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1. INTRODUCTION

My research focuses primarily on the design and implementation of high-resolution, non-oscillatory numer-
ical schemes for hyperbolic system of conservation laws and related problems. In particular, I am interested
in the design of efficient algorithms that address the mathematical and computational challenges posed by
nonlinear systems of conservation laws, such as the onset and propagation of discontinuous solutions, the
enforcement of additional constraints, or the proper discretization of source terms in non-homogeneous
systems.

My early research activity focused on the equations ofIdeal Magnetohydrodynamics(MHD), a hyperbolic
model which describes the dynamics of electrically conducting fluids in the presence of a magnetic field.
Our implementation of several schemes based on central differencing demonstrated the remarkable ability
of these to efficiently approximate the discontinuous solutions of the system without having to modify the
base scheme for hyperbolic systems to enforce the constraint∇ ·B = 0 on the magnetic fieldB.

More recently, my work has focused on non-homogeneous hyperbolic systems, such as the shallow wa-
ter equations, commonly used to model flows in rivers and costal areas, and the Euler-Poisson equations
describing the macroscopic behavior of two-spicies plasmas. In the first of these systems, the proper dis-
cretization of the source terms arising from the bottom topography and the varying width of the channel,
is crucial for capturing steady-state solutions of the system accurately. In the second one, the source term
couples the two hydrodynamical models describing each species present in the plasma.

In addition to the results already published and the ongoing research, the successful implementation of
central schemes for MHD equations, led us into the development of CENTPACK: a software package capable
of approximating the solution of hyperbolic system of conservation laws in one- and two-space dimensions
with minimal input from the user. The first stage of this project –the release of the first stable version of the
software– was completed in July of 2006. Presently, we continue working on improving this software by
providing users with additional central solvers and extending its functionality to non-homogeneous hyper-
bolic systems.

2. BACKGROUND – HYPERBOLIC SYSTEMS OFCONSERVATION LAWS

Hyperbolic systems of conservation laws are of paramount importance in science and engineering as they
govern a broad spectrum of physical phenomena such as compressible fluid dynamics, acoustics, optics,
or nonlinear material science (see, for example, [11, 20]). Mathematically, these laws are described by the
system of time dependent partial differential equations (PDEs)

(1)
∂

∂t
u(x, t) +∇x · F(u(x, t)) = S(u,x, t), u(x, 0) = u0(x)

wheret is the time variable,x a vector ofd spatial variables,u(x, t) is a vector ofm conserved quantities
(e.g., mass, momentum, energy, etc.),F(u) is a matrix of sized × m whose rows,fk(u), k = 1, 2, . . . , d,
arenonlinearflux functions, andS(u,x, t) stands for a vector of source terms. The system is said to be
hyperbolic if the Jacobian matrices of the flux functions,dfk

du , have real eigen values and a complete set of
m linearly independent eigen vectors.
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The solutions ofnonlinearconservation laws are characterized by the loss of smoothness in finite time,
[19], requiring the use of so calledshock capturingschemes capable of detecting and resolving accurately
these discontinuous solutions as time evolves. Commonly, this type of numerical schemes rely upon very
detailed information about the local structure of the solution which, in turn, results in complex and com-
putationally expensive algorithms. Numerical schemes based on central differencing offer a simple –yet
robust– approach to calculate the discontinuous solutions of hyperbolic conservation laws. By using only
a minimal amount of characteristic information –an estimate of the maximum speed of propagation of the
discontinuities, central schemes avoid costly (approximate) Riemann solvers, resulting in robust, efficient,
and simple to implement numerical algorithms for nonlinear hyperbolic systems.

The challenges posed by hyperbolic conservation laws, often extend beyond the already delicate task
of detecting and evolving discontinuous solutions. Many relevant systems of conservation laws include
non-homogeneous terms –e.g., shallow water equations– or are augmented by side constraints –e.g., MHD
equations– that pose additional challenges in themselves for the design of numerical schemes. To this end,
the high adaptivity of central schemes –in the sense that they are not tied to the characteristic structure of
the underlying system of PDEs– has allowed for the extension of existing schemes and the design of new
ones for systems posing added difficulties, see, for example, [15,26].

