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@ conservation of mass:

Pt = -V (PV)a

@ conservation of momentum:
1
(o) = =V - [pw! + (p+ 552)H3x3 - BB],

@ conservation of energy:

e =—V- [(Lp—i—%pvz) v — (va) xB],

v—1
@ solenoidal constraint:
oB 0
[ . B _ . B e
\% 5 V- [Vx(vxB)] = 8t(v )=0

@ equation of state:
L o 1 p
== B2y
e 2pv + 3 + -
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Problem

Computational Challenges

@ large system of equations: 7 equations in one space dimension
and 8 in two and higher dimensions,

@ hyperbolic conservation law: solutions may develop
discontinuities, need shock capturing schemes,

@ If the numerical scheme fails to satisfy V - B = 0, the solution
becomes unstable,

@ The Lorentz force in the momentum flux involves terms
proportional to V - B

1
B-F=B. [v- (§B2H3X3 - BBT)} —0
¢ In non-smooth regions, the order of convergence of numerical

schemes decreases (to first order), the error in V - B grows,
and builds over time.



Problem

What to Do — Discontinuous Solutions

A common approach consists on adapting an existing scheme from
gas dynamics, e.g., Godunov-type scheme (in one space dimension)

Upwind Scheme Central Scheme

a(t+ At) u

J () — g T(u,);;,(.l- Z41)
i (t) T

(1) up 4 () )

requires a Riemann solver to distinguish from evolves solution over staggered grid, no Riemann solver

right- and left-going waves is needed, but staggering requires smaller time step
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What to Do — The Constraint V-B =0

@ Hodge Projection (Brackbill and Barnes, 1980):

@ After updating the solution form t to t + At, the magnetic field, B,
is reprojected onto its divergenge free component, by solving

Ap=-V-B
and writing the new magnetic field as
V:-B°=V -B+A¢p=0

@ This enforces the constraint, but may affect the local behavior of
the solution

@ Eight Wave Formulation (Powell et. al., 1994):

@ A source term proportional to V - B is added to the momentum,
energy and transport equations

o This approach keeps V - B small (to the order of the scheme), but it
follows from the non conservative formulation of MHD equations



Problem

What to Do — The Constraint V-B =0

Constrained Transport (Evans and Hawley, 1988):

Q b. Q
® 1 @

b, M V-b b, + oz
® 1 @

Q b. Q

bx,n+1 _ bx,n _ At
J+3.k T itk Az
bz,n+1 _ pz,n + At
Jok+3 Jkt+3: T Ax

@ This method takes advantage of the
fact that (in the xz-plane)

oB* _ 0Q oB* _ 0Q
ot 0z’ ot Ox
where Q = —v x B is the y component

of the electric field, to evolve a
magnetic field centered at the cell

interfaces as

1 1
nt3 nt3
(Qj+l k+3 Qj+l k—l)
27 2 27 2
n+% n+%
(Qj+l P k+l)
27 2 27 2
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Problem

What to Do — The Constraint V-B =0

@ The magnetic field B"*1 is then recovered as the average

1
Xn+1 x,n+1 x,n+1
Bt = S0 b,
1
zn+1 - zn+ z,n+1
B = (BT b

@ And the divergence is conserved in the sense

x,n+1 x,n+1 z,n+1 4 z,n+1
bk =0k B b
(V . b)n+1 — 2 27 2 2 _ (V . b)n
j k - - j?k
S Ax Az
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Fully-discrete Central Schemes — One Dimension

We begin by integrating the conservation law
u+f(u)x =0

over the control volume [xj, xj+1] x [t", t™"*], this leads the equivalent cell
average formulation
tn+1

—-n+l _ —=n 1
T =0 - ax [, [fW0s0) = Fuls, )] ot

We now proceed in two steps:

1. From the cell averages {i'}, a
non-oscillatory polynomial reconstruction,

fI(X, tn) = ij(xv tn) ’ 1/,7
J

is formed to recover {u , }; where
2
I =[x — Ax/2,% + Ax/2)].
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Fully-discrete Central Schemes — One Dimension

2. Time evolution

@ predict intermediate point values, ujf’+ﬁ, by Taylor expansion or
Runge—Kutta integration.

