit given appropriate non-trivial initial conditions—differing from
Euler flow, which produces zero-vorticity at the boundary. Results
from semigroup theory together with the ability to calculate boundary
conditions for the vorticity equations (due to the simple symmetry of
the system) are used to prove the above conclusions.
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1 Introduction

In a summary of their recent work, Lopes, Mazzucato, and Nussenzveig [1]
analyzed the low-viscosity limit of incompressible fluid flow in the unit disk
with rotating boundary. In this paper, we seek to adapt their conclusions to
a region with non-trivial topology—namely the annulus, A, of outer radius
two and inner radius one. As in [1], we seek to show that solutions to the
Navier-Stokes (NS) flow equations for the annulus converge to solutions of
the Euler equations and that there exist vorticity-producing inner and outer
boundary layers in the low-viscosity limit. Our analysis proceeds using the
key assumption of circularly symmetric flows—greatly simplifying the anal-
ysis. The presence of a second boundary component in the annulus creates
some added difficulties, not present in the disk, which must be addressed in
our adaptation of the Lopes et al. analysis [1].

Our analysis begins in section 2 by considering the flow velocity solutions
to the NS equations using a conversion to polar coordinates to capitalize on
the assumed symmetry of the system as well as using a change of variables
to produce Dirichlet boundary conditions. Semigroup theory is then used to
demonstrate the existence of a solution which converges to an Euler solution
as viscosity approaches zero.

We next consider the vorticity production in the same annulus system
in section 3. It has been observed through physical experiments that low-
viscosity fluid flows lead to a zero-vorticity euler flow in the center of the
flow region bordered by vorticity-producing boundary layers. The goal of
our analysis of the vorticity is to prove the existence of such a layer in the
annulus case via mathematical analysis.

We conclude with theorems regarding the results of the above analysis
as well as attached appendices containing details about the polar coordi-
nates transformation, vector identities, and some discussion of the harmonic
decomposition of the velocity field.

2 Velocity Analysis

2.1 Governing Equations

We consider the flow of a viscous, incompressible fluid in the annulus, A =
{x ∈ R2|1 < |x| < 2}. The governing equations are:
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vt = ν∆v − ν v

r2 in A× (0, T )
v(r, 0) = v0(r) in A

v(r, t) = β(t)
2π for r = 1, t ∈ (0, T )

v(r, t) = 0 for r = 2, t ∈ (0, T ),

(2.1)

which are derived from the Navier-Stokes equations (see Appendix A) via a
polar coordinates symmetry reduction as described in the following subsec-
tions.

2.2 Navier-Stokes Equations in Polar Coordinates

The first step in our analysis is to consider the Navier-Stokes system (A.1)
in polar coordinates (r, θ) where the radius r = |x| and θ = tan−1( y

x) (see
Appendix B).

This manipulation decomposes the velocity field u into the radial com-
ponent of velocity u and the angular component v, and gives (A.1) in polar
coordinates: ut + uur + v

r uθ − v2

r = −pr + ν(∆u− 1
r2 u− 2

r2 vθ),
vt + uvr + v

r vθ − uv
r = −1

rpθ + ν(∆v − 1
r2 v + 2

r2 uθ),
ur + u

r + vθ
r = 0.

(2.2)

Note that the boundary conditions and the specific domain for each equation
have been omitted; these will be addressed below.

2.3 Symmetry Reduction and Change of Variables

The benefit of converting the cartesian system (A.1) to the polar system (2.2)
lies in the simple symmetry of our system. Because we have assumed the
flow to be circularly symmetric within the annulus A, we have that none
of the variables (angular velocity, radial velocity, or pressure) vary with
respect to θ. Additionally, we know through a geometric argument that the
velocity must be entirely tangent to the radius, therefore the radial velocity,
u must be zero. We can also show that u = 0 analytically as (ru)r = 0 and
u(2, t) = 0.

This symmetry reduction simplifies the polar NS equations (2.2) to:{
v2

r = pr

vt = ν(vrr + 1
rvr − 1

r2 v).
(2.3)

The first equation simply gives a formula for pressure:
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p(r, t) =
∫ r

1

v(s, t)2

s
ds,

which can be decoupled from the system. Substituting the polar Lapla-
cian, removing this portion, and once again including the previously omit-
ted boundary and initial conditions gives the previously stated governing
equations (2.1).