3. COMPLETED RESEARCH: CENTRAL SCHEMES FORIDEAL MHD EQUATIONS

A common simplification of thefull MHD model follows from assuming the perfect conductivity (no resis-
tivity) of the fluid. The simplified model provides a good description for plasmas where the effects of the
diffusion of the magnetic field over time can be neglected, such as those present in active solar regions where
sunspotsare formed, [8]. This assumption results in the equations of ideal MHD, a nonlinear hyperbolic
system of conservation laws that we write in vector form as,

∂ρ

∂t
+∇ · (ρv) = 0,(2a)

∂

∂t
(ρv) +∇ · [ρvv> + (p +

1
2
B2)I3×3 −BB>] = 0,(2b)

∂e

∂t
+∇ ·

[( γ

γ − 1
p +

1
2
ρv2
)
v − (v ×B)×B

]
= 0,(2c)

∂B
∂t

−∇× (v ×B) = 0,(2d)

which is equivalent to, (1) withS(u,x,t) = 0. The first three equations express, respectively, theconservation
of mass per unit volume,ρ, momentum,ρv, and total energy per unit volume,e, and (2d) is the induction
equation of the magnetic field,B. The pressure,p, is coupled to the energy by the equation of state,
e = 1

2ρv2 + 1
2B2 + p/(γ − 1), whereγ is the (fixed) ratio of specific heats. The system is augmented by

thesolenoidalconstraint,

(3) ∇ ·B = 0;

that is, if the condition∇ · B = 0 is satisfied initially att = 0, then by (2d) it remains invariant in time.
While this constraint is implicitly satisfied by any exact solution of (2), the majority of numerical schemes
commonly employed to approximate these solutions require additional techniques to guarantee it, (see, e.g.,
[25,28]).

The solutions of this system develop discontinuities as time evolves requiring numerical schemes capable
of detecting discontinuities and resolving them by identifying the direction and speed at which they propa-
gate to approximate them.Upwindschemes rely in the spectral decomposition of the Jacobian matrices,dfk

du ,
of the underlying system of PDEs, (1), to construct Riemann solvers that can determine those features. This
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approach, accurate as it results, carries a high computational cost with it, especially when solving large sys-
tems of equations. In [1,5], Tadmor, Wu, and I utilized the family of second- and third-order, nonoscillatory
central schemes introduced by Tadmor and his collaborators in [12, 21, 22] to approximate the solution of
several prototype problems for the equations of ideal MHD in one- and two-space dimension. When imple-
mented overstaggeredgrids, central differencing schemes eliminate the need for any detailed knowledge of
the eigen structure of the Jacobian matrices of the system, avoid dimensional splitting in multidimensional
settings, and allow for the use of simple quadrature formulae to realize the time evolution of cell averages
–neither exact, nor approximate Riemann solvers are needed. This results in efficient, easy to implement
black-box type numerical solvers.

While the solutions to (2) presented in [5] demonstrate the simplicity and robustness of central schemes,
they also reveal certain limitations of the fully-discrete schemes. In particular, the staggered formulation
requires the use of smaller time steps and, in some instances, make the formulation of boundary conditions
difficult. In [1, 2, 4] we extended our results using the more versatile semi-discrete formulation introduced
by Kurganov and Tadmor in [17]. By incorporating a minimal amount of characteristic information – an es-
timate of the maximum local speed of propagation of discontinuities, this formulation retains the simplicity
of the original fully-discrete algorithms while avoiding the use of staggered grids. The resulting family of
central schemes enjoys some additional advantages: larger time steps can be used without compromising
the stability of the solution, a reduced amount of dissipation allows for better resolution of sharp profiles
near discontinuities, and the actual computer implementation can be easily adapted to obtain higher-order
schemes or to execute the algorithm with different numerical methods (e.g., time evolution can be carried
out with Runge-Kutta or multi-step methods depending on their suitability for a particular problem).