@ approximate flux integrals with simple quadrature formulae (e.g.,
midpoint or Simpson'’s).
The fully discrete approximation reads:

@ predictor:

@ corrector:

—n 1o, - 1 n+l n+i
oy = E[Uj + ] + g[uj/ — U] - )\[f(ujﬂz ) — f(u 7).

il
Jjt3 J
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Fully-discrete Central Schemes — Two Dimensions

The staggered scheme can be extended to two

space dimensions




Central Schemes

Fully-discrete Central Schemes — Two Dimensions
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space dimensions

@ predictor
u"+%_-n Af-/_ll‘\
- i = Uik T STk T S5 8k
PR where A = &L and At
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Fully-discrete Central Schemes — Two Dimensions

The staggered scheme can be extended to two
space dimensions

@ predictor
1
nt3 _ _n A o
Ui =0k = S h— S8k
. e At _ é£
o we where A = 2 and u = 7

@ corrector

—n+1

1 / ’
o (@}, + @ + o + ol Y+ —(ul  — ul )
/+%,k+% Jok ALk T Tk T L kAL 16 Sk Jtlk

n n 1, , A nt+3 nt+d
1% = £y )} + e Wikt — ) = 5 | FTen) — (42

1 1
\ \ 12 n+§ nt+3
E(uj+1,k — Uiy k1) — 2 |:g(uj+1,k+1) — 817
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Semi-discrete Central Schemes — One Dimension

Modified central differencing (Kurganov and Tadmor, 2000)

@ Using the information provided by the

ﬁ“ e local speed of propagation,
o of
o a1 = max (— )
) 74 J+% UGC(uvfl,ufl)p au( ) )
: ' 74 jts it3
N ¥ where
RN N
I uH_% =PJ+1(X+1) and U1 :pj(xﬁ—%)v
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Semi-discrete Central Schemes — One Dimension

Modified central differencing (Kurganov and Tadmor, 2000)

Eal

@ Using the information provided by the

local speed of propagation,

of
n —
G+ = uec(u'ﬁax )p(au(“))’
Jt+
where

uji% = piaxpy) and u = o),

@ we distinguish between the regions where the solution remains smooth —

no Riemann fans, and regions where discontinuities propagate
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Semi-discrete Central Schemes — One Dimension

@ two sets of evolved values are calculated:
o staggered values over non-smooth regions {v'vj’:l1
2
@ non-staggered evolution over smooth regions {|7vj"+1}
@ the values in these two sets can be interpolated and reprojected as
cell averages {UJ’T’H} onto the original non-staggered grid (Jiang et.

al., 1998)
@ or one can take the limit as At — 0 to arrive at the semi-discrete
formulation:
d_ o Hi(O—H (1)
EUJ(t) - Ax ’
f(uj*l(t))+f(u,’l(f)) a, 1(t) _
@ where Hj+%(t) =7 2 I [Uﬁ%(t) - Uj+%(t)]



Central Schemes

Semi-discrete Central Schemes — Two Dimensions

Similarly, in two space dimensions, we apply:

1 Ak
B
)
R
Zpo1

T Ak-1

Tj-1 T,% T l,,% Tjt1

J J
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Semi-discrete Central Schemes — Two Dimensions

Similarly, in two space dimensions, we apply:

Zk+1
Fhth @ staggered evolution over red cells
2k . . . .
@ staggered evolution in one direction
Zk’%

over green strips
k-1

@ non-staggered evolution over D; x, and

Tj-1 {l“j,% T 1]*% Tjt1

@ reprojecting over original cells and taking the limit as At — 0, we
arrive at:

d Mg —HEL (0 HE (0 — HE ()

Euj’k(t) - Ax B Az
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Central Schemes — Reconstruction

Examples of non-oscillatory reconstructions:

@ second order minmod reconstruction (Van Leer, 1979)
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Central Schemes — Reconstruction

Examples of non-oscillatory reconstructions:

@ second order minmod reconstruction (Van Leer, 1979)

(x=x) , \ (z—2z)
Ax * Uk Az

Pik(x,2) = T + uj

@ third order CWENO reconstruction (Kurganov and Levy, 2000)
direction-by-direction

]

Pik(x, 2k) = wiPL(x, zi)+wePe(x, zi)+we Pr(x; 2c), x € [x_1, %41
@ fourth order genuinely two-dimensional reconstruction (Levy et. al.,
2002):
1

pj,k(xaz): Z Wr,sPr,s(XaZ)

r,s=—1
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Semi-discrete Central Schemes — Time Evolution

Solution evolved with SSP RK Schemes (Shu, 1988, S. Gottlieb et.

al., 2001),
Example: Third-order scheme

uB = u(o)—l—AtC[u(o)],

u® = Wy A"L( 3C[u<0>]+ Clu™)),

gtto= 08 = (2)_|_ o ( Clu®] = C[uM®] +8 C[u?)]),
where

Ho (D) = H o (w(®)) L (w(D) = HE, 4 (w(2)
Clw(r)] = -2 e — e
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Central Schemes — Solenoidal Constraint

How do we enforce V - B = 07
@ We don’t do anything!

