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NONOSCILLATORY CENTRAL SCHEMES FOR ONE- AND
TWO-DIMENSIONAL MAGNETOHYDRODYNAMICS EQUATIONS.

II: HIGH-ORDER SEMIDISCRETE SCHEMES∗

JORGE BALBÁS† AND EITAN TADMOR‡

Abstract. We present a new family of high-resolution, nonoscillatory semidiscrete central
schemes for the approximate solution of the ideal magnetohydrodynamics (MHD) equations. This
is the second part of our work, where we are passing from the fully discrete staggered schemes in [J.
Balbás, E. Tadmor, and C.-C. Wu, J. Comput. Phys., 201 (2004), pp. 261–285] to the semidiscrete
formulation advocated in [A. Kurganov and E. Tadmor, J. Comput. Phys., 160 (2000), pp. 241–282].
This semidiscrete formulation retains the simplicity of fully discrete central schemes while enhancing
efficiency and adding versatility. The semidiscrete algorithm offers a wider range of options to imple-
ment its two key steps: nonoscillatory reconstruction of point values followed by the evolution of the
corresponding point valued fluxes. We present the solution of several prototype MHD problems. So-
lutions of one-dimensional Brio–Wu shock-tube problems and the two-dimensional Kelvin–Helmholtz
instability, Orszag–Tang vortex system, and the disruption of a high density cloud by a strong shock
are carried out using third- and fourth-order central schemes based on the central WENO recon-
structions. These results complement those presented in our earlier work and confirm the remarkable
versatility and simplicity of central schemes as black-box, Jacobian-free MHD solvers. Furthermore,
our numerical experiments demonstrate that this family of semidiscrete central schemes preserves the
∇ · B = 0-constraint within machine round-off error; happily, no constrained-transport enforcement
is needed.
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1. Introduction. In this paper we present third- and fourth-order accurate,
nonoscillatory semidiscrete central schemes for the approximate solution of the equa-
tions of ideal magnetohydrodynamics,

ρt = −∇ · (ρv),(1.1)

(ρv)t = −∇ ·
[
ρvv� +

(
p +

1

2
B2

)
I3×3 − BB�

]
,(1.2)

Bt = ∇× (v × B),(1.3)

et = −∇ ·
[(

γ

γ − 1
p +

1

2
ρv2

)
v − (v × B) × B

]
.(1.4)

Here, ρ and e are scalar quantities representing, respectively, the mass density and
the total internal energy, v = (vx, vy, vz)

� is the velocity field with Euclidean norm
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v2 := ‖v‖2, and B = (Bx, By, Bz)
� and B2 := ‖B‖2 represent the magnetic field and

its norm. The pressure, p, is coupled to the internal energy, e = 1
2ρv

2+ 1
2B

2+p/(γ−1),
where γ is the (fixed) ratio of specific heats. The system is augmented by the solenoidal
constraint,

∇ · B = 0;(1.5)

that is, if the condition ∇·B = 0 is satisfied initially at t = 0, then by (1.3) it remains
invariant in time.

Our work [2] demonstrated the capability of central schemes to accurately and
efficiently detect and resolve the steep gradients that characterize the solutions of
(1.1)–(1.4); it suggested further development of higher-order, black-box-type cen-
tral schemes for these equations. In this paper, we present a family of third- and
fourth-order accurate, nonoscillatory semidiscrete central schemes which remain sta-
ble without any further explicit enforcement of the constraint (1.5). This semidiscrete
formulation [14] retains the main advantages of central schemes over the upwind ones,
namely, simplicity and efficiency resulting from the minimal amount of characteris-
tic information required when evolving the solution over staggered grids, allowing
for Jacobian-free formulations and avoiding dimensional splitting in multidimensional
models. Moreover, semidiscrete schemes allow more flexibility in the calculation of
the time step, Δt, than their fully discrete counterparts: on the one hand, they are
implemented over nonstaggered grids, and thus the CFL stability condition allows
for the use of larger time steps, and on the other hand, for rth-order methods, the
numerical dissipation of the semidiscrete formulation is of order O((Δx)2r−1) versus
that of the corresponding fully discrete version of order O((Δx)2r/Δt), which allows
the use of smaller time steps with considerably less smearing of discontinuities. Fi-
nally, the semidiscrete formulation also enjoys a remarkable adaptability to a wide
range of nonoscillatory reconstruction techniques and evolution routines developed
independently of the methods.

In addition to the five magnetohydrodynamics (MHD) prototype problems dis-
cussed in [2]—two one-dimensional Brio and Wu shock tube models originally
proposed in [3], two different configurations (periodic and convective models) of
the two-dimensional transverse Kelvin–Helmholtz instability problem, and the two-
dimensional MHD vortex system of Orszag and Tang—we implement these new
schemes to simulate the disruption of a high density cloud by a strong shock. The
evolution of the Orszag–Tang vortex system involves the interaction between several
shock waves traveling at various speed regimes, and the interaction between the high-
density cloud and the strong shock describes a highly superfast flow, making both of
these very suitable problems to test the robustness of numerical algorithms.

The paper is structured as follows. In section 2, we extend the derivation of
the second- and third-order, central semidiscrete schemes presented in [14, 13, 12] to
schemes of arbitrary order r. Starting with the staggered discretization that led to
the fully discrete central schemes [20, 19, 10, 17], we evolve separately the smooth and
nonsmooth parts of the solution and project the resulting cell averages back onto the
original grid. We then pass to the Δt ↓ 0-limit, yielding the rth-order semidiscrete
formulation of central schemes. This rather general formulation of central schemes
entertains a broad range of options to implement the two main steps of the algorithm:
nonoscillatory reconstruction of point values from cell averages, followed by the evolu-
tion of the corresponding point valued fluxes. In section 3 we discuss the nonoscillatory
reconstruction techniques and evolution routines that we implement to approximate
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the semidiscrete formulation of (1.1)–(1.4). For the reconstruction of point values,
we propose an extension of the third-order central WENO (CWENO) reconstruction
of Kurganov and Levy [12] and the genuinely two-dimensional fourth-order CWENO
reconstruction of Levy, Puppo, and Russo [18], developed originally in the context of
fully discrete central schemes. For the evolution step, we use third- and fourth-order
strong stability preserving (SSP) Runge–Kutta schemes [23, 25, 5]. In sections 4
and 5 we describe the prototype MHD problems mentioned above and present the
numerical solutions obtained with our new family of high-resolution semidiscrete cen-
tral schemes. In section 4 we report on the one-dimensional shock tube problems of
Brio and Wu [3] and discuss the improved resolution and better control of spurious
oscillations provided by the new schemes. The two-dimensional test problems and
the corresponding numerical results are presented and discussed in section 5. These
results confirm the efficiency of central schemes to accurately compute the solution
of MHD equations. The combination of simplicity and high resolution allows us to
obtain solutions comparable to those obtained with high-order upwind schemes, e.g.,
[3, 4, 11, 22, 21], without having to refine the computational mesh as in [2]. We
therefore retain the simplicity of central schemes—they eliminate the need for a de-
tailed knowledge of the eigen-structure of the Jacobian matrices and avoid dimensional
splitting and the costly use of (approximate) Riemann solvers that serve as building
blocks for upwind schemes; at the same time, this simplicity is achieved without an in-
crease in the computational work that was enforced by the finer meshes required with
the lower-order methods and/or any explicit enforcement of the solenoidal constraint
∇ · B = 0.

2. Semidiscrete central schemes. In [2] we demonstrated the robustness of
black-box-type central schemes to calculate the approximate solutions of (1.1)–(1.4)
and discussed the advantages of these methods over those based on upwind differ-
encing. We also pointed out, however, that the efficiency resulting from a minimal
amount of characteristic information required by central schemes may be compro-
mised by the low-order accuracy of the schemes, since the latter often require finer
meshes to resolve steep gradients. In order to circumvent this limitation and gain full
advantage of the simplicity, ease of implementation, and efficiency of central schemes,
we seek higher-order methods. Although it is possible to carry out a higher-order
extension of the fully discrete central schemes discussed in [2] (see, e.g., [16, 18]),
we find the semidiscrete formulation of Kurganov and Tadmor [14] more advanta-
geous: its implementation over nonstaggered grids allows the use of larger time steps,
it enjoys a reduced numerical dissipation (of order O((Δx)2r−1)) in comparison to
that of fully discrete schemes (∼ O((Δx)2r/Δt)), and it is derived independently of
any reconstruction or evolution algorithm. Indeed, many of the existing high-order,
nonoscillatory reconstruction algorithms and evolution routines can be easily incor-
porated into the semidiscrete central formulation, making the simplicity and ease of
implementation of central schemes an attractive alternative.

