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A Central Differencing Simulation of the
Orszag—Tang Vortex System

Jorge Balbds and Eitan Tadmor

Abstract—The Orszag-Tang vortex system describes the
transition to supersonic turbulence for the equations of magne-
tohydrodynamics (MHD) in two space dimensions. The complex
interaction between various shock waves traveling at different
speed regimes that characterizes the solution of this test problem
requires the use of numerical schemes capable of detecting and
resolving accurately steep gradients while avoiding the onset of
spurious oscillations. A simulation of the Orszag-Tang MHD
vortex system computed with a third-order semi-discrete central
scheme (Kurganov and Tadmor, 2000), (Balbas and Tadmor,
submitted to SIAM Journal of Scientific Computing) is presented
below. The central differencing approach avoids any detailed
knowledge of the characteristic structure of the hyperbolic model,
resulting in simple to implement, yet robust, black-box numerical
schemes, (Balbas and Tadmor, 2004).

Index Terms—High-resolution central schemes, ideal mag-
netohydrodynamics (MHD) equations, Jacobian-free form,
multidimensional conservation laws, nonoscillatory.

I. ORSZAG-TANG VORTEX SYSTEM

HE RESULTS presented in Fig. 1 display the evolution

of the density contours of a plasma whose two-dimen-
sional flow is modeled by the equations of ideal magnetohydro-
dynamics

pr ==V - (pv) (la)
@wt:—v.LWVT+<p+%BﬁJM3—BBT} (1b)
q:—V.KV%#+%mﬂV—WXBbd% (Ic)
B, =V x (v x B). (1d)

Here, p and e are scalar quantities representing the mass density
and the total energy, and v and B represent the velocity and
magnetic fields, respectively. The pressure p is coupled to the
energy by the equation of state, e = (1/2)pv? + (1/2)B? +
p/(y — 1), where + is the (fixed) ratio of specific heats.
Equations (1) are evolved subject to the initial conditions
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= sin 2x 2)

where v = 5/3. With this data, the root mean square values of
the velocity and magnetic fields are both 1, the initial average
Mach number is 1, and the average plasma beta is 10/3.

This test problem considers the evolution of a compressible
vortex system whose evolution involves the interaction between
several shock waves traveling at various speed regimes (see
[4] and references therein). The problem is solved in [0, 27] X
[0, 27], with periodic boundary conditions in both z and z di-
rections using a uniform grid with 288 x 288 points.

II. NUMERICAL SCHEME

The system (1) and (2) is solved using the semidiscrete central
schemes of Kurganov and Tadmor [1], which evolve the cell
averages u(t)
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Here, u(t) = u := (p, pv, B, ¢), and H*(u(t)) and H*(u(t))
stand for the nonlinear numerical fluxes resulting from the
discretization of the system (1). Central schemes avoid dimen-
sional splitting and eliminate the need of intricate Riemann
solvers [3]. The above semidiscrete formulation (3) accepts a
variety of alternatives to implement the two main steps of the
numerical scheme: a piecewise nonoscillatory reconstruction
of the point values of u(¢) from the neighboring cell averages,
{u(t);r}, and the evolution of the semidiscrete ODE (3). For
the results in Fig. 1, we employ a third-order central weighted
essentially nonoscillatory (CWENO) reconstruction, [5], [2],
and a third-order SSP Runge—Kutta solver [6], [2].
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Fig. 1. Evolution of density with superimposed xz-velocity field, from left to right and top to bottom: density contours from ¢ = 0.003: top-left corner to
t = 2.7: lower left corner, displayed at (approximately) 0.375 time intervals. Large image in the lower right corner displays the solution at ¢ = 3, density ranges
from 1.2 to 6.1, and the maximum value of ||v|| is 1.7. There are 16 contour lines: red—high value; blue—low value.
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