The simplified system (2.1) is no longer nonlinear in polar coordinates
and now has the form of a non-homogeneous perturbed heat equation with
two boundary conditions. One last manipulation remains to replace this
non-homogeneity with homogeneous Dirichlet boundary conditions. To do
so, we begin by defining:

W (r, t) = v(r, t)− 4
3
β(t) +

β(t)
3

r2

Therefore, W solves the system below:
Wt = ν(∆− 1

r2 )W + νβ(t)− 4νβ(t)
3r2 − 4

3β′(t) + β′(t)
3 r2 in A× (0, T )

W (r, 0) = W0(r) = v0 − 4
3β(0) + β(0)

3 r2 in A
W (1, t) = W (2, t) = 0 for t ∈ (0, T ).

(2.4)
Setting Q = ν(∆− 1

r2 ); f(r) = ν − 4ν
3r2 and g(r) = −4

3 + 1
3r2;

a0 = −4
3β(0); and b0(r) = β(0)

3 r2 gives the modified version of (2.4) below:


Wt = QW + β(t)f(r) + β′(t)g(r) in A× (0, T )
W0 = V0 + a0 + b0(r) in A
W (r, t) = 0 for r = 1, r = 2, t ∈ (0, T ).

(2.5)

We now focus our analysis on the operator Q to formulate the following
proposition.

Proposition 1. Given a strongly elliptical operator −Q of order 2 with
domain equal to H2(A)

⋂
H1

0 (A), then Q is the infinitesimal generator of
an analytic semigroup of operators on L2(A) and the corresponding velocity
solutions are C2(A).

The proof of this proposition follows from results in chapter 7 of Pazy’s
semigroup text [2] together with a bootstrap-style continuity argument and
Sobolev embedding.
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Thus we can conclude that (2.5) has a unique solution. According to
Duhamel’s principle, this unique solution can be expressed as:

W (r, t) = eQtW0(r) +
∫ t

0
eQ(t−s)

[
β(s)f(r) + β′(s)g(r)

]
ds. (2.6)

From this result, the convergence to the solution of the Euler equations
as ν → 0 follows as in the work by Lopes et al.in [1] giving the following
theorem:

Theorem 1. Let u be the solution of the 2D Navier-Stokes equations in the
annulus such that 1 ≤ |x| ≤ 2. The inner boundary of the annulus, |x| = 1,
is rotating with angular velocity β(t) ∈ AC([0, T ]). On the outer boundary,
|x| = 2, the angular velocity is zero. Assume that the initial vorticity ω0 ∈
L1(A)∩H−1(A) is radial so that the initial velocity u0 ∈ L2(A) has circular
symmetry. Then, u0 is a steady solution of the 2D Euler equation and u
converges strongly in L∞([0, T ], L2(A)) to u0.

3 Vorticity Analysis

3.1 Introduction to Vorticity

Previously we analyzed the fluid flow in an annulus as ν → 0. Our next goal
is to examine the production of vorticity in the low-viscosity limit.

Our first task in this analysis is to define voriticty:

Definition The measure of the local rotation of 2D fluid flow is called
vorticity, ω. Where

−→ω = curl u = ∇× u. (3.1)

Note that −→ω is a vector and that if u is in a plane, then u ⊥ −→ω and
−→ω = (0, 0, ω). We abuse notation and let ω = ṽx − ũy.

From our previous calculation that transformed the Navier-Stokes equa-
tions into polar coordinates, we have

ω = ṽx − ũy = vr −
v

r
=

1
r
(rv)r. (3.2)

We begin this investigation with the equation for the evolution of vor-
ticity in a viscous incompressible two-dimensional flow:
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Proposition 2. Given an incompressible, viscous, circularly symmmetric
2D fluid flow, the vorticity satisfies:

wt = ν∆ω (3.3)

Proof. Using vector identities (C.1), the NS equations (A.1) may be rewrit-
ten as

ut + (∇× u)× u +∇(
1
2
u2) = −∇p + ν∆u,

and by taking the curl we obtain

ωt +∇× ω × u +∇×
[
∇

(
1
2
u2

)]
= ν∆ω.

Using the vetor identities (C.2) and (C.3) in the third and fourth term
respectively we have

ωt + (u · ∇)ω = ν∆ω.