For some of the two-dimensional prototype problems we solved, the initial configuration of the magnetic
and velocity fields guarantees the solenoidal constraint, (3). For other problems (e.g., Orszag–Tang vortex
system, [23]), however, this constraint is not necessarily guaranteed by the approximated values of the
magnetic field. When the computed magnetic field fails to satisfy the solenoidal constraint, the numerical
error accumulates from one time step to the next (due to the underlying characteristic structure of the system
of PDEs), rendering the solution unstable. While most of the numerical schemes employed for MHD often
require additional techniques to enforce this constraint, [28], our results indicate that central schemes do
not require any modification (from their original formulation). In the case of fully discrete schemes, we
observed that any increase in the value of∇ · B from one time step to the next, may only arise from the
nonoscillatory reconstruction of point values from the computed –staggered– cell averages, and not from the
evolution step, [4]. Our calculations, however, indicate that the value of∇ · B remainssmall (in the order
of 10−13) throughout the calculations. A similar behavior is observed for semi-discrete schemes.

Solutions of several one- and two-dimensional MHD prototype problems obtained with these fully- and
semi-discrete central schemes were presented in [1, 2, 4, 5]. They are qualitatively comparable to those
obtained previously with upwind schemes by Brio and Wu, [6] and by Jiang and Wu, [13]. These results
also complement those obtained by Del Zannaet. al. in [9, 10] for relativistic MHD and those of a large
scale, multidimensional MHD simulation by Wu and Chang, [30], and demonstrate the ability and efficiency
of central schemes to detect and resolve accurately the relevant features of the solutions of MHD problems.

4. CURRENT RESEARCH: CENTRAL SCHEMES FORNON-HOMOGENEOUSHYPERBOLIC

CONSERVATION LAWS

My current line of research focuses on non-homogeneous hyperbolic systems. These non-homogeneous
terms often account for important physical properties of the model, thus they must be taken into account
when designing numerical schemes for approximating their solutions. Such is the case for numerical
schemes for shallow water equations, where the proper discretization of the source terms is crucial for
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the calculation of steady state solutions, [7,14,15,29]; or the Euler-Poisson model for two-species plasmas
which consists of two hyperbolic systems coupled by non-homogeneous terms whose calculation involves
the solution of Poisson’s equation, an elliptic PDE.

In the case of shallow water flows, the results presented in [15, 16, 27] demonstrate the ability of central
schemes to incorporate simplewell balanceddiscretizations of the source terms –no need to project them
along the characteristic fields of the Jacobian matrices of the flux functions,∂fk/∂u. These results suggest
the design of new central schemes to handle additional source terms arising from more complex flows, such
as flows along channels with irregular geometry, or flows involving multiple fluid layers. The motivation for
designing central schemes for Euler-Poisson equations arises from the interest in comparing microscopic
and macroscopic models for two-species plasmas so as to asses their validity and/or suitability for specific
applications (see, for example, [18]).

4.1 Shallow Water Equations. Hydrodynamical flows along channels, river beds and coastal areas are
commonly modeled by the shallow water equations. In the first part of our work on this topic (under review),
we introduce a central scheme for on one-dimensional flows along channels with a bottom topography and
varying rectangular cross-sections. This type of flows are described by a hyperbolic system of the form (1)
above with,

(4) u =

(
A

Q

)
, f(u) =

(
Q

Q2

A + 1
2gσh2

)
, and S(u, x, t) =

(
0

1
2gσ′h2 − gσB′

)
,

expressing the conservation of the wet cross-section,A = σh, and thedischarge, Q = Av, whereh stands
for the height of the water above the bottom of the channel,B(x), σ(x) is the width of the rectangular cross
sections,v represents the fluid velocity, andg the acceleration of gravity.

In addition to the accurate approximation of discontinuous solutions, numerical schemes for shallow
water flows must take into consideration the properties of steady state solutions, where the non-zero gradient
of the flux function,f(u), must be exactly balanced by the source term,S(u, x, t), that accounts for the
effects that the bottom topography and the varying width of the channel have on the flow.

Our new central scheme for shallow water flows introduces three new features for flows along channels
with irregular geometries:

• The polynomial reconstruction of the interface point values of the wet area,A±
j±1/2(t) ≈ A(x±j±1/2, t),

takes into account theexactinformation at these interfaces,σ(xj±1/2) andB(xj±1/2), and the value
of the total height of the water,w = h + B, at the corresponding values at mid-cell points,xj . This
helps to further control the spurious oscillations normally observed in the approximation of discon-
tinuous solutions and to achieve the balance between fluxes and source terms.

• A simple discretization of the source terms –no need for its projection along characteristic fields–
accounting for the effects of the bottom topography and changing width of the channel that balances
exactly the nonlinear fluxes for the steady-state solution of rest (h + B ≡ const., v ≡ 0).

