COMP 282

Lecture 14

2-3-4 Tree

Deletion
Philosophy

• Insertion attempts to make nodes empty enough so that the leaf node can always accept a new item.
• Deletion does the opposite.
• Deletion attempts to fill nodes so that the leaf node can spare at least one item.
• Our goal therefore is to guarantee that our focus can only be on 3-nodes or 4-nodes.
Special Case

• The tree has only one node (root) with one item.

• If that item is the one to be deleted then we simply make the tree empty (root=null). Otherwise we descend the tree and swap with in-order successor.
Other root cases… [case R1]

- Reduce the tree if the root node and both of its children are 2-nodes. Then begin descent/search.

```
30  70
 a  b  c  d
```

- This is how the height of the tree will decrease.

```
30  50  70
 a  b  c  d
```
[Case R2l and R2r]

• You only need to perform topology modifications if you are about to focus on a 2-node.

• If the root is a 2-node you need to decide which branch is important to you.
 – If the root is theItem then choose the right branch (in-order successor),
 – Otherwise choose the branch based on search key value.
[Case R2l]

- Wish to descend down left branch and left branch is a 2-node
[Case R2r]

• Desire to traverse right branch.

• From this point on *all* nodes that you focus on will be guaranteed to not be 2-nodes and can therefore spare at least one item.
Cases [F3L-M2] and [F3M-L2]

• Current focus is a three node and destination is either the left or middle branch and both of these branches are 2-nodes:

• After restructure blindly descend left.
[Case F3L-M3]

- Focus is a 3-node, destination is left (2-node) and middle branch is 3-node.

![Diagram of a tree structure](image)

- Blindly descend to left subtree.
[Case F3-M4]

- Focus is a 3-node, destination is left and middle branch is 4-node.

- Blindly descend to left subtree.
[Case F3M-L3]

- Focus is a 3-node, destination is middle and left branch is 3-node.

- Blindly descend to middle subtree.
[Case F3M-L4]

- Focus is a 3-node, destination is middle and left sibling is a 4-node.

- Blindly descend to middle subtree.

- Blindly descend to middle subtree.
Case [F3R-M2]

• Focus is a 3-node and destination is right with a 2-node middle

• Blindly descend right afterwards.
[Case F3R-M3]

- Focus is a 3-node, destination is right and middle branch is 3-node.

- Blindly descend to right subtree.

- Blindly descend to right subtree.
[Case F3R-M4]

- Focus is a 3-node, destination is right and middle branch is 4-node.

- Blindly descend to right subtree.
Cases $[F4L-M_R2]$ and $[F4M_L-L2]$

- Focus is a 4-node, destination is left or left-middle and both branches are 2-nodes.

- Descend to left (or left-middle) branch
[Case F4L-M₃]

- Focus is a 4-node, destination is left and left-middle branch is 3-node.
[Case F4L-M\(_L\)4]

- Focus is a 4-node, destination is left and left-middle branch is 4-node.

- Descend to left branch
[Case F4M$_L$-L3]

- Focus is a 4-node, destination is left-middle and left branch is 3-node.
[Case F4M\textsubscript{L}-L4]

- Focus is a 4-node, destination is left-middle and left branch is 4-node.
[Case $F_{4M_{R-M_{L2}}}$]

- Focus is a 4-node, destination is right-middle and left-middle branch is 2-node.
[Case $F_{4M_R-M_L3}$]

- Focus is a 4-node, destination is right-middle and left-middle branch is 3-node.
[Case F4M_R-M_L4]

- Focus is a 4-node, destination is right-middle and left-middle branch is 4-node.
Case [F4R-M_{R2}]

• Focus is a 4-node, destination is right and right-middle branch is 2-node.

- Descend to right-middle (or right) branch
[Case F4R-M$_R$3]

- Focus is a 4-node, destination is right and right-middle branch is 3-node.
[Case F4R-M_{R}4]

- Focus is a 4-node, destination is right and right-middle branch is 4-node.

- end