Additionally, via a geometric argument, we know that ∇ω is normal to
level curves, which implies ∇ω ⊥ circles, and we know that u is tangent to
circles, both because of our symmetry assumption. Thus u ·∇ω = 0 and we
reduce our vorticity equation to:

ωt = ν∆ω, in A× (0, T );
ω(0) = ω0, in A

ωr(r, t) = β′(t)
2πν , r = 1

ωr(r, t) = 0, r = 2.

(3.4)

where ω0 = curl u0.

The boundary conditions of (3.4) will be calculated in the next sub-
section (see (3.7) and (3.6)). The vorticity boundary conditions are often
difficult to calculate, but in the case of this system, we use the circular
symmetry and are able to overcome this difficulty as shown below.

We will use (3.4) to find an estimate of the flux of vorticity over the
boundary. Eventually we will demonstrate the existence of a boundary layer
where vorticity is produced surrounding an inner layer of zero-vorticity Euler
flow.
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3.2 Vorticity in polar coordinates

When estimating the production of vorticity in the annulus, our calculations
are greatly simplified when we work in polar coordinates.

First we must find an expression to define ωr.

Proposition 3. For all (x, t) ∈ A× [0, T ) we have,

ωr =
vt

ν
.

Proof. Since v(t) ∈ C2(A) we have ω(t) ∈ C1(A) and differentiating ω with
respect to the radius gives:

ωr = vrr +
vr

r
− v

r2
(3.5)

Moreover, vt ∈ C1, so we have vt(t)
ν ∈ C1(A). Therefore, by (2.3):

ωr =
vt

ν
.

We are able to proceed in calculating the vorticity boundary conditions due
to this useful expression for ωr in terms of vt resulting from the polar coor-
dinates transformation (2.3).

Thus, by (2.1):

lim
r→2

v(r, t) = 0 ⇒ lim
r→2

vt(r, t)
ν

= 0.

And at r = 1,

lim
r→1

v(r, t) =
β(t)
2π

⇒ lim
r→2

vt(r, t)
ν

=
β′(t)
2πν

.

We conclude that

ωr(2, t) = 0 (3.6)

and

ωr(1, t) =
β′(t)
2πν

. (3.7)

The result for ωr(1, t) can also be calculated using vector identities and (3.6)
(see Appendix D).
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3.3 Estimate of Vorticity Production

This section examines the production of vorticity at the boundary in the
limit of vanishing viscosity. Given the above boundary condition results for
ωr, we can now calculate an estimate for the vorticity production in the
annulus.

Theorem 2. For any 0 < t ≤ T we have

‖ω(·, t)‖L1(A) ≤ ‖β(t)‖AC(0,t) + ‖ω0‖L1(A)

Proof. To calculate the L1 estimate of vorticity, consider a convex mollifier
function φε = φε(s), (φ

′′
ε (s) ≥ 0) such that φε(s) → |s| as ε → 0 (see Ap-

pendix E).

Thus applying φ′ε to (3.4) and integrating gives:

d

dt

(∫
A

φε(ω)dx

)
=

∫
A

dt(φε(ω))dx =
∫

A
φ

′
ε(ω)(ωt)dx

= ν

∫
A

φ
′
ε(ω)∆ωdx.

Using the following vector identity

φ
′
ε(ω)∆ω = φ

′
ε(ω)div(∇ω)

= div[φ
′
ε(ω)∇ω]−∇(φ

′
ε)(ω) · ∇ω

= div[φ
′
ε(ω)∇ω]− φ

′′
ε (ω)|∇ω|2

and the divergence theorem then produces,

d

dt

(∫
A

φε(ω)dx

)
= ν

∫
∂A

[
φ

′
ε(ω)∇ω · n̂

]
ds− ν

∫
A

φ
′′
ε (ω)|∇ω|2ds,

where ∂A = the boundary of A = {|x| = 1 ∪ |x| = 2}. Thus,∫
A

φ
′′
ε (ω)|∇ω|2ds ≥ 0

therefore,
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d

dt

(∫
A

φε(ω)dx

)
≤ ν

∫
|x|=2

[
φ

′
ε(ω)∇ω · x

2

]
ds−

∫
|x|=1

[
φ

′
ε(ω)∇ω · x

]
ds

Taking ω(x, t) = ω̃(r, t) again in polar coordinates and ε → 0,

d

dt

(∫
A
|ω|dx

)
≤ ν4π sign(ω̃(2, t))ω̃r(2, t)− ν2π sign(ω̃(1, t))ω̃r(1, t)

but (3.6) implies that the first term is zero, and thus

d

dt

(∫
A
|ω|dx

)
≤ −ν2π sign(ω̃(1, t))ω̃r(1, t).

