Advanced Data Structures

COMP282
Normal Forms
Motivation

- Data can be organized a variety of ways
- Poor choices concerning organization can lead to database anomalies (corruption) or difficulty in keeping information accurate.
- Normal forms prevent certain anomalies from occurring.
First Normal Form (1NF)

- 1NF is rather easy.
 - simply stated: attributes can only contain values
 - attributes cannot consist of sets of values

- It might be useful to want to store information about songs

- Madonna produced Erotica and Ray of Light.
 - it would not 1NF if relation consisted of the attribute albums and it was assigned the set \{Erotica, Ray of Light\}
All modern RDMS are 1NF

- Oracle, MySQL, et al. all produce 1NF by default. The SQL language doesn't provide for non-1NF queries.
1NF anomalies

- 1NF databases have some problems:
- Most notable:
 - repetition of data
 - to change a department name all tuples of the relation need to be updated since the department name can exist in multiple rows.
Partial Dependencies

- if $X \rightarrow Y$ and $W \rightarrow Y$ and $W \subseteq X$ then Y is said to be partially dependent on X
- Essentially You could restrict X a bit and still functionally determine Y.
- 2NF requires knowledge of this.
Second Normal Form (2NF)

- A relation $r(R)$ is in Second Normal Form (2NF) iff:
 - $r(R)$ is already in 1NF
 - each attribute that is not part of a candidate key is fully dependent on every candidate key
2NF example

- In the following example D is partially dependent on AB
2NF Anomalies

• Assume that Emp-Dpt \rightarrow Emp-Hrly-Rate

 – We cannot Set the Emp-Hrly Rate until an employee is added with that Dpt

 – We cannot delete the last employee of a department without losing the department's hourly rate.

 – If the department hourly rate changes the entire table must be edited and all employees working in that department need to be updated.
Transitive Dependencies

• This is the graphical depiction of a transitive dependency.

![Graphical representation of transitive dependency]

• Third normal form removes these from relations
Third Normal Form (3NF)

- A relation \(r(R) \) is in Third Normal Form (3NF) iff:
 - \(r(R) \) is already in 2NF
 - No nonprime attribute functionally determines any other nonprime attribute.
3NF Anomalies

<table>
<thead>
<tr>
<th>Region</th>
<th>Course</th>
<th>Level</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>East Coast</td>
<td>SQL 101</td>
<td>Introduction</td>
<td>8:00-10:00</td>
<td>Atlanta Educational Center</td>
</tr>
<tr>
<td>East Coast</td>
<td>SQL 101</td>
<td>Intermediate</td>
<td>10:00-12:00</td>
<td>New York Educational Center</td>
</tr>
<tr>
<td>West Coast</td>
<td>SQL 101</td>
<td>Advanced</td>
<td>8:00-10:00</td>
<td>Los Angeles Educational Center</td>
</tr>
</tbody>
</table>
Boyce-Codd Normal Form (BCNF)

• Boyce-Codd Normal Form requires:
 - The relation is (1NF)
 - for every FD \(X \rightarrow A \), we have either \(A \subseteq X \) or \(X \) is a superkey of \(r(R) \)

• The second criteria implies 3NF (All BCNF relations are also 3NF but not all 3NF relations are BCNF)