@ Numerical results indicate central schemes maintain V- B small (~ 1071)

@ Also, using the constraint transport approach and notation, it can be
shown that the magnetic field, as evolved by the second order
fully-discrete staggered scheme (JT), can be written as

x,n+1 _ 1( x,n+1 + x,n+1 )
Jtgkty T 2 \Thkty | TiHLktg
with
bx,n+1 _ Z‘)x,n _ At (QIH—% _ n+% )
Jiktg T ikt Az ikt j+1,k+1 )0

. . 1
and a similar expression for B> |
Jt+35.kt+5
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Central Schemes — Solenoidal Constraint

This result allows us to write

. R\+1 _ . RN
(v Bj+%,k+§ =V B)j+§,k+§

where BJ’.’_Irl P is the reconstructed cell average of the magnetic
27 2

field at the vertex (j+ 1, k + 3) (not the cell center) at time t = "



Numerical Results

Brio-Wu Rotated Shock Tube

@ One-dimensional Riemann problem with initial states given by

(1,0,0,0,0.75,0,1,1) " for x <0

'x 'z BX7B 7827 T =
(P, v, v vz, Bx, By, Bz, p) { (0.125,0,0,0,0.75,0, —1,0.1) T for x > 0

@ Solved over a two dimensional domain with the direction of the flow
rotated 45°

@ Solution computed up to t = 0.2, x € [—1, 1], with 600 x 600 grid points,
v =2.



Numerical Results

Brio-Wu Rotated Shock Tube

Solution at t = 0.2

From top to bottom and from left to right: density, transverse velocity, transverse magnetic filed, parallel magnetic
field, and pressure. The divergence of the reconstructed polynomial ~ 10713, Results computed with Jacobian

free formulation of 2nd order JT scheme.



Numerical Results

Orszag-Tang Vortex System

@ This test problem considers the evolution of a compressible
vortex system with several interacting shock waves

@ The initial data is given by

p(X,Z,O):’Yz, VX(vavo):_Sinz7 VZ(X7270):SinX7
p(x,z,0) =, Bx(x,z,0) = —sinz, B;(x,z,0)=sin2x,

where 7 =5/3.

@ The problem is solved in [0,27] x [0, 27], with periodic
boundary conditions in both x- and z-directions using a
uniform grid with 288 x 288 cells. Results computed with 3rd
order semi-discrete scheme, using Kurganov and Levy's
CWENO reconstruction.
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Solution at t = 1.0

R AR A
A

Orszag—-Tang MHD turbulence problem with a 288 x 288 uniform grid. There are 16 contours for density (left) and

pressure (second from left). Red-high value, blue-low value. Second from the right: velocity field and right:

magnetic filed.
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Solution at t = 3.0

Orszag—-Tang MHD turbulence problem with a 288 x 288 uniform grid. There are 16 contours for density (left) and

pressure (second from left). Red-high value, blue-low value. Second from the right: velocity field and right:

magnetic filed.



Numerical Results

Shock — Cloud Interaction

@ Disruption of a high density cloud by a strong shock

@ Initial conditions

T (3.86,0,0,0,0, —2.18,2.18,167.34) T for x < 0.6
Bx, By, B -
(P, v, vy> ves B, By, Bz, p) { (1, —11.25,0,0,0, 0.564, 0.564, 1) | for x > 0.6

high density cloud — p =10, p = 1 — centered at x = 0.8, y = 0.5, with
radius 0.15,

@ Solved up to t = 0.06, (x, z) € [0,1] x [0, 1], with 256 x 256 grid points,
CFL number 0.5 and v = 5/3



Numerical Results

Shock — Cloud Interaction

i

Solution of shock-cloud interaction, left: density at t=0, center: density at t=0.06, right: magnetic field lines at

t=0.06. Results compputed with 3rd order semi-discrete scheme.