Applying (3.7) to the right and integrating gives:∫
A
|ω|dx−

∫
A
|ω0|dx ≤

∫ t

0
|β′

(s)|ds

therefore by definition of the L1 norm,

‖ω(·, t)‖L1(A) ≤ ‖β‖AC(0,t) + ‖ω0‖L1(A)

4 Conclusion

In this paper, we analyzed the low-viscosity limit of incompressible, circu-
larly symmetric fluid flow in the annulus, A with fixed outer and rotating
inner boundaries. As a result of our analysis, we obtain two theorems that
describe this particular fluid flow. In order to construct the theorems, we
took advantage of the simple symmetry of the system. We also applied re-
sults from semigroup theory (Proposition 1), which results in well-behaved
solutions of the governing equations for this system.

Theorem 1 concludes that for this annulus system, the velocity solutions
of the Navier-Stokes equations converge strongly to the velocity solutions of
the Euler equations as ν → 0.

Theorem 2 concludes that in the low-viscosity limit of incompressible,
circularly symmetric fluid flow in the annulus, vorticity is produced beyond
any initial vorticity. From previous analysis, we know that there is no addi-
tional vorticity production in the zero-viscosity case.
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Therefore we can conclude that while the low-viscosity limit mimics the
zero-viscosity case with respect to the velocity solutions, an analysis of the
vorticity reveals a stark difference between infinitesimal viscosity and no
viscosity in this annulus system.
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A Navier-Stokes Equations

In this and the following appendices, we outline some of the additional
details behind the results discussed in the preceding paper.

We consider the annulus A in the plane centered at the origin such that,
A = {x ∈ R2 | 1 < |x| < 2}. In order to describe the velocity of the fluid
with viscosity ν we consider the 2D Navier-Stokes equations:

ut + (u · ∇)u = −1
ρ∇p + ν∆u, in A× (0, T )

div u = 0, in A× [0, T )
u(x, 0) = u0(x), in A

u(x, t) = β(t)
2π , on |x| = 1

u(x, t) = 0, on |x| = 2.

(A.1)

u(x, t) is the fluid velocity vector field, ν is the kinematic viscosity of the
fluid, p is the scalar fluid pressure, and ρ is the fluid density. We will assume
ρ = 1 for this analysis (ρ could also be scaled out to similar effect). We make
the assumption that the inner boundary is rotating with angular velocity
β(t)
2π (where β(t) is a function of bounded variation) and the outer boundary

is stationary.

B Polar Coordinates Transformation

In order to consider the Navier-Stokes equations in polar coordinates, we
use the fact that:

u = ũ(x, y)−→x + ṽ(x, y)−→y
and define

−→x = cosθ−→er − sinθ−→eθ

and
−→y = sinθ−→er + cosθ−→eθ .

This transformation gives:

u = [ũ(x, y)cosθ + ṽ(x, y)sinθ]−→er + [−ũ(x, y)sinθ + ṽ(x, y)cosθ]−→eθ

We now let
u = ũ(x, y)cosθ + ṽ(x, y)sinθ and
v = −ũ(x, y)sinθ + ṽ(x, y)cosθ.

C Vector Identities

The following vector identities are used occasionally throughout our analysis.
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(F · ∇)F = (∇× F)× F +∇(
1
2
F2) (C.1)

∇× (F×G) = (G · ∇)F− (F · ∇)G + F(∇ ·G)−G(∇ · F) (C.2)

∇×∇φ = 0 (C.3)

D Vector Identity Calculation of ωr(1, t):

Lemma 1. The vorticity satisfies

β′(t)
ν

= 2πω̃r(1, t) (D.1)

Proof. Initially we make an estimate∫
A

ωdx =
∫

A
(∇⊥ · u)dx = −

∫
A

(∇ · u⊥)dx =

−
∫

A
div(u⊥)dx = −

[∫
|x|=2

(u⊥.
x

2
)ds−

∫
|x|=1

(u⊥.x)ds

]
=

= −

[∫
|x|=2

(v.x⊥)⊥.
x

2
ds−

∫
|x|=1

(v.x⊥)⊥.xds

]
=

= v(2, t)
∫
|x|=2

(x · x

2
)ds− v(1, t)

∫
|x|=2

(x · x)ds = −v(1, t)2π,

that is,

−β(t) =
∫

A
ωdx.

