COMP 282
Advanced Data Structures

Lecture 06
Graphs
Spanning Trees
Minimum Spanning Trees

• If the edges in the graph have weights then we can consider “minimum” spanning trees.

• A minimum spanning tree is the set of edges that have the smallest cumulative weight yet produce a valid spanning tree.
An Example

• Assume the graph is cities with distances between cities…
Prim’s algorithm

• Start with any vertex \(v \), mark it and include it in the minimum spanning tree.

• While there are unmarked vertices:
 – Find the least cost edge \((v,u)\) such that \(v \) is marked \([\text{marked} = \text{“in spanning tree”}]\) and \(u \) is not.
 – Add \(u \) and edge \((v,u)\) to the minimum spanning tree.
Example

- Start with “a” consider edges \((a,b)\), \((a,f)\) and \((a,i)\) because they are connected to nodes already selected for spanning tree.

- \((a,i)\) is smallest so we add that.
Prim's - example (cont)

- Now we consider \((a,b)\) and \((a,f)\) because they are the only two edges connected to the spanning tree.

- \((a,f)\) is smallest so add that.
Prim's – example (cont)

- Now \((a, b)\) and \((f, g)\) are candidates for \(u\).

- \((f, g)\) is smallest so add that.
Prim's – example (cont)

• Now, \((a,b), (e,g)\) and \((d,g)\) are candidates

- \((d,g)\) is smallest so add that
Prim's – example (cont)

- Now \((a,b), (c,d), (e,g)\) and \((d,h)\) are candidates

- \((d,h)\) is smallest so add that.
Prim's – example (cont)

- Candidates are \((a,b), (c,d)\) and \((e,g)\)

- \((c,d)\) is smallest so add that.
Prim's – example (cont)

• Candidates are \((a,b), (b,c), (c,e)\) and \((g,e)\)

• \((c,e)\) is smallest so add that.
Now the candidates are \((a,b), (b,c)\) and \((b,e)\).

\((a,b)\) is smallest so that is added, completing the minimum spanning tree.
Prim's result

- Resulting Spanning Tree

The resulting spanning tree is shown in the diagram, with weights on the edges. The tree includes the following nodes: a, b, c, d, e, f, g, h, i, and l, connected by the edges with weights 2, 6, 4, 3, 4, 5, and 1.
Implementation details

• Prim’s algorithm is $O(E \ lg \ V)$
• By using fibonacci heaps to implement a priority queue this can be improved to $O(E+V \ lg \ V)$
• Where E is the number of edges in the graph and V is the number of vertices.