2.1. One-dimensional schemes. The solutions of nonlinear hyperbolic sys-
tems of conservation laws,

ut + f(u)x = 0,(2.1)

and in particular those of (1.1)–(1.4), are characterized by the onset and propagation
of discontinuities. The higher-order extensions of the first-order Lax–Friedrichs central
scheme [15] that have been developed over the past two decades (see, e.g., [20, 19,
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10, 14]) provide a rather general approach for solving this type of problem with only
a minimal amount of information on the eigen structure of the Jacobian matrix of
f(u). (Indeed, Jacobian-free formulations of central schemes completely avoid the
computation of ∂f

∂u .) These schemes are based on the evolution of the cell averages
(we use the usual

∫
−

I
to denote the average, 1/|I| ·

∫
I
),

ūn
α :=

∫
−

Iα

u(ξ, tn)dξ, Iα :=

[
xα − Δx

2
, xα +

Δx

2

]
,

while alternating over staggered grids, {Ij}× tn and {Ij+ 1
2
}× tn+1. Dividing (2.1) by

Δx and integrating over the control volume Ij+ 1
2
× [tn, tn+1] yields an exact discrete

statement of the conservation law in terms of these cell averages,

ūn+1
j+ 1

2

= ūn
j+ 1

2
− 1

Δx

[∫ tn+1

tn
f(u(xj+1, τ))dτ −

∫ tn+1

tn
f(u(xj , τ))dτ

]
.(2.2)

The evaluation of the expressions on the right of (2.2) proceeds in two steps. First,
the cell averages {ūn

j+ 1
2

} are recovered by integrating a piecewise nonoscillatory poly-

nomial reconstruction of the point-values of u(x, tn) from their cell averages {ūn
j } that

we denote by

u(x, tn) = R (x; ūn) :=
∑
j

pnj (x) · 1Ij .(2.3)

This reconstruction procedure is at the heart of high-resolution, nonoscillatory central
schemes and requires the coefficients of the polynomials {pnj (x)} to be determined so
that R(x; ūn) satisfies the following three essential properties:

• P1—conservation of cell averages: p̄nj (x) = ūn
j .

• P2—accuracy: R (x; ūn) = u(x, tn)+O((Δx)r) for rth-order accurate scheme,
wherever u(·, tn) is sufficiently smooth.

• P3—nonoscillatory behavior of
∑

j pj(x) · 1Ij which is characterized in dif-
ferent ways for different reconstructions. Examples include TVD reconstruc-
tions initiated by van Leer [27] and Harten [7], number of extrema dimin-
ishing (NED) and shape-preserving properties of the Liu–Tadmor third-order
scheme [19], and the higher-order nonoscillatory extensions offered by the
essentially nonoscillatory (ENO) reconstructions of Harten et al. [6] or their
weighted versions (WENO), e.g., [24, 9], and their implementation within the
central differencing framework, e.g., [12, 16, 18].

Equipped with the reconstructed point values u(·, tn), the second step evaluates the
two time integrals of f(u(·, τ). Since the solution of (2.2) remains smooth along
the lines {x = xj}× [tn, tn+1], a simple quadrature rule suffices to approximate those

integrals. This requires the intermediate values, {ūn+β
j }, which are predicted either by

a Taylor expansion or alternatively by Runge–Kutta solvers of the ODE uτ = f̂x|x=xj
,

u(xj , 0) = un
j , τ > tn, where f̂x stands for the numerical derivative of f(u). This type

of evolution over staggered grids based on cells with uniform width Δx does not admit
a semidiscrete limit as Δt ↓ 0. Instead, a modified approach proposed by Kurganov
and Tadmor in [14] and based on variable size cells (depicted in Figure 2.1) yields the
desired semidiscrete limit. Here, we extend the derivation of second- and third-order
semidiscrete schemes of [14, 12, 13] to schemes of arbitrary order of accuracy r [1].
The first step passing from a fully discrete to a semidiscrete formulation consists of
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Fig. 2.1. Modified central differencing of Kurganov and Tadmor.

reducing the size of the staggered cells covering the Riemann fans. Instead of cells with
uniform width Δx, we use cells with variable width of order O(Δt), by incorporating
the maximal local speed of propagation,

anj+ 1
2

= max
u∈C

(
u−
j+ 1

2

,u+

j+ 1
2

) ρ
(
∂f

∂u
(u)

)
;(2.4)

here u−
j+ 1

2

and u+
j+ 1

2

stand for, respectively, the reconstructed values of u to the left

and right of the interfacing breakpoints, u±
j+ 1

2

:= R(xj+ 1
2
±, ūn), and C is the phase

curve connecting these two states through the Riemann fan. For practical purposes,
we choose

anj+ 1
2

:= max

{
ρ

(
∂f

∂u
(u−

j+ 1
2

)

)
, ρ

(
∂f

∂u
(u+

j+ 1
2

)

)}
,

which is exact for genuinely nonlinear and linearly degenerate fields.

This information allows us to repartition the original grid so as to distinguish
between subcells of width 2an

j+ 1
2

Δtn, where the solution is dictated by the nonsmooth

Riemann fan,

Ĩj+ 1
2

=
[
xn
j+ 1

2 ,l
, xn

j+ 1
2 ,r

]
:=

[
xj+ 1

2
− anj+ 1

2
Δtn, xj+ 1

2
+ anj+ 1

2
Δtn

]
,

and the other cells of width Δxj := Δx − Δtn(an
j− 1

2

+ an
j+ 1

2

), which are beyond the

influence of the Riemann fans so that the solution remains smooth,

Ĩj =
[
xn
j− 1

2 ,r
, xn

j+ 1
2 ,l

]
:=

[
xj− 1

2
+ anj− 1

2
Δtn, xj+ 1

2
− anj+ 1

2
Δtn

]
.
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In nonsmooth regions, the cell averages {w̄n+1
j+ 1

2

} are computed via staggered evolution

over the (narrower, O(Δt)) cells covering the Riemann fans,

w̄n+1
j+ 1

2

:=

∫
−

xn

j+ 1
2
,r

xn

j+ 1
2
,l

u(x, tn+1)dx

=

∫
−

xn

j+ 1
2
,r

xn

j+ 1
2
,l

R (x; ūn)dx− 1

2an
j+ 1

2

∫
−

tn+1

tn

[
f(u(xn

j+ 1
2 ,r

, τ)) − f(u(xn
j+ 1

2 ,l
, τ))

]
dτ,(2.5)

and in the smooth regions, direct integration of (2.1) yields the cell averages {w̄n
j }

w̄n+1
j :=

∫
−

xn

j+ 1
2
,l

xn

j− 1
2
,r

u(x, tn+1)dx

=

∫
−

xn

j+ 1
2
,l

xn

j− 1
2
,r

R (x; ūn)dx− 1

Δxj

∫ tn+1

tn

[
f(u(xn

j+ 1
2 ,l

, τ)) − f(u(xn
j− 1

2 ,r
, τ))

]
dτ.(2.6)

The nonstaggered cell averages, {ūn+1
j }, are then recovered via a new nonoscillatory

piecewise polynomial reconstruction of the point values of u(x, tn+1) from the new
cell averages (2.5) and (2.6),

R (x; w̄n+1) =
∑
j

qn+1
j (x) · 1Ĩj

+ qn+1
j+ 1

2

(x) · 1Ĩ
j+ 1

2

.(2.7)

Projection onto the original grid, {Ij}, (2.7) yields

ūn+1
j :=

∫
−

x
j+ 1

2

x
j− 1

2

R (x; w̄n+1)dx

=
1

Δx

⎡⎣∫ x
j− 1

2
,r

x
j− 1

2

qn+1
j− 1

2

(x) dx +

∫ x
j+ 1

2
,l

x
j− 1

2
,r

qn+1
j (x) dx +

∫ x
j+ 1

2

x
j+ 1

2
,l

qn+1
j+ 1

2

(x) dx

⎤⎦ .

