1. A student was trying to show that the language
\[L = \{ \langle M; w \rangle : M(w) \text{ halts after an even number of steps} \} \]
is not decidable. His “solution” was: to take an instance \(\langle M; w \rangle \) of \text{HALTING} and create an instance of \(L \) by doing nothing (ie \(M' = M \) and \(w' = w \)). Show that this is incorrect by finding a particular \(\langle M; w \rangle \in \text{HALTING} \), but with \(\langle M; w \rangle \notin L \).

Let \(M \) be the machine which steps to the right once and accepts regardless of the word. Let \(w = a \).

Notice that \(M(w) \) halts, but that \(M(w) \) does not halt after an even number of steps.

2. A student was trying to show that the language \(\text{EQUAL} = \{ S : S \text{ can be partitioned into sets which sum to the same value} \} \) is \(\text{NP-complete} \). His “solution” was to take an instance \(\langle S, t \rangle \) of \text{SubsetSum} and convert it to an instance of \text{EQUAL} by letting \(S' = S \). Show that this is incorrect by finding a particular \(\langle S, t \rangle \in \text{SUBSETSUM} \) but \(S \notin \text{EQUAL} \).

Let \(S = \{1, 3\} \) and \(t = 1 \). It is clear that \(\langle S, t \rangle \in \text{SubsetSum} \). However, \(S' = S \) cannot be split into two equally sized sets.

3. A student was trying to show that the language \(\text{EQUAL} = \{ S : S \text{ is a set of integers which can be split into two sets which sum to the same value} \} \) is \(\text{NP-complete} \). His “solution” was to take an instance \(\langle S, t \rangle \) of \text{SubsetSum} and convert it to an instance of \text{EQUAL} by letting \(S' = S \). Show that this is incorrect by finding a particular \(\langle S, t \rangle \notin \text{SUBSETSUM} \), but with \(S' \in \text{EQUAL} \).

Let \(S = \{1, 3\} \) and \(t = 2 \). It is clear that \(\langle S, t \rangle \notin \text{SubsetSum} \), but \(S' = \{1, 1, 3, 3\} \in \text{EQUAL} \), since \(1+3=1+3 \).

4. A student was trying to show that the language \(\text{BINPACKING} = \{(S;b,t) : S \text{ can be split into } b \text{ sets each of which sums to at most } t \} \) is \(\text{NP-complete} \). His “solution” was to take an instance \(\langle S, t \rangle \) of \text{SubsetSum} and convert it to an instance of \text{BINPACKING} by letting \(S' = S \), \(b = 2 \), and \(t' = t \). Show that this is incorrect by finding a particular \(\langle S, t \rangle \notin \text{SUBSETSUM} \), but with \(\langle S', b, t' \rangle \notin \text{BINPACKING} \).

Let \(S = \{1, 3\} \) and \(t = 1 \). It is clear that \(\langle S, t \rangle \notin \text{SubsetSum} \), but \(S' = S \) cannot be packed into 2 bins with capacity 1.

5. Show that the language \(\text{TRIPARTITION} = \{ S \in \text{S can be split into 3 sets which all sum to the same value} \} \) is \(\text{NP-complete} \).

Given an instance of \text{EQUAL}, \(S \). Create an instance of \text{TRIPARTITION}, \(S' \) where \(S' = S \cup \{h\} \) where \(h = \sum_{s \in S} s/2 \).

If \(S \) can be divided into two equal sets then \(S' \) can be divided into 3 equal sets (the same 2 plus the single item \(h \)).

If \(S' \) can be divided into three equal sets then one of them must consist of only \(h \). The other two sets are a partition of \(S \) into two equally sized sets.