Embedded Applications

COMPS95EA
Embedded Applications
Development



Embedded Development

e There exists a tension inherent to embedded
development:

- Embedded hardware and sensors require testing on
target platform

— limited resources and human interfaces prevent
programming and development on embedded
platforms

* The development 1s split between host and target
machines.



Host

* A typical, general pupose workstation used for:
— programming
— compiling
— (testing/emulation)

* Vast computing resources support sophisticated
IDEs, compilers and debugging environments.



Target

* The Target machine 1s the embedded platform
selected and supports:

— testing

— 1ntegration
— Calibration
— execution

— deployment



Native vs Cross-compilers

e Native tools:

— Compiler, assembler, linker and debugger

— Take source and produce executables that run on the
same machine the compilation took place on.

* Cross-Compiler:

— Produce instruction codes and formats for execution
on a foreign platform.

e (Collection of tools 1s called a “‘tool chain”



Compilation Problems

* Code that compiles natively may not cross-
compile for the target system.

— usage of libraries or system calls that do not exist.

— memory or other resources may not permit it.



Linkers / Locators

e Native Linkers

— produce objects designed to be loaded at runtime

— produce relative or symbolic memory locations

— resolution of addresses 1s performed by the loader
e Locators (linkers for embedded platforms)

— produce stand alone executable

— Don't have the advantage of a loader (ever)

— Handle allocation and placement of memory.



Locator Complexities

* Locators have to handle memory

— Determine what goes in ROM
— Determine what goes in RAM

* Most tool chains divide memory into segments
- segments are allocated to either ROM or RAM

- segments can be placed independently of each other

* Locators must ensure the placement of the first
instruction and handle start-up code placement.



Cross-Compiler vs Cross-Assembler

* Cross-Compiler

— usually handles all of the locator complexities
automatically with reasonable default behavior

e Cross-Assembler

— Programmer 1s god.

— What you write 1s what you get

* (even 1if 1t's a platypus or sea cucumber)



Initialized Data

* Initialized Data presents a problem for embedded
locators concerning memory placement

* Take for example:
static int freg=2410;

— Where should the data be placed?

* ROM: because it has to persist and re-initialize across
reboots?

* RAM: because it needs to be changed or written to?



Initialized Solution

* Most Locators solve the problem by creating
“shadow” segments in ROM

e Initialized values are written to the shadow
segment

* Code at start-up copies the shadow segment to
the target segment in RAM

— Locator must produce addresses for the RAM
locations and not the ROM locations where the data
starts.



Initializing Memory

e Extra Care should be taken on embedded
platforms to zero all data used.

* Most typically memory values start with
whatever random values where 1n memory when
the system started.

* Some tool-chains take care of preinitializing data;
some do not



Constant Strings

* Constant strings are also a problem similar to pre-
initialized data.

- char *Msg = “Reactor i1s nelting!”;
e ROM or RAM again?
* Array boundaries!!

— Thousands of problems wouldn't exist 1f programmers
would test their array boundaries.

o Arr ay boundaries!! (In case you missed that point)



* No, really...

— Array boundaries!!



Locator Maps

* Unlike native tools, Locators typically produce a
“map” of where 1t placed things in memory

e Useful for:

— verifying that the tool-chain produced a suitable
executable format.

— debugging



Executing out of RAM

* RAM is typically tfaster than ROM

* Executing code residing in ROM 1s therefore
slower.

— Many microprocessors don't suffer this penalty due to
ROM being faster then the processor

* If code was executed from RAM a performance
Increase can be achieved.



RAM Execution

* This can be achieved by:

— Use a small start-up code routine to copy contents of
ROM to RAM

- Switch execution pointer to RAM location

* Locator needs to produce proper addresses
referring to RAM locations.

* Code can be compressed / use less space



Transterring to Target

* Once the executable 1s created by the Cross-
platform tool chain it needs to be transferred to
the target machine.

* Several method exist for accomplishing this



PROM programmers

* PROM programmers

— Chip 1s 1nserted into special equipment

— host machine transfers executable to parallel/serial
port to equipment

- equipment electrically programs the chip

— Chip 1s reinserted / soldered to target platform

* Very inexpensive, time consuming

* Difficult to upgrade program later.



ROM Emulators

¢ ROM emulator

— An electronic device hooked up to both the host and
target machines.

— Host machine transfers program to ROM emulator
device

— ROM emulator device acts just like ROM attached to
the target platform

* more costly

* Fast turn around times / better debugging



Flash

e Flash

— Programmable read only memory that can be
programmed 1n place without a dedicated
programmer.

* Can programmed from a serial port / software
* Allows field upgrades
e costly components / complicated programming

* Flexible / upgradable



Monitors

e Monitor

— A small piece of software or hardware that listens to a
serial port and installs any incoming program into
RAM and then begins execution

e Useful for debugging.
* Programs do not survive power cycles.

* Not suitable for production