(2.8)

The explicit calculation of the polynomials qn+1
j (x) and qn+1

j+1/2(x) will, in fact,

prove to be irrelevant for the semidiscrete formulation that we seek. As we shall
see below, only the cell averages of these q’s matter, and in the Δt ↓ 0-limit, these
averages are further reduced to the original point values reconstructed at the inter-
faces, p(xj± 1

2
, tn). We turn to the details. Without loss of generality, we assume

that the qn+1 are polynomials of degree r − 1 (required to preserve the underly-
ing rth-order accuracy) and satisfy properties P1 – P3 for the cell averages (2.5)

and (2.6) in the corresponding cells Ĩj and Ĩj+ 1
2
. We express these polynomials as

qn+1
j± 1

2

(x) =
∑r−1

k=0 A
(k)

j± 1
2

(x − xj± 1
2
)k/k!; their coefficients can be uniquely determined

by imposing the conservation constraints,1∫
−

Ĩj+p

qn+1
j+s (x)dx = w̄n

j+p, p = 0,±1

2
,±1, . . . ,±r − 1

2
, s = −1

2
, 0,

1

2
.(2.9)

1The choice of symmetric intervals around Ĩj yields methods of odd order. For methods of even

order, it suffices to sacrifice one of the side constraints, p = ± r−1
2

.
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Equipped with this notation, the first and last integrals on the right of (2.8) read

∫ x
j− 1

2
,r

x
j− 1

2

qn+1
j− 1

2

(x) dx =

r−1∑
k=0

⎡⎣ A
(k)

j− 1
2

(k + 1)!
(x− xj− 1

2
)k+1

⎤⎦x
j− 1

2
+an

j− 1
2
Δt

x
j− 1

2

=

r−1∑
k=0

(Δt)k+1

(k + 1)!
(anj− 1

2
)k+1A

(k)

j− 1
2

(2.10)

and ∫ x
j+ 1

2

x
j+ 1

2
,l

qn+1
j+ 1

2

(x) dx =

r−1∑
k=0

⎡⎣ A
(k)

j+ 1
2

(k + 1)!
(x− xj+ 1

2
)k+1

⎤⎦x
j+ 1

2

x
j+ 1

2
−an

j+ 1
2

Δt

=

r−1∑
k=0

(−1)k
(Δt)k+1

(k + 1)!
(anj+ 1

2
)k+1A

(k)

j+ 1
2

.

(2.11)

For the second integral in (2.8), we observe that by property P1 the polynomial
qn+1
j (x) must satisfy∫ x

j+ 1
2
,l

x
j− 1

2
,r

qn+1
j (x) dx = Δxjw̄

n+1
j =

[
Δx− Δt(anj− 1

2
+ anj+ 1

2
)
]
w̄n+1

j .(2.12)

Substituting (2.10)–(2.12) into (2.8), we arrive at a fully discrete, nonstaggered ap-
proximation (of arbitrary order of accuracy r) of the cell averages in (2.2),

ūn+1
j =

r−1∑
k=0

λ(Δt)k

(k + 1)!

[
(anj− 1

2
)k+1A

(k)

j− 1
2

+ (−1)k(anj+ 1
2
)k+1A

(k)

j+ 1
2

]
+

[
1 − λ(anj− 1

2
+ anj+ 1

2
)
]
w̄n+1

j , λ :=
Δt

Δx
.

(2.13)

Given the appropriate reconstructions R(x; ūn), R(x; w̄n) and quadrature rules to
evaluate the flux integrals in (2.5) and (2.6), then (2.13) constitutes a family of fully
discrete nonoscillatory central schemes, e.g., [8, 14]. This type of scheme admits a
considerably simpler and more versatile semidiscrete limit, dūj/dt := limΔt→0(ūj(t

n+
Δt) − ūj(t

n))/Δt.
To this end, we rewrite (2.13) as

dūj

dt
= lim

Δt→0

{
1

Δx

(
anj− 1

2
A

(0)

j− 1
2

+ anj+ 1
2
A

(0)

j+ 1
2

)
+

1

Δt
(w̄n+1

j − ūn
j )

− 1

Δx

(
anj− 1

2
+ anj+ 1

2

)
w̄n+1

j +

r−1∑
k=1

λ(Δt)k−1

(k + 1)!

[ (
anj− 1

2

)k+1

A
(k)

j− 1
2

+ (−1)k
(
anj+ 1

2

)k+1

A
(k)

j+ 1
2

]}
(2.14)

= lim
Δt→0

{
1

Δx

(
anj− 1

2
A

(0)

j− 1
2

+ anj+ 1
2
A

(0)

j+ 1
2

)
+

1

Δt
(w̄n+1

j − ūn
j )

− 1

Δx

(
anj− 1

2
+ anj+ 1

2

)
w̄n+1

j

}
.
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Since the width of the local Riemann fans approaches zero in the Δt ↓ 0-limit,
i.e., xn

j+ 1
2 ,l

, xn
j+ 1

2 ,r
→ xj+ 1

2
, we obtain by conservation of cell averages property P1,

A
(0)

j± 1
2

= w̄n+1
j± 1

2

so that (2.14) yields

dūj

dt
= lim

Δt→0

{
1

Δx

(
anj− 1

2
w̄n+1

j− 1
2

+ anj+ 1
2
w̄n+1

j+ 1
2

)
+

1

Δt
(w̄n+1

j − ūn
j )

− 1

Δx

(
anj− 1

2
+ anj+ 1

2

)
w̄n+1

j

}
.

(2.15)

As Δt ↓ 0 we end up with limiting values which depend solely on the reconstructed
values R(x, u) on both sides of the interfacing breakpoints, xj± 1

2
, given by

u(xn
j+ 1

2 ,l
, t) → pnj (xj+ 1

2
) =: u−

j+ 1
2

(t),

u(xn
j+ 1

2 ,r
, t) → pnj+1(xj+ 1

2
) =: u+

j+ 1
2

(t);(2.16)

here pnj (x) and pnj+1(x) are the polynomial reconstructions of R(x; ūn) at the original

time step tn introduced in (2.3). The corresponding averages in (2.5) approach w̄n+1
j+ 1

2

∼
(Δf)j+ 1

2
/2an

j+ 1
2

, where (Δf)j+ 1
2

:= f(u+
j+ 1

2

)− f(u−
j+ 1

2

), while the smoother averages

in (2.6) are of order w̄n+1
j ∼ ūn

j −Δt(Δf)j+ 1
2
. Inserted into (2.15), we end up with a

semidiscrete limit which can be written in its final conservative form,

dūj

dt
= −

Hj+ 1
2
(t) −Hj− 1

2
(t)

Δx
;(2.17)

here Hj± 1
2
(t) are the numerical fluxes given by

Hj+ 1
2
(t) :=

f(u+
j+ 1

2

(t)) + f(u−
j+ 1

2

(t))

2
−

aj+ 1
2
(t)

2

[
u+
j+ 1

2

(t) − u−
j+ 1

2

(t)
]
.(2.18)

Once again, we emphasize that among its several advantages, the versatility of
this semidiscrete formulation is the independence of the specific reconstruction, (2.3),
and evolution algorithms which are utilized to recover the interface values u−

j+ 1
2

and

u+
j+ 1

2

and to evolve the cell averages in (2.17). A description of our particular choices

for these algorithms is provided in section 3.