Now,

−β′(t) =
d

dt

(∫
A

ωdx

)
=

∫
A

ωtdx
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= ν

∫
A

∆ω dx = ν

[∫
|x|=2

(∇ω · x

2
)ds−

∫
|x|=1

(∇ω · x)ds

]
We take ω(x, t) = ω̃(|x|, t). Thus ∇ω = ω̃r(|x|, t) x

|x| . Soon,

β′(t)
ν

= 2πω̃r(1, t)

E An explicit φε(s) mollifier function

One function found to satisfy the requirements for the mollifier function in
Theorem 2 is given below.

φε(s) =


−s, s < −ε;
s, s > ε;
− cos(πs

2ε )2ε
π , s ∈ [ε, ε].

(E.1)

F Harmonic Decomposition

In addition to analyzing the velocity and vorticity of a fluid flow system,
one often also considers the harmonic decomposition. While this was not
included in our final analysis in the paper, a preliminary harmonic decom-
position of the system is outlined below.

By the Hodge-Kodaira Decomposition Theorem, we know that there
exists a unique stream function, Ψ such that

(u, v) = ∇⊥Ψ + H (F.1)

where ∆Ψ = ω and H is the harmonic part. Ψ must also satisfy ∇⊥Ψ ⊥ H.
We also have

v(r, t) =
1
r

∫ r

1
sω(s, t)ds +

β(t)
r

(F.2)

and

v(r, t) = Ψr +
B(t)

r
. (F.3)

Since, ∆Ψ = ω, we calculate Ψr using the definition of the laplacian of Ψ.

15



Ψr =
1
r

∫ r

1
sω(s, t)ds +

A(t)
r

. (F.4)

Integrate both sides to find Ψ

Ψ =
∫ r

1

1
z

∫ z

1
sω(s, t)ds + A(t)lnr (F.5)

where Ψ(1, t) = 0.
Moreover, we need to define the constant functions A(t) and B(t) so that

Ψ will satisfy the following boundary conditions of the fluid velocity.{
v(1, t) = β(t), r = 1;
v(2, t) = 0, r = 2.

(F.6)

So at r = 1, β(t) = A(t) + B(t). In order to solve for our constant func-
tions, we utilize the fact that ∇⊥Ψ ⊥ H, which means

∫ 2
1 rΨr

B(t)
r dr = 0.

Substitute Ψr into this equation,

∫ 2

1
ΨrB(t)dr =

∫ 2

1

[
1
r

∫ r

1
sω(s, t)ds +

A(t)
r

]
B(t)dr = 0 (F.7)

We integrate by parts to find:

0 =
∫ 2

1

[∫ r

1
sω(s, t)ds + A(t)

]
B(t)

r
dr = B(t)

∫ 2

1

[
1
r

∫ r

1
sω(s, t)ds +

A(t)
r

]
dr +[∫ 2

1
sω(s, t)ds + A(t)

]
B(t)ln2 −

[∫ 2

1
sω(s, t)ds + A(t)

]
B(t)ln2.

Now we can conclude that

B(t)
∫ 2

1

[
1
r

∫ r

1
sω(s, t)ds +

A(t)
r

]
dr = 0.

Since B(t) is nonzero,∫ 2

1

[
1
r

∫ r

1
sω(s, t)ds +

A(t)
r

]
dr = 0

and solve

A(t) =
−1
ln2

∫ 2

1

[
1
r

∫ r

1
sω(s, t)ds

]
dr.
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Thus,

B(t) = β(t)−A(t).

We need to ensure that the constant functions that we just defined satisfy
Ψ(2, t) = 0.

Ψ(2, t) =
∫ 2

1

1
z

∫ z

1
sω(s, t)ds + A(t)ln2 (F.8)

Substitute the previous calculation of A(t):

Ψ(2, t) =
∫ 2

1

1
z

∫ z

1
sω(s, t)ds + ln2

−1
ln2

∫ 2

1

[
1
r

∫ r

1
sω(s, t)ds

]
dr

Thus we have shown that Ψ(2, t) = 0.
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