COMP282
Advanced Data Structures

Lecture 04
Graphs
Implementation and Traversal

Implementation

* How do we represent
graphs with a
computer?

* Adj Jacency Matrix:

>@

1100

A B C D E
A |o 240 |0 0 0
B |0 0 1100 |698 |0
C [1200 |1100 |0 0 0
D |0 0 0 0 743
E |o 0 0 743 |0

A B C D E
A | 240 | = =
B | = 1100 | 698 | <
C |[1200 [1100 | o w0
D | 0 0 0 743
E | w0 = 743 |

Multidimensional Array based

* Adjacency matrix:

— Advantages:
« Easy to maintain.
« Determination if an edge exists between two vertices is simple
and efficient.
— Disadvantages:
« Might be difficult to avoid representing absent nodes

— 0 might be a valid edge and infinity is not valid

« Consume a lot of space. Especially for disconnected/non-
complete or sparse graphs.

* Might not be possible due to number of Nodes. Memory
consumed is proportional to the square of the number of
nodes. 100,000 nodes would require more memory than a 32-
bit addressable machine could provide.

Reference based

 Adjacency List: A B| 240
B C[1100 » D | 698
C A 1200 » B 1100
D E| 743
E D| 743

» Disadvantages
— Complicated to administer and maintain
— Less efficient at determining if edges exist.
* Advantages
— Great for sparsely connected graphs.

— Efficient at determining which vertices are connected to
a particular vertex.

Rules based

Some problems present graphs that are too large to store in their
entirety.

— Chess and Go are two such examples

Instead of storing actually edges we can store, code or otherwise
implement rules that define what is connected to what.

— In chess we know that one board state is adjacent to another if we
can move from one to other with a single, well defined, valid move.

Each graph node then is an object that contains:

« A reference to a object that contains the label, state or information for
the node.

* A linked list of references to other nodes (these are the edges.

In any case it is important to choose your implementation
wisely on the basis of the project and goal’s requirements
and your available resources.

Traversing Graphs

* |t Is often necessary to visit all the nodes in
a graph. We therefore desire algorithms
capable of traversing all the nodes of a
graph.

» Similar to pre-order, in-order traversals of
BSTs

* There are two distinct ways of thinking
about graph traversal:
— Depth first
— Breadth first

Connected Components

* Only guaranteed to visit all the nodes if the
graph is connected. (there exists a path
from any vertex to any other vertex.)

» |f a graph isn’'t connected these traversals
will only traverse those nodes that are
connected to the starting node v.

* More terminology: The subset visited is
termed the “connected component”
containing v.

Cycles

* |f a graph contains cycles then it is possible
for simple traversal algorithms to loop
indefinitely; visiting the same node(s)
repeatedly.

* To prevent this nodes are "marked” when
they are first visited and the traversal never
visits a marked node.

— Nodes can be marked by setting true in an

array or by the presence of the Node as a key
In some Hash or Tree map.

Depth First

* The concept behind depth first search is to
visit nodes as “deeply” into the graph as
quickly as possible:

* Nodes in this graph are label in the order
they are visited by a Depth First Traversal

Recursive DFS

 Algorithm:
. I{Dfs(v)

mark v as visited,
for (each unvisited vertex u adjecent to v)
df s(u)

lterative DFS

Df s(v)
{
Stack s = new Stack();
S. push(v);
mark v as visited,;
while (!s.isEmpty())
I f (s.peek() has no unvisited, adjacent nodes)
s.pop(); // done wth node on top

el se {
u = select unvisited, adjacent node to s.peek();

S. push(u);
mark u as visited:

Breadth First Search

* The concept behind breadth first search is
that nodes are visited as soon as they are
found, or can be2 reached: .

1

* Nodes are now labeled with the order
visited and the minimum distance from the
start.

lterative BFS

« Bfs(v)
{
Queue q = new Queue();
S. enqueue(V);
mark v as visited,
while (!s.isEmpty()) {
w = (. dequeue(); // working on nodes reachable
[l from node w
// do any processing of w needed.
for (each unvisited node u adjacent to w) {
mark u as visited
g. enqueue(u) ;