The properties and adequate behavior of the scheme are verified with a number of numerical tests that
include the comparison of computed solutions against several nontrivial steady-state exact solutions, [24],
and other prototype problems for shallow water flows (e.g., dam breaks and small perturbations from rest).

4.2 Euler-Poisson Equations. In this project we are interested in problems arising from plasma physics
such as laser-plasma interaction or fusion plasmas. These type of phenomena are modeled by the Boltzman-
Maxwell equations and by other simplified models such as the Vlasov-Poisson equations,

(5)
∂fi

∂t
+ v∇x · fi + µiE∇v · fi = 0,
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wherefi(x,v, t), i = 1, 2 represents the particle distribution of each species in phase space andµi its signed
charge/mass ratio. The equations for the two species are coupled through the electric fieldE(x, t), given by
Poisson’s equation,

(6) ∇ · E =
e

ε0

∫
R3

(Zf2 − f1) dv,

Here e is the (unsigned) charge of the electron,Z stands for the atomic number of the second species
(assumingi = 1 corresponds to electrons), andε0 is the permittivity of free space.

This system provides a rather accurate microscopic description of collisionless plasmas, however, numer-
ical simulations require the discretization of each component of the velocity field as one more variable in
phase space which, in turn, demands considerable computer time and power. Alternatively, one can consider
the Euler-Poisson equations, which can be expressed in conservation form, (1). We write them in one-space
dimension with,

(7) u =

ni

ji

wi

 , f(u) =


ji

j2
i

ni
+ p

(wi + pi) ji

ni

 , S(u, x, t) =

 0
µiniE

µijiE

 , i = 1, 2,

a macroscopic model resulting from taking the first three moments of equation (5). The coupled Euler-
Poisson systems express the conservation of density,ni, current,ji, and kinematic energy,wi of each species,
where their pressures,pi, are given by two equations of state,pi = pi(ni).

While this formulation is not as accurate as its microscopic counterpart (5), it is still adequate for many
plasma simulations and considerable less computationally expensive to simulate, [18, 26]. In [26] fully-
discrete central schemes are presented for two Euler-Poisson models for semiconductors, we propose to
extend these results by developing new high-resolution semi-discrete central schemes for the system (7).

5. DEVELOPMENT OFSOFTWARE FORSCIENTIFIC PROBLEMS

The successful implementation of central schemes for MHD equations led us to the development of CENT-
PACK: a collection ofC++ libraries that implement several high order central schemes for hyperbolic con-
servation laws in one- and two-space space dimensions, [3]. The software exploits the simplicity and ease of
implementation of central schemes, requiring from the user only a small number of subroutines specific to
the hyperbolic model, (1), to be solved, namely, a description of the flux functionsfk, boundary and initial
conditions, and an estimate of the maximum speed of propagation of the discontinuous waves. The software
also enjoys the high adaptability of central schemes, allowing for the implementation of other versions of
central schemes, or their extension to more complex models with minor changes in the existing code.

At the present, we continue working on the development and distribution of CENTPACK, adding new
features and capabilities to the central schemes the package implements and incorporating the new central
schemes that result from our ongoing research.

6. OTHER AREAS OFINTEREST FORFUTURE RESEARCH

My main area of interest is the design of numerical schemes for physical models. In particular, there are
three topics I am interested in investigating:

• Extension of central schemes for shallow water flows for more complex channel geometries and
multilayer fluids in one and two space dimensions. The results obtained so far with central schemes
suggest their extension to handle these more complex flows whose source terms include non-conservative
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products of the conserved variables accounting for the exchange of momenta across layers. These
type of schemes can also be adapted to other systems of conservation laws with source terms.

• Completion and extension of the project described in§4.2 above. This project is on its initial stages,
but preliminary numerical results indicate the suitability of central schemes to approximate the so-
lutions of two-species plasma models and their extension to concrete applications in physics and
engineering.

• The design of numerical schemes for relativistic flows. The mathematical theory for relativistic
models is not as well developed as that of non-relativistic ones. In addition to the possibility of
simulating of relativistic flows, the design of robust numerical schemes for these models may also
shed light about the properties of their solutions.

Other areas of interest for future research include spectral and wavelets methods for PDEs and related
fields such as image processing.
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