2.2. Two-dimensional schemes. Starting with a general hyperbolic conserva-
tion law in two space dimensions,

ut + f(u)x + g(u)z = 0,(2.19)

we proceed as in section 2.1 and consider the sliding averages of u over the cells
Ij,k := [xj−1/2, xj+1/2] × [zk−1/2, zk+1/2],

ūn
j,k :=

∫
−

Ij,k

u(x, z, tn) dx dz,

where Δx and Δz represent the space scales in the x- and the z-direction, respectively.
As in the one-dimensional case, we seek a semidiscrete formulation for the evo-

lution of the cell averages of the conservation law (2.19). We begin by incorporating
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Fig. 2.2. Floor plan for modified central differencing in two space dimensions.

the information provided by the local speeds of propagation, which we approximate
by

anj+ 1
2 ,k

:= max

{
ρ

(
∂f

∂u

(
uW
j+1,k

))
, ρ

(
∂f

∂u

(
uE
j,k

))}
, bnj,k+ 1

2
,

:= max

{
ρ

(
∂g

∂u

(
uS
j,k+1

))
, ρ

(
∂g

∂u

(
uN
j,k

))}
,

(2.20)

where the cell interface values in the z- and x-directions,

uN
j,k := pnj,k(xj , zk+ 1

2
), uS

j,k := pnj,k(xj , zk− 1
2
),

uE
j,k := pnj,k(xj+ 1

2
, zk), uW

j,k := pnj,k(xj− 1
2
, zk),(2.21)

are calculated via a nonoscillatory piecewise polynomial reconstruction,

R(x, z; ūn) =
∑
j,k

pnj,k(x, z)1Ij,k ;(2.22)

the polynomials {pnj,k(x, z)} are determined so that R(x, z; ūn) satisfies properties
analogous to P1 – P3 above. This information allows us to separate between regions
of smoothness, depicted as Dj,k in Figure 2.2, and regions of nonsmoothness, depicted
as the shaded regions. Nine sets of cell averages are calculated as follows:

• In the clear shaded regions, Dj± 1
2 ,k±

1
2
, the solution is not smooth in both

directions; staggered evolution over the control volumes Dj± 1
2 ,k±

1
2
× [tn, tn+1]

is used to obtain the new cell averages {w̄n+1
j± 1

2 ,k±
1
2

},
• In the dark shaded regions, Dj± 1

2 ,k
and Dj,k± 1

2
, the solution is smooth only

in one direction; staggered evolution is used along the nonsmooth interfaces
to obtain, respectively, the cell averages {w̄n+1

j± 1
2 ,k

} and {w̄n+1
j,k± 1

2

},
• To evolve the smooth part of the solution, we integrate the polynomial pnj,k(x, z)

and the corresponding fluxes over the nonrectangular control volume Dj,k ×
[tn, tn+1]; these cell averages are denoted by {w̄n+1

j,k }.
This approach allows us to form a new polynomial, denoted R(x, z; w̄n+1), which
is reconstructed from these smooth and nonsmooth portions of the solution, and to



542 JORGE BALBÁS AND EITAN TADMOR

reproject it back onto the original grid-cells,

ūn+1
j,k =

∫
−

Ij,k

R (x, z; w̄n+1) dx dz.(2.23)

The resulting nonstaggered fully discrete scheme admits a more versatile semidiscrete
limit as Δt → 0,

d

dt
ūj,k(t) = −

Hx
j+ 1

2 ,k
(t) −Hx

j− 1
2 ,k

(t)

Δx
−

Hz
j,k+ 1

2

(t) −Hz
j,k− 1

2

(t)

Δz
,(2.24)

with numerical fluxes

Hx
j+ 1

2 ,k
(t) =

1

12

[
f
(
uNW
j+1,k(t)

)
+ f

(
uNE
j,k (t)

)
+ 4

(
f
(
uW
j+1,k(t)

)
+ f

(
uE
j,k(t)

) )
+ f

(
uSW
j+1,k(t)

)
+ f

(
uSE
j,k (t)

) ]
−

aj+ 1
2 ,k

(t)

12

(
uNW
j+1,k(t) − uNE

j,k (t) + 4
(
uW
j+1,k(t)

− uE
j,k(t)

)
+ uSW

j+1,k(t) − uSE
j,k (t)

)
,(2.25)

Hz
j,k+ 1

2
(t) =

1

12

[
g
(
uSW
j,k+1(t)

)
+ g

(
uNW
j,k (t)

)
+ 4

(
g
(
uS
j,k+1(t)

)
+ g

(
uN
j,k(t)

) )
+ g

(
uSE
j,k+1(t)

)
+ g

(
uNE
j,k (t)

) ]
−

bj,k+ 1
2
(t)

12

(
uSW
j,k+1(t) − uNW

j,k (t) + 4
(
uS
j,k+1(t)

− uN
j,k(t)

)
+ uSE

j,k+1(t) − uNE
j,k (t)

)
.(2.26)

This particular version of the numerical fluxes results from using Simpson’s quadra-
ture rule to approximate the integrals of the fluxes f and g along the cell boundaries
[zk− 1

2
, zk+ 1

2
] and [xj− 1

2
, xj+ 1

2
], respectively, and it incorporates information from the

corner interface values,

uNE
j,k := p̂nj,k(xj+ 1

2
, zk+ 1

2
), uSW

j,k := p̂nj,k(xj− 1
2
, zk− 1

2
),

uSE
j,k := p̂nj,k(xj+ 1

2
, zk− 1

2
), uNW

j,k := p̂nj,k(xj− 1
2
, zk+ 1

2
),(2.27)

S
W

E
N

SW

NE

SE

NW

(a) (b)

Fig. 2.3. (a) Reconstruction in x- and z-directions. (b) Diagonal axes for reconstruction.
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into the scheme. These corner values are recovered via the nonoscillatory reconstruc-
tion R̂(x, z; ūn) =

∑
p̂nj,k(x, z) · 1Ij,k , which may coincide with the original recon-

struction, R(x, z; ūn), or, alternatively, interpolate the cell values along the diagonal
directions shown in Figure 2.3(b) so as to prevent the onset of spurious oscillations
along those axes.

3. Implementation of semidiscrete central schemes. The framework of the
semidiscrete scheme described above entertains a wide range of options for the im-
plementation of their two main ingredients: nonoscillatory reconstruction and evolu-
tion. In this section we provide some examples of nonoscillatory reconstructions and
evolution routines that we implemented for computing the solutions of the system
(1.1)–(1.4) presented in sections 4 and 5.

3.1. Third-order CWENO reconstruction. Our first choice for the recon-
struction of the point values of u is the third-order CWENO polynomial reconstruc-
tion of Kurganov and Levy [12]. A piecewise quadratic polynomial that satisfies
the essential properties P1, P2, and P3 above is formed as follows: in each cell
Ij = [xj− 1

2
, xj+ 1

2
], the polynomials {pnj (x)} in (2.3) are written as a convex com-

bination of three polynomials PL(x), PC(x), and PR(x),

pnj (x) = wLPL(x) + wCPC(x) + wRPR(x),
∑

i∈{L,C,R}
wi = 1,(3.1)

where the linear polynomials

PL(x) = ūn
j +

ūn
j − ūn

j−1

Δx
(x− xj) and PR(x) = ūn

j +
ūn
j+1 − ūn

j

Δx
(x− xj),(3.2)

conserve the pair of cell averages ūn
j−1, ū

n
j and ūn

j , ūn
j+1, respectively, and the parabola

centered around xj ,

PC(x) = ūn
j − 1

12
(ūn

j−1 − 2ūn
j + ūn

j+1)(3.3)

+
ūn
j+1 − ūn

j−1

2Δx
(x− xj) +

ūn
j−1 − 2ūn

j + ūn
j+1

Δx2
(x− xj)

2,

is determined so as to satisfy

cLPL(x) + cRPR(x) + (1 − cL − cR)PC(x) = un
j + u′

j(x− xj) +
1

2
u′′
j (x− xj)

2,

where un
j , u′

j , and u′′
j approximate the point values u(xj , t

n), ux(xj , t
n), and uxx(xj , t

n)
given respectively by

un
j := ūn

j − 1

24
(ūn

j−1 − 2ūn
j + ūn

j+1),

u′
j :=

ūn
j+1 − ūn

j−1

2Δx
, and u′′

j :=
ūn
j−1 − 2ūn

j + ūn
j+1

Δx2
.(3.4)

We guarantee the conservation of the cell averages ūn
j−1, ū

n
j , and ūn

j+1 by any sym-
metric choice of the weights ci (e.g., cL = cR = 1/4, cC = 1/2) and the accuracy
property, P2, in smooth regions [17],

pnj (x) = u(x, tn) + O((Δx)3), x ∈ [xj− 1
2
, xj+ 1

2
].
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Property P3—the nonoscillatory behavior of {pnj (x)} is attained with the nonlinear
weights

wi =
αi∑
m αm

with αi =
ci

(ε + ISi)2
, i,m ∈ {L, C, R},(3.5)

where ε � 1 prevents the denominator from vanishing (for the calculations in sec-
tions 4 and 5 we choose ε = 10−6), and the smoothness indicators, ISi, provide a
local measure of the derivatives of Pi(x),

ISi =

2∑
l=1

∫
Ij

(Δx)2l−1(P
(l)
i (x))2dx, i ∈ {L, C, R},(3.6)

switching automatically to the second-order reconstructions PL and PR in the presence
of steep gradients and avoiding the onset of spurious oscillations [9, 12, 17]. In this
case, they read

ISL = (ūn
j − ūn

j−1)
2, ISR = (ūn

j+1 − ūn
j )2,

ISC =
13

3
(ūn

j+1 − 2ūn
j + ūn

j−1)
2 +

1

4
(ūn

j+1 − ūn
j−1)

2.(3.7)

Remarks.
1. For this particular reconstruction, the one-dimensional interface values, u−

j+ 1
2

(t)

and u+
j+ 1

2

(t), required in the numerical flux (2.18) take the explicit form

u−
j+ 1

2

(tn) := pnj (xj+ 1
2
) =

1

2
wL(3ū

n
j − ūn

j−1)

+
1

12
wC(−5ūn

j+1 + 8ūn
j − ūn

j−1) +
1

2
wR(ūn

j+1 + ūn
j ),

u+
j+ 1

2

(tn) := pnj+1(xj+ 1
2
) =

1

2
wL(ū

n
j+1 + ūn

j )

+
1

12
wC(−ūn

j+2 + 8ūn
j+1 − 5ūn

j ) +
1

2
wR(−ūn

j+2 + 3ūn
j+1).

