COMP 282

AVL Deletion



Trees can only decrease like so...

* Deletion may cause a reduction 1in height.

Item deleted from Item deleted from
Inner subtree Outer subtree



* In either case the shortened subtree has equal
height subtrees 1tself.

* View this subtree as just a single subtree

AR m




How does this help?

* We can apply the general “Is this balanced?”
test to the root node. Just as 1s done during
insertion. 10

h
h+2




[Look at left subtree 1n detail

* The case where the left subtree's height 1s

determined |

oy the left-left (or “outer”) tree...

* A single rig]
1o

/\A

nt rotation 1s sufficient.

o




* The case where the left subtree's height 1s
determined by the “inner” subtree.




y determines height at &

* A left rotation of the subtree followed by a
right rotation restores balance.




B determines height at 8

e Again a left rotation of the subtree followed
by a right rotation restores balance. Therefore
we can apply the double rotation blindly.

10 10 8




Hmm...

e These are the exact same conditions as we
identified for imbalances that occur during
Insertion.

* balance can be restored using the exact same
rotation actions that were used to restore
balance caused by 1nsertion.

e There 1s no difference.



* Programming wise then we can apply the
same logic as the last step of recursion as we
back out of the tree.



* JAVA doesn't tolerate null “this” references very well and we

have to examine the height of possibly empty subtrees
regularly.

method parameters can be null however so it helps to create a
private method that can be passed a (possibly null) node
reference and determines the appropriate height.

Its not the best Object Oriented design but it is too
convenient to 1gnore.

private int determ neHei ght (AVLNode n)
{

if (n == null)
return O;
el se

return n. height;



private int sel ectBal anceAction()

{

int diff = determ neHeight(left) - determ neHeight(right);
i nt subdiff;

i f (diff < -1) /1l right subtree is too tall
I f ((determ neHeight(right.left) -
determ neHei ght (right.right)) < 0) // outer tall
return 2; // outer subtree already taller
el se
return 4; // inner subtree is the problem
else if (diff > 1) // left subtree is too tall
I f ((determ neHeight(left.left) -
determ neHeight (Il eft.right)) > 0) // outer tall
return 1; // outer subtree already taller
el se
return 3; // inner subtree is the problem
el se
return 0; // no rebal ance necessary



private voi d rebal ance()

{

switch (sel ect Bal anceAction())
{
case 3:
| eft.rotatelLeft();
| eft. reconput eHei ght () ;
case 1:
rotateR ght () ;
r econput eHei ght () ;
br eak;
case 4:
right.rotateR ght();
ri ght.reconput eHei ght () ;
case 2:
rotatelLeft();
r econput eHei ght () ;
case 0: // don't really have to do anything
br eak;



