
COMP282
Advanced Data Structures

Lecture 04

Graphs

Implementation and Traversal

Implementation

• How do we represent
graphs with a
computer?

• Adjacency Matrix:

0002400A

E

D

C

B

0743000

7430000

00011001200

0698110000

EDCBA

∞∞∞240∞A

E

D

C

B

∞743∞∞∞

743∞∞∞∞

∞∞∞11001200

∞6981100∞∞

EDCBA

B

D

A
C

E

743

1100

240

698

1200

743

1100

Multidimensional Array based

• Adjacency matrix:
– Advantages:

• Easy to maintain.

• Determination if an edge exists between two vertices is simple
and efficient.

– Disadvantages:

• Might be difficult to avoid representing absent nodes

– 0 might be a valid edge and infinity is not valid
• Consume a lot of space. Especially for disconnected/non-

complete or sparse graphs.

• Might not be possible due to number of Nodes. Memory
consumed is proportional to the square of the number of
nodes. 100,000 nodes would require more memory than a 32-
bit addressable machine could provide.

Reference based

• Adjacency List:

• Disadvantages
– Complicated to administer and maintain
– Less efficient at determining if edges exist.

• Advantages
– Great for sparsely connected graphs.
– Efficient at determining which vertices are connected to

a particular vertex.

A

B

C

D

E

B 240

C 1100 D 698

A 1200 B 1100

E 743

D 743

Rules based

• Some problems present graphs that are too large to store in their
entirety.

– Chess and Go are two such examples

• Instead of storing actually edges we can store, code or otherwise
implement rules that define what is connected to what.

– In chess we know that one board state is adjacent to another if we
can move from one to other with a single, well defined, valid move.

• Each graph node then is an object that contains:
• A reference to a object that contains the label, state or information for

the node.
• A linked list of references to other nodes (these are the edges.

• In any case it is important to choose your implementation
wisely on the basis of the project and goal’s requirements
and your available resources.

Traversing Graphs

• It is often necessary to visit all the nodes in
a graph. We therefore desire algorithms
capable of traversing all the nodes of a
graph.

• Similar to pre-order, in-order traversals of
BSTs

• There are two distinct ways of thinking
about graph traversal:
– Depth first

– Breadth first

Connected Components

• Only guaranteed to visit all the nodes if the
graph is connected. (there exists a path
from any vertex to any other vertex.)

• If a graph isn’t connected these traversals
will only traverse those nodes that are
connected to the starting node v.

• More terminology: The subset visited is
termed the “connected component”
containing v.

Cycles

• If a graph contains cycles then it is possible
for simple traversal algorithms to loop
indefinitely; visiting the same node(s)
repeatedly.

• To prevent this nodes are “marked” when
they are first visited and the traversal never
visits a marked node.
– Nodes can be marked by setting true in an

array or by the presence of the Node as a key
in some Hash or Tree map.

Depth First
• The concept behind depth first search is to

visit nodes as “deeply” into the graph as
quickly as possible:

• Nodes in this graph are label in the order
they are visited by a Depth First Traversal

Start

1

2
3 4

5

9

6

7

8

Recursive DFS

• Algorithm:
• Dfs(v)

{
 mark v as visited;
 for (each unvisited vertex u adjecent to v)
 dfs(u)
}

Iterative DFS

• Dfs(v)
{
 Stack s = new Stack();
 s.push(v);
 mark v as visited;
 while (!s.isEmpty())
 if (s.peek() has no unvisited, adjacent nodes)
 s.pop(); // done with node on top
 else {
 u = select unvisited, adjacent node to s.peek();
 s.push(u);
 mark u as visited;
 }
}

Breadth First Search
• The concept behind breadth first search is

that nodes are visited as soon as they are
found, or can be reached:

• Nodes are now labeled with the order
visited and the minimum distance from the
start.

Start

1
0

8
3

3
1

4
1

2
1

5
2

6
2

7
3

9
4

Iterative BFS

• Bfs(v)
{
 Queue q = new Queue();
 s.enqueue(v);
 mark v as visited;
 while (!s.isEmpty()) {
 w = q.dequeue(); // working on nodes reachable
 // from node w
 // do any processing of w needed.
 for (each unvisited node u adjacent to w) {
 mark u as visited
 q.enqueue(u);
 }
 }
}