2. In the case of systems of equations, the choice of these smoothness indica-
tors is, indeed, nontrivial. The different conserved quantities involved in any
particular system (density, momentum, etc.) may very well develop disconti-
nuities at different points throughout the solution domain that do not affect
every other quantity in the system. Hence, choosing the smoothness indi-
cators individually for each quantity may cause the scheme to use different
stencils for different quantities during the same evolution step. This can be
avoided by either using global smoothness indicators, e.g., an (norm-scaled)
average of the individual ones, or by identifying those that are physically
relevant, such as, e.g., the density near a contact discontinuity. (See sec-
tion 4 for our particular choices in the one-dimensional case and [16] for an
in-depth discussion about the selection of smoothness indicators for systems
of equations.)

In two and higher space dimensions, a possibility for calculating the interface values
in (2.21) and (2.27) in a rather straightforward way is to apply this one-dimensional
third-order reconstruction dimension by dimension in the x- and z-directions (Figure
2.3(a)) and, if so desired, in the two diagonal directions of the coordinate frame
displayed in Figure 2.3(b). In two dimensions, however, we note that the constant
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term in the central parabola, (3.3), requires an additional correction (in the transverse
direction of the reconstruction) in order to guarantee third-order accuracy when the
point value u(xj , zk, t

n) is recovered from the neighboring cell averages,

u(xj , zk, t
n) = ūn

j,k − 1

12
(ūn

j−1,k − 2ūn
j,k + ūn

j+1,k)

− 1

12
(ūn

j,k−1 − 2ūn
j,k + ūn

j,k+1) + O((max{Δx,Δz})3).

That is, along the line z = zk, the reconstruction in the x-direction is carried out
using the linear polynomials PL(x, zk) and PR(x, zk) as in (3.2), and the parabola
PC(x, zk), given by

PC(x, zk) = ūn
j,k − 1

12
(ūn

j−1,k − 2ūn
j,k + ūn

j+1,k) −
1

12
(ūn

j,k−1 − 2ūn
j,k + ūn

j,k+1)

+
ūn
j+1,k − ūn

j−1,k

2Δx
(x− xj) +

ūn
j−1,k − 2ūn

j + ūn
j+1,k

Δx2
(x− xj)

2.(3.8)

The same reconstruction is carried out in the z-direction, holding x = xj fixed. And,
should one choose to implement the reconstruction along the diagonal directions, the
corresponding polynomials are given by (consult [13] for additional details)

p̂nj,k(x, z) = ŵLP̂L(x, z) + ŵCP̂C(x, z) + ŵRP̂R(x, z)(3.9)

with

P̂L(x, z) = ūn
j,k +

ūn
j,k − ūn

j−1,k−1

Δ

(
Δ

2Δz
(z − zk) +

Δ

2Δx
(x− xj)

)
,

P̂C(x, z) = ūn
j,k − 1

12
(ūn

j+1,k+1 − 2ūn
j,k + ūn

j−1,k−1)

− 1

12
(ūn

j−1,k+1 − 2ūn
j,k + ūn

j+1,k−1)

+
ūn
j+1,k+1 − ūn

j−1,k−1

2Δ

(
Δ

2Δz
(z − zk) +

Δ

2Δx
(x− xj)

)
+

ūn
j+1,k+1 − 2ūn

j,k + ūn
j−1,k−1

Δ2

(
Δ

2Δz
(z − zk) +

Δ

2Δx
(x− xj)

)2

,

P̂R(x, z) = ūn
j,k +

ūn
j+1,k+1 − ūn

j,k

Δ

(
Δ

2Δz
(z − zk) +

Δ

2Δx
(x− xj)

)
(3.10)

along the SW–NE axis and

P̂L(x, z) = ūn
j,k +

ūn
j,k − ūn

j+1,k−1

Δ

(
Δ

2Δz
(z − zk) −

Δ

2Δx
(x− xj)

)
,

P̂C(x, z) = ūn
j,k − 1

12
(ūn

j+1,k+1 − 2ūn
j,k + ūn

j−1,k−1)

− 1

12
(ūn

j−1,k+1 − 2ūn
j,k + ūn

j+1,k−1)

+
ūn
j−1,k+1 − ūn

j+1,k−1

2Δ

(
Δ

2Δz
(z − zk) −

Δ

2Δx
(x− xj)

)
+

ūn
j−1,k+1 − 2ūn

j,k + ūn
j+1,k−1

Δ2

(
Δ

2Δz
(z − zk) −

Δ

2Δx
(x− xj)

)2

,

P̂R(x, z) = ūn
j,k +

ūn
j+1,k+1 − ūn

j,k

Δ

(
Δ

2Δz
(z − zk) −

Δ

2Δx
(x− xj)

)
(3.11)
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along the SE–NW axis, where Δ =
√

(Δx)2 + (Δz)2. The nonlinear weights, ŵi, are
also calculated direction by direction according to the one-dimensional recipe (3.5)
with the smoothness indicators given by the norm-scaled average of the componentwise

indicators, IS
(m)
i , calculated as in (3.7),

ISi =
1

d

d∑
m=1

1

‖u(m)‖2 + ε
IS

(m)
i , i ∈ {L, C, R},(3.12)

where u(m) stands for the mth component of u, and ‖u(m)‖2
2 =

∑
j,k |u

(m)
j,k |2ΔxΔz

represents its 
2 norm over the discretized solution domain.

3.2. CWENO fourth-order reconstruction. In section 5 we demonstrate
the versatility of the central semidiscrete scheme (2.24)–(2.26) by implementing the
dimension-by-dimension third-order reconstruction described above and the genuinely
multidimensional fourth-order CWENO reconstruction of Levy, Puppo, and Russo
[18] and Balbás [1] that recovers the interface point values in (2.21) and (2.27) via
a biquadratic polynomial interpolant satisfying the desired conservation, accuracy,
and nonoscillatory properties in two-space dimensions. Following is an outline of this
fourth-order reconstruction, originally developed by Levy and others within the cen-
tral, fully discrete, staggered framework. In each cell Ij,k, the piecewise polynomial in-
terpolants in (2.22), pnj,k(x, z), are written as a convex combination of nine biquadratic

polynomials, Pj+p,k+q(x, z), that conserve the cell averages {ūn
j+p,k+q}1

p,q=−1 and ap-
proximate the point values of u(x, z, tn) within fourth-order accuracy,

pnj,k(x, z) =

1∑
p,q=−1

wp,q
j,kPj+p,k+q(x, z),

1∑
p,q=−1

wp,q
j,k = 1, wp,q

j,k ≥ 0,(3.13)

where the polynomials Pj,k(x, z) have the form (omitting, for simplicity, the j and k
indices in the coefficients {bm}),

Pn
j,k(x, z) = b0 + b1(x− xj) + b2(z − zk) + b3(x− xj)(z − zk)

+ b4(x− xj)
2 + b5(z − zk)

2 + b6(x− xj)
2(z − zk)

+ b7(x− xj)(z − zk)
2 + b8(x− xj)

2(z − zk)
2.(3.14)

