
COMP282
Advanced Data Structures

Lecture 04

Graphs

Implementation and Traversal



Implementation

• How do we represent 
graphs with a 
computer?

• Adjacency Matrix:

0002400A

E

D

C

B

0743000

7430000

00011001200

0698110000

EDCBA

∞∞∞240∞A

E

D

C

B

∞743∞∞∞

743∞∞∞∞

∞∞∞11001200

∞6981100∞∞

EDCBA

B

D

A
C

E

743

1100

240

698

1200

743

1100



Multidimensional Array based

• Adjacency matrix:
– Advantages:

• Easy to maintain.

• Determination if an edge exists between two vertices is simple 
and efficient.

– Disadvantages:

• Might be difficult to avoid representing absent nodes

– 0 might be a valid edge and infinity is not valid
• Consume a lot of space. Especially for disconnected/non-

complete or sparse graphs.

• Might not be possible due to number of Nodes. Memory 
consumed is proportional to the square of the number of 
nodes. 100,000 nodes would require more memory than a 32-
bit addressable machine could provide. 



Reference based

• Adjacency List:

• Disadvantages
– Complicated to administer and maintain
– Less efficient at determining if edges exist.

• Advantages
– Great for sparsely connected graphs.
– Efficient at determining which vertices are connected to 

a particular vertex.
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Rules based

• Some problems present graphs that are too large to store in their 
entirety.

– Chess and Go are two such examples

• Instead of storing actually edges we can store, code or otherwise 
implement rules that define what is connected to what.

– In chess we know that one board state is adjacent to another if we 
can move from one to other with a single, well defined, valid move.

• Each graph node then is an object that contains:
• A reference to a object that contains the label, state or information for 

the node.
• A linked list of references to other nodes (these are the edges.

• In any case it is important to choose your implementation 
wisely on the basis of the project and goal’s requirements 
and your available resources.



Traversing Graphs

• It is often necessary to visit all the nodes in 
a graph. We therefore desire algorithms 
capable of traversing all the nodes of a 
graph.

• Similar to pre-order, in-order traversals of 
BSTs

• There are two distinct ways of thinking 
about graph traversal:
– Depth first

– Breadth first



Connected Components

• Only guaranteed to visit all the nodes if the 
graph is connected. (there exists a path 
from any vertex to any other vertex.)

• If a graph isn’t connected these traversals 
will only traverse those nodes that are 
connected to the starting node v.

• More terminology: The subset visited is 
termed the “connected component” 
containing v.



Cycles

• If a graph contains cycles then it is possible 
for simple traversal algorithms to loop 
indefinitely; visiting the same node(s) 
repeatedly.

• To prevent this nodes are “marked” when 
they are first visited and the traversal never 
visits a marked node.
– Nodes can be marked by setting true in an 

array or by the presence of the Node as a key 
in some Hash or Tree map.



Depth First
• The concept behind depth first search is to 

visit nodes as “deeply” into the graph as 
quickly as possible:

• Nodes in this graph are label in the order 
they are visited by a Depth First Traversal
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Recursive DFS

• Algorithm:
• Dfs(v)

{
   mark v as visited;
   for (each unvisited vertex u adjecent to v)
       dfs(u)
}



Iterative DFS

• Dfs(v)
{
   Stack s = new Stack();
   s.push(v);
   mark v as visited;
   while (!s.isEmpty())
      if (s.peek() has no unvisited, adjacent nodes)
         s.pop(); // done with node on top
      else {
         u = select unvisited, adjacent node to s.peek();
         s.push(u);
         mark u as visited;
      }
}

  



Breadth First Search
• The concept behind breadth first search is 

that nodes are visited as soon as they are 
found, or can be reached:

• Nodes are now labeled with the order 
visited and the minimum distance from the 
start.
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Iterative BFS

• Bfs(v)
{
   Queue q = new Queue();
   s.enqueue(v);
   mark v as visited;
   while (!s.isEmpty()) {
      w = q.dequeue(); // working on nodes reachable
                       // from node w
      // do any processing of w needed.
      for (each unvisited node u adjacent to w) {
         mark u as visited
         q.enqueue(u);
      }
   }
}