The nine conservation constraints,∫
−

x
j+ 1

2
+pΔx

x
j− 1

2
+pΔx

∫
−

z
k+ 1

2
+qΔz

z
k− 1

2
+qΔz

Pj,k(x, z)dz dx = ūn
j+p,k+q, p, q = −1, 0, 1,(3.15)

uniquely determine the nine coefficients {bm},

b0 = ūn − Δx2

24
ûxx − Δz2

24
ûzz +

Δx2Δz2

242
ûxxzz,

b1 = ûx − Δz2

24
ûxzz, b2 = ûz −

Δx2

24
ûxxz,

b3 = ûxz, b4 =
1

2
ûxx − Δz2

48
ûxxzz,

b5 =
1

2
ûzz −

Δx2

48
ûxxzz, b6 =

1

2
ûxxz,

b7 =
1

2
ûxzz, b8 =

1

4
ûxxzz,
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where the divided differences

ûxj,k
=

ūn
j+1,k − ūn

j−1,k

2Δx
, ûzj,k =

ūn
j,k+1 − ūn

j,k−1

2Δz
,

ûxxj,k
=

ūn
j+1,k − 2ūn

j,k + ūn
j−1,k

Δx2
, ûzzj,k =

ūn
j,k+1 − 2ūn

j,k + ūn
j,k−1

Δz2
,

ûxzj,k =
ūn
j+1,k+1 − ūn

j+1,k−1 − ūn
j−1,k+1 + ūn

j−1,k−1

4ΔxΔz
,

ûxxzj,k =
(ūn

j+1,k+1 − 2ūn
j,k+1 + ūn

j−1,k+1) − (ūn
j+1,k−1 − 2ūn

j,k−1 + ūn
j−1,k−1)

2Δx2Δz
,

ûxzzj,k =
(ūn

j+1,k+1 − 2ūn
j+1,k + ūn

j+1,k−1) − (ūn
j−1,k+1 − 2ūn

j−1,k + ūn
j−1,k−1)

2ΔxΔz2
,

ûxxzzj,k =
1

Δx2Δz2

[
(ūn

j+1,k+1 − 2ūn
j+1,k + ūn

j+1,k−1) − 2(ūn
j,k+1 − 2ūn

j,k + ūn
j,k−1)

+ (ūn
j−1,k+1 − 2ūn

j−1,k + ūn
j−1,k−1)

]
serve to approximate the values of u and its partial derivatives at the points (xj , zk)
within the fourth-order accuracy constraints of the method.

As in the third-order reconstruction, the nonlinear weights in (3.13), wp,q
l,k , are

computed so as to provide maximum accuracy in smooth regions and prevent oscilla-
tions in the nonsmooth regions by eliminating the contribution of polynomials with
steep gradients across the cell interfaces. For each cell nine weights are calculated,

wp,q
j,k =

αp,q
j,k∑

m,n α
m,n
j,k

with αp,q
j,k =

cp,qj,k

(ε + ISp,q
j,k )2

, m, n, p, q = −1, 0, 1,(3.16)

and the linear coefficients, cp,qj,k , chosen so that symmetry guarantees fourth-order
accuracy,

c0,0j,k =
1

2
and cp,qj,k =

1

16
∀ p, q �= 0;

convexity,
∑1

p,q=−1 c
p,q
j,k = 1, cp,qj,k ≥ 0, guarantees conservation.

Global smoothness indicators are chosen according to (3.12). Unlike the third-
order reconstruction where the exact calculation of the individual smoothness indi-
cators is trivial and renders simple formulas, i.e., (3.7), in this fourth-order case, the
exact calculation of the local L2-norm of the partial derivatives of the polynomials
P p,q
j,k is impractical. Instead, a Gaussian quadrature formula is used to approximate

the integrals

ISp,q
j,k =

∫
Ij,k

(|∂xPj+p,k+q|2 + |∂zPj+p,k+q|2

+ (Δx)2|∂xxPj+p,k+q|2 + (Δz)2|∂zzPj+p,k+q|2) dx dz.

This approach still serves the purpose of automatically detecting and redirecting the
numerical stencils in the direction of smoothness, thus preventing the onset of oscil-
lations, [18].

3.3. Time evolution: Strong stability-preserving Runge–Kutta solvers.
With the interface values (2.16), (2.21), and (2.27) computed with either of the above



548 JORGE BALBÁS AND EITAN TADMOR

CWENO reconstructions, we denote, for any grid function w = {wj(t)}, the numerical
fluxes on the right of (2.17) and (2.24) by

C[w(t)] = −
Hj+ 1

2
(w(t)) −Hj− 1

2
(w(t))

Δx
(3.17)

and

C[w(t)] = −
Hx

j+ 1
2 ,k

(w(t)) −Hx
j− 1

2 ,k
(w(t))

Δx
−

Hz
j,k+ 1

2

(w(t)) −Hz
j,k− 1

2

(w(t))

Δz
,(3.18)

respectively, and evolve the solution u(0) := ūn
j from tn, to tn+1 with an appropriate

ODE solver. For the numerical calculations reported in sections 4 and 5, we choose the
strong stability-preserving (SSP) Runge–Kutta discretizations [23, 5]. In particular,
for the third-order results, we employ

u(1) = u(0) + ΔtC[u(0)],

u(2) = u(1) +
Δt

4
(−3C[u(0)] + C[u(1)]),

un+1 := u(3) = u(2) +
Δt

12
(−C[u(0)] − C[u(1)] + 8 C[u(2)]),(3.19)

and for the fourth-order results of section 5.3,

u(1) = u(0) +
Δt

2
C[u(0)],

u(2) = u(1) +
Δt

2
(−C[u(0)] + C[u(1)]),

u(3) = u(2) +
Δt

2
(−C[u(1)] + 2 C[u(2)]),

un+1 := u(4) = u(3) +
Δt

6
(C[u(0)] + 2C[u(1)] − 4C[u(2)] + C[u(3)])(3.20)

is used to evolve the values reconstructed via the fourth-order CWENO interpolation
algorithm of Levy and others of section 3.2.

4. One-dimensional numerical results. In one space dimension, equations
(1.1)–(1.4) admit the conservative form (2.1) with

u = (ρ, ρvx, ρvy, ρvz, By, Bz, e)
�,(4.1)

f(u) = (ρvx, ρv
2
x + p∗ −B2

x, ρvxvy −BxBy, ρvxvz −BxBz, Byvx −Bxvy,

Bzvx −Bxvz, (e + p∗)vx −Bx(Bxvx + Byvy + Bzvz))
�,(4.2)

where p∗ = p + 1
2B

2 stands for the total pressure (static plus magnetic).
In this section we present numerical simulations of the one-dimensional MHD

equations, (2.1)–(4.2). The results were obtained using the semidiscrete central
scheme (2.17)–(2.18) with the pointvalues u+

j+ 1
2

(t) and u−
j+ 1

2

(t), (2.16), computed

via the CWENO third-order reconstruction of section 3.1, and evolved according to
Shu’s third-order SSP Runge–Kutta scheme as outlined in section 3.3. The schemes
are implemented for computing the approximate solution of two coplanar shock tube
MHD models described by Brio and Wu in [3]. We use a uniform grid in the space
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Fig. 4.1. Results of Brio–Wu shock tube problem at t = 0.2 computed with 800 grid points using
third-order CWENO reconstruction, (3.1), and Shu’s SSP Runge–Kutta solver, (3.19).

discretization, and in both cases we choose the time step dynamically with CFL re-
striction

Δt =
0.9 Δx

maxk |ak(u)| ,(4.3)

where {ak(u)}k are the eigenvalues of the Jacobian matrix of f(u).

4.1. Brio–Wu shock tube problem. The first one-dimensional Riemann prob-
lem we consider consists of a shock tube with two initial equilibrium states, ul and
ur, given by

(ρ, vx, vy, vz, By, Bz, p)
� =

{
(1.0, 0, 0, 0, 1.0, 0, 1.0)� for x < 0,
(0.125, 0, 0, 0,−1.0, 0, 0.1)� for x > 0,

(4.4)

and complemented with the constant values of Bx ≡ 0.75 and γ = 2. The problem
is solved for x ∈ [−1, 1] with 800 grid points, and numerical results are presented
at t = 0.2. Figure 4.1 shows the density, the x- and y-velocity components, the y-
magnetic field, and pressure profiles. The hydrodynamical data of this problem is
the same as that in Sod’s shock tube problem of gas dynamics. The variety of MHD
waves, however, poses a considerable challenge for high resolution such as the black-
box central schemes described in this paper. The solution of this problem consists of
a left-moving fast rarefaction wave (FR), a slow compound wave (SM) which results
from an intermediate shock that changes By from 0.58 to −0.31 and a slow rarefaction
that changes By from −0.31 −0.53, a contact discontinuity (C), a right-moving slow
shock (SS), and a right-moving fast rarefaction wave (FR). Note that the solution to
this problem is not unique if Bz and vz are not identically zero. The results in Figure
4.1 are in agreement with those previously reported in [2] and are comparable with
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Fig. 4.2. Results of Brio–Wu high Mach problem at t = 0.012 computed with 200 grid points
using third-order CWENO reconstruction, (3.1), and Shu’s SSP Runge–Kutta solver, (3.19).

the second-order upwind computations of Brio and Wu in [3] and with the fifth-order
WENO computations presented by Jiang and Wu in [11]. In fact, the present results
show a better control of the oscillations that typically appear at the trailing edge of the
right-moving fast rarefaction wave when high-resolution schemes are employed. This
better control is due to our choice of smoothness indicators. Our various numerical
experiments show that in the absence of characteristic information, the average of the
smoothness indicators of the density, ρ, and transverse magnetic field, By, scaled by
their 
2 norm, is the best combination for selecting a single stencil for reconstruction
and evolution of all the conserved quantities in the system. Our numerical results
confirm the ability of central schemes, whether in their fully discrete or semidiscrete
formulations, to capture the main features of the discontinuous MHD solutions, while
avoiding any characteristic information other than an estimate of the maximal speed
of propagation, maxk |ak(u)|.

4.2. Brio–Wu high Mach shock tube problem. The following shock tube
model proposed by Brio and Wu in [3] is commonly used to check the robustness
of the numerical schemes for high Mach number problems. The initial equilibrium
states, ul and ur, are given by

(ρ, vx, vy, vz, By, Bz, p)
� =

{
(1.0, 0, 0, 0, 1.0, 0, 1000)� for x < 0,
(0.125, 0, 0, 0,−1.0, 0, 0.1)� for x > 0

(4.5)

and complemented with the values of Bx ≡ 0 and γ = 2. The Mach number of the
right-moving shock wave is 15.5. If the plasma pressure is replaced by the sum of the
static and magnetic pressures, denoted by p∗ above, this model becomes a standard
hydrodynamical Riemann problem. The solution is presented at t = .012, x ∈ [−1, 1],
with 200 grid points and with CFL number 0.9; consult (4.3).
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The solution of this second Riemann problem consists of a left-moving fast rar-
efaction wave (FR), followed by a tangential discontinuity (TD), and a right-moving
fast shock (FS) with Mach number 15.5. Across the tangential discontinuity, the den-
sity, the magnetic field, and the pressure can change, but both the fluid velocity and

the total pressure, p + B2

2 , are continuous.

As in the previous problem, our results in Figure 4.2 are comparable to those
reported in [2], [3], and [11] with second-order central and second- and fifth-order
upwind schemes and demonstrate the robustness of the schemes described in section 2.

5. Two-dimensional numerical results. In two space dimensions, equations
(1.1)–(1.4) admit the conservative form (2.19) with

u = (ρ, ρvx, ρvy, ρvz, Bx, By, Bz, e)
�,(5.1)

f(u) = (ρvx, ρv
2
x + p∗ −B2

x, ρvxvy −BxBy, ρvxvz −BxBz, 0, Byvx −Bxvy,

Bzvx −Bxvz, (e + p∗)vx −Bx(Bxvx + Byvy + Bzvz))
�,(5.2)

g(u) = (ρvz, ρvzvx −BzBx, ρvzvy −BzBy, ρv
2
z + p∗ −B2

z , Bxvz −Bzvx,

Byvz −Bzvy, 0, (e + p∗)vz −Bz(Bxvx + Byvy + Bzvz))
�.(5.3)

In this section we present the solution of four prototype problems for two-dimen-
sional MHD equations. We begin testing our two-dimensional numerical schemes by
solving the one-dimensional Brio–Wu shock tube problem described in section 4.1 on
a two-dimensional domain with the flow rotated 45◦. For the second problem—the
Kelvin–Helmholtz instability with transverse magnetic field configuration—we con-
sider two different sets of boundary conditions in the x-direction: periodic in the first
case and a free outflow boundary in the second convective setup. The third prob-
lem was introduced by Orszag and Tang in [21] as a simple model to study MHD
turbulence. The last problem that we present simulates the interaction between a
strong shock and a high-density cloud. These four problems appear extensively in
the literature as they have become—in the absence of a rigorous stability condition
for numerical schemes for MHD equations—standard tests to validate numerical al-
gorithms. In all cases, the time scale Δt is determined dynamically according to the
CFL restriction

Δt =
c√

(maxk |ak(u)|/Δx)2 + (maxk |bk(u)|/Δz)2
,(5.4)

where c < 1 is a positive constant and {ak(u)}k and {bk(u)}k represent the eigenvalues
of the Jacobian matrices of f(u) and g(u), respectively.

It should be emphasized that the results presented below were obtained with the
original formulation of semidiscrete central schemes in section 2, namely, they were
implemented “as is,” without any enforcement of the solenoidal constraint (1.5). The
∇ ·B = 0-constraint was automatically preserved to machine round-off error. In fact,
the same test problems displayed below were first solved using the (global) projection
method as a way to enforce the ∇·B = 0-constraint. We observed that the divergence-
free results displayed below avoid undesirable effects such as loss of conservation and
monotonicity, often induced by global projection solvers.

5.1. Brio–Wu rotated flow. The initial conditions described by (4.4) are ex-
tended to the two-dimensional domain [−1, 1] × [−1, 1] and rotated 45◦ so that the
fluid does not flow in the direction of the grid axis. Our results are displayed in
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Fig. 5.1. Results of rotated Brio–Wu shock tube problem at t = 0.2 computed over a 600 ×
600 mesh using third-order dimension-by-dimension CWENO reconstruction, (3.1), and Shu’s SSP
Runge–Kutta solver, (3.19). From left to right: density, transverse, and parallel components of
magnetic field (bottom)

Figure 5.1, and they confirm the ability of central schemes to simulate discontinuous
flows independently of the mesh orientation.

We observe that the small deviations from the constant value of the transverse
component of the magnetic that can be observed in Figure 5.1 are well within the
order of the scheme, and the numerical value of ∇ · B is in the order of 10−13.

5.2. Transverse Kelvin–Helmholtz instability. The Kelvin–Helmholtz in-
stability arises when two superposed fluids flow one over the other with a relative
velocity. It models, for example, the important mechanism for the momentum trans-
fer at the Earth’s magnetopause boundary, which separates the solar wind from the
Earth’s magnetosphere [11]. We approximate the solution of the two-dimensional
periodic and convective models with transverse magnetic field configuration with the
semidiscrete scheme of Kurganov and Tadmor, (2.24)–(2.26), implemented along with
the reconstruction of section 3.1 and the SSP Runge–Kutta solver (3.19). In both
cases, the governing equations are (5.1)–(5.3) are subject to initial conditions

(ρ, vx, vy, vz, Bx, By, Bz, p)
� = (1.0, vx0 + ṽx0, 0, 0, 0, 1.0, 0, 0.5)�,(5.5)

where

vx0 =
v0

2
tanh

(z
a

)
and(5.6)

ṽx0 =

{
−ṽ0 sin ( 2πx

λ ) 1
1+z2 if − λ

2 < x < λ
2

0 otherwise
,(5.7)

with v0 = 2, ṽ0 = −0.008, λ = 5π, and a = 1. Also, the grids are stretched in the
z-direction with a Roberts transformation [11],

z ← H sinh (τz/2H)

sinh (τ/2)
, τ = 6,(5.8)

which renders a denser grid near z = 0, where the effect of the small initial perturba-
tion ṽx0 is more noticeable, and a coarser grid near z = ±H, where little action takes
place. The time step, Δt, is determined according to (5.4) with c = 0.9.
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Fig. 5.2. Results of transverse Kelvin–Helmholtz instability with periodic x-boundary conditions
computed with third-order scheme. Left column uses 72 × 45 points and right column uses 96 × 60
grids, respectively. There are 20 contours for density and pressure, where darker colors indicate
higher values. The density ranges from 0.79 to 1.2, the pressure ranges from 0.32 to 0.71, and the
maximum value for the velocity is 1.25.

In the periodic case, the computational domain is [−L
2 ,

L
2 ] × [0, H], with L = 5π

and H = 10. The free outflow condition is applied at the top boundary, z = H, and the
bottom boundary values are recovered by symmetry, since ρ, p, and By are symmetric,
and vx and vz are antisymmetric under the transformation (x, z) → (−x,−z). In
Figure 5.2, we present solutions at t = 144 with 72× 45 and 96× 60 grid points. The
resolution and accuracy of our results are comparable to those reported in [2] obtained
over two grids of sizes 96 × 96 and a 192 × 192, respectively, with the second-order
staggered central scheme of Jiang and Tadmor; the gas kinetic scheme of Tang and Xu,
[26], using a 200×200 uniform grid; and to those obtained with Jiang and Wu’s fifth-
order WENO scheme [11] over two grids of sizes 48×30 and 96×60, respectively. The
higher computational cost of the third-order reconstruction as compared to that of the
fully discrete second-order scheme we used in [2] is compensated by the smaller number
of grid points needed to resolve accurately the steep gradients that characterize the
solution.

In the convective setup, the initial conditions and perturbation are the same as in
the periodic setup, (5.5)–(5.7). In this case, the free outflow condition is applied also
in the x-direction over the computational domain [−L

2 ,
L
2 ]× [0, H], where H = 20 and

L = 55π with L >> λ—so chosen to allow the excitation to convect freely without
disturbing the x-boundaries. The values of the bottom boundary of the computational
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Fig. 5.3. Solution of convective Kelvin–Helmholtz instability at t = 120, computed with third-
order scheme on a 792×72 grid with c = 0.9. There are 20 contours for density and pressure, where
darker colors indicate higher values. The density ranges from 0.63 to 1.3, the pressure ranges from
0.20 to 0.85, and the maximum value for the velocity is 1.54.

domain, z = 0, are recovered by symmetry as in the periodic configuration. Figures
5.3 and 5.4 display the solution over the region [−50, 50] × [−20, 20] computed with
792× 92 grid points over computational domain at t = 120 and t = 145, respectively.
The values of the bottom half of the solution domain are recovered using the same
symmetry conditions as used to reconstruct the bottom boundary.

5.3. Orszag–Tang MHD turbulence problem. This model considers the
evolution of a compressible Orszag–Tang vortex system. The evolution of the vor-
tex system involves the interaction between several shock waves traveling at various
speed regimes [11, 28], which makes the problem useful to validate the robustness of
numerical schemes. The initial data is given by

ρ(x, z, 0) = γ2, vx(x, z, 0) = − sin z, vz(x, z, 0) = sinx,

p(x, z, 0) = γ,Bx(x, z, 0) = − sin z,Bz(x, z, 0) = sin 2x,

where γ = 5/3. With these data, the RMS values of the velocity and magnetic fields
are both 1; the initial average Mach number is 1; and the average plasma beta is 10/3.
We solve the problem in [0, 2π]× [0, 2π] with periodic boundary conditions in both x-
and z-directions. For this problem we implement the fourth-order reconstruction of
section 3.2 and the SSP Runge–Kutta fourth-order ODE solver (3.20) using a uniform
grid with 192 × 192 points and c = 0.9 in (5.4).

Figures 5.6, 5.7, and 5.8 display the solution of the Orszag–Tang vortex system
at t = 0.5, t = 2, and t = 3, respectively. These simulations were performed with
192 × 192 grid points using the fourth-order, genuinely multidimensional, CWENO
reconstruction of section 3.2 SSP Runge–Kutta solver (3.18)–(3.20). These results
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Fig. 5.4. Solution of convective Kelvin–Helmholtz instability at t = 145, computed with third-
order scheme on a 792 × 72 grid. There are 20 contours for density and pressure, where darker
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0.86, and the maximum value for the velocity is 1.94.
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Fig. 5.5. Time evolution of the total transverse kinetic energy, log( 1
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∫
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zdxdz), integrated
over [−L/2, L/2] × [−H,H], for both periodic and convective Kelvin–Helmholtz instability. The
results for the periodic case with 96 × 96 and 192 × 192 grid points are represented by a dashed and
a dotted curve, respectively. The convective configuration is represented by a solid line.

demonstrate the ability of higher-order central schemes to resolve the shocks that the
vortex system develops while maintaining the simplicity and ease of implementation
typical of this black-box type of finite-difference schemes. We also note that similar re-
sults were obtained with the dimension-by-dimension third-order reconstruction and
the Runge–Kutta solver (3.19) using a 288 × 288 mesh. The improved resolution of
the fourth-order scheme allows us to compute accurate approximations using coarser
grids than those required by lower-order schemes—consult Figures 5.5 and 5.9, for
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to third-order approximation with 288 × 288 grid points and dotted line corresponds to fourth-order
results computed with 192 × 192 gridpoints.

example, thus reducing the computational cost of this type of simulation, an advantage
that is more evident in higher space dimensions.

5.4. Interaction between a strong shock and a high-density cloud. This
problem, introduced in [4], describes the disruption of a high-density cloud by a strong
shock wave. The flow is simulated over the computational domain [0, 1] × [0, 1] with
256 × 256 cells and open boundary conditions. The ratio of specific heats is γ = 5/3
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Fig. 5.10. Third-order solution of the interaction between a strong shock and a high-density
cloud obtained with a 256 × 256 uniform grid at t = 0.06, c = 0.5. Left: density; right: magnetic
field, |B|.

and the initial conditions are given by the two states,

(ρ, vx, vy, vz, Bx, By, Bz, p)
�

=

{
(3.86859, 0, 0, 0, 0,−2.1826182, 2.1826182, 167.34)� for x < 0.6,
(1,−11.2536, 0, 0, 0, 0.56418958, 0.56418958, 1)� for x > 0.6,

(5.9)

separated by a discontinuity parallel to the z-axis at x = 0.6. To the right of the
discontinuity there is a circular cloud of radius 0.15, centered at x = 0.8 and z = 0.5
with density ρ = 10 and p = 1. The solution we present in Figure 5.10 at t = 0.06
confirms the robustness of central schemes for highly superfast flows.

As in the case of the shock tube problem, the presence of discontinuities that affect
only a particular component of the system—in this case a rotational discontinuity in
the y component of the magnetic field—requires the careful choice of the smoothness
indicators used in the calculation of the weights of the nonoscillatory reconstruction so
as to prevent oscillations. Our numerical experiments suggest the use of the average
of the smoothness indicators corresponding to the y-magnetic field and the density to
determine the least oscillatory stencil for the evolution of all the conserved quantities.

6. Conclusions. The numerical schemes presented in this work and the results
obtained with them complement those introduced in [2] and references therein and
confirm the ability of this type of black-box solver to approximate the discontinuous
solutions of ideal MHD equations accurately. The high-order semidiscrete schemes de-
scribed in sections 2 and 3 retain the simplicity and ease of implementation of the fully
discrete staggered methods while adding further advantages. As the limit of the re-
projection of the staggered evolution of the cell averages, the semidiscrete formulation
(2.17) requires only an estimate of the maximum local speeds of propagation to evolve
the solution, avoiding any detailed knowledge of the eigen structure of (1.1)–(1.4) and,
therefore, eliminating the need for Riemann solvers. The efficiency of the semidiscrete
formulation is further enhanced by the larger time step that the implementation over
nonstaggered grids yields and the wide range of reconstruction algorithms and ODE
solvers available for its implementation. The use of these higher-order routines offers
advantages that extend beyond the work presented here, in particular, the ability of
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these schemes to compute accurate solutions over coarser grids and the possibility of
applying the reconstruction algorithm dimension by dimension suggest these as an
attractive alternative for schemes in higher space dimensions.

Our results also suggest a remarkable ability of central schemes to avoid any
instability caused by the failure to satisfy the constraint ∇·B = 0. All the results re-
ported here have been calculated without any additional treatment for this constraint.
Indeed, it can be shown that the magnetic field computed with the second-order stag-
gered fully discrete schemes that lead to the semidiscrete formulation presented here
satisfy the condition

∇ · B n+1

j+ 1
2 ,k+ 1

2
= ∇ · B n

j+ 1
2 ,k+ 1

2
,(6.1)

where B
n

j+ 1
2 ,k+ 1

2
represents the cell average of the nonoscillatory polynomial recon-

struction of the cell averages {B n

j+p,k+q}p,q=0,1.

Animations of the simulations presented in sections 4 and 5 and sample MHD
codes are available online at http://www.math.lsa.umich.edu/∼jbalbas/MHD.
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