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γ − 1
p +
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v −
(

v × B
)

× B
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,

solenoidal constraint:

∇ ·
∂B

∂t
= ∇ · [∇× (v × B)] ⇒

∂

∂t
(∇ · B) = 0

equation of state:

e =
1

2
ρv2 +

1

2
B2 +

p

γ − 1
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Computational Challenges

large system of equations: 7 equations in one space dimension
and 8 in two and higher dimensions,

hyperbolic conservation law: solutions may develop
discontinuities, need shock capturing schemes,

If the numerical scheme fails to satisfy ∇ · B = 0, the solution
becomes unstable,

The Lorentz force in the momentum flux involves terms
proportional to ∇ ·B

B · F = B ·
[

∇ ·
(1

2
B2

I3×3 − BB⊤

)]

= 0

In non-smooth regions, the order of convergence of numerical
schemes decreases (to first order), the error in ∇ ·B grows,
and builds over time.



Intro Problem Central Schemes Numerical Results

What to Do – Discontinuous Solutions

A common approach consists on adapting an existing scheme from

gas dynamics, e.g., Godunov-type scheme (in one space dimension)

Upwind Scheme Central Scheme

xj−1 xj xj+1

ūj+1(t)

u

x

ūj−1(t)

ūj(t + ∆t)

ūj(t)

fj−1 fj

xj+ 12xj xj+1 x�unj + (ux)nj (x� xj)

u �un+1j+ 12
�unj+1 + (ux)nj+1(x� xj+1)

requires a Riemann solver to distinguish from

right- and left-going waves

evolves solution over staggered grid, no Riemann solver

is needed, but staggering requires smaller time step
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What to Do – The Constraint ∇ ·B = 0

Hodge Projection (Brackbill and Barnes, 1980):

After updating the solution form t to t + ∆t, the magnetic field, B,
is reprojected onto its divergenge free component, by solving

∆φ = −∇ · B

and writing the new magnetic field as

∇ · Bc = ∇ · B + ∆φ = 0

This enforces the constraint, but may affect the local behavior of

the solution

Eight Wave Formulation (Powell et. al., 1994):

A source term proportional to ∇ · B is added to the momentum,

energy and transport equations

This approach keeps ∇ ·B small (to the order of the scheme), but it

follows from the non conservative formulation of MHD equations
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What to Do – The Constraint ∇ ·B = 0

Constrained Transport (Evans and Hawley, 1988):

This method takes advantage of the
fact that (in the xz-plane)

∂Bx

∂t
= −

∂Ω

∂z
,

∂Bz

∂t
=

∂Ω

∂x

where Ω = −v×B is the y component

of the electric field, to evolve a

magnetic field centered at the cell

interfaces as

b
x,n+1

j+ 1
2
,k

= b
x,n

j+ 1
2
,k

−
∆t

∆z

“

Ω
n+ 1

2

j+ 1
2
,k+ 1

2

− Ω
n+ 1

2

j+ 1
2
,k− 1

2

”

b
z,n+1

j,k+ 1
2

= b
z,n

j,k+ 1
2

+
∆t

∆x

“

Ω
n+ 1

2

j+ 1
2
,k+ 1

2

− Ω
n+ 1

2

j− 1
2
,k+ 1

2

”



Intro Problem Central Schemes Numerical Results

What to Do – The Constraint ∇ ·B = 0

The magnetic field Bn+1 is then recovered as the average
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What to Do – The Constraint ∇ ·B = 0

The magnetic field Bn+1 is then recovered as the average

B
x ,n+1
j ,k =

1

2
(bx ,n+1

j+ 1
2
,k

+ b
x ,n+1

j− 1
2
,k

),

B
z ,n+1
j ,k =

1

2
(bz ,n+1

j ,k+ 1
2

+ b
z ,n+1

j ,k− 1
2

)

And the divergence is conserved in the sense

(∇ · b)n+1
j ,k =

b
x ,n+1

j+ 1
2
,k
− b

x ,n+1

j− 1
2
,k

∆x
+

b
z ,n+1

j ,k+ 1
2

− b
z ,n+1

j ,k− 1
2

∆z
= (∇ · b)nj ,k
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We begin by integrating the conservation law

1

∆x

Z tn+1

tn

Z x+ ∆x
2

x− ∆x
2

ut dt dx = −
1

∆x

Z tn+1

tn

Z x+ ∆x
2

x− ∆x
2

f (u)x dt dx

over the control volume [xj , xj+ 1
2
] × [tn, tn+1],
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dt
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We begin by integrating the conservation law

ut + f (u)x = 0

over the control volume [xj , xj+1] × [tn, tn+1], this leads the equivalent cell
average formulation

ū
n+1

j+ 1
2

= ū
n

j+ 1
2
−

1

∆x

Z tn+1

tn

h

f (u(xj+1, t)) − f (u(xj , t))
i

dt

We now proceed in two steps:

xj+ 12xj xj+1 x�unj + (ux)nj (x� xj)

u �un+1j+ 12
�unj+1 + (ux)nj+1(x� xj+1)

1. From the cell averages {ūn
j }, a

non-oscillatory polynomial reconstruction,

ũ(x , tn) =
X

j

pj(x , tn) · 1Ij ,

is formed to recover {ūn

j+ 1
2
}; where

Ij = [xj − ∆x/2, xj + ∆x/2].
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predict intermediate point values, u
n+β
j , by Taylor expansion or

Runge–Kutta integration.

approximate flux integrals with simple quadrature formulae (e.g.,

midpoint or Simpson’s).

The fully discrete approximation reads:

predictor:

u
n+ 1

2
j := ū

n
j −

λ

2
f
′
j , λ =

∆t

∆x
,

corrector:

ū
n+1

j+ 1
2

=
1

2
[ūn

j + ū
n
j+1] +

1

8
[u′

j − u
′
j+1] − λ

ˆ

f (u
n+ 1

2
j+1 ) − f (u

n+ 1
2

j )
˜

.
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corrector

ū
n+1

j+ 1
2

,k+ 1
2

=
1

4
(ū

n
j,k + ū

n
j+1,k + ū

n
j,k+1 + ū

n
j+1,k+1) +

1

16
(u

′

j,k − u
′

j+1,k )

−
λ

2

"

f (u
n+ 1

2
j+1,k

) − f (u
n+ 1

2
j,k

)

#

+
1

16
(u

′

j,k+1 − u
′

j+1,k+1) −
λ

2

"

f (u
n+ 1

2
j+1,k+1

) − f (u
n+ 1

2
j,k+1

)

#

+
1

16
(u

8

j,k − u
8

j,k+1) −
µ

2

"

g(u
n+ 1

2
j,k+1

) − g(u
n+ 1

2
j,k

)

#

+
1

16
(u

8

j+1,k − u
8

j+1,k+1) −
µ

2

"

g(u
n+ 1

2
j+1,k+1

) − g(u
n+ 1

2
j+1,k

)

#
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Semi-discrete Central Schemes – One Dimension

Modified central differencing (Kurganov and Tadmor, 2000)

u �un+1j
�wn+1j
�unj�unj�1

�wn+1j+1
�wn+1j�1 �wn+1j+ 12

xnj� 32 ;r xnj� 12 ;l xnj� 12 ;r xnj+ 12 ;rxnj+ 12 ;l xnj+ 32 ;l
�unj+1�wn+1j� 12

xj�1 xj� 12 xj xj+ 12 xj+1 x

Using the information provided by the
local speed of propagation,

a
n

j+ 1
2

= max
u∈C(u−

j+ 1
2

,u+

j+ 1
2

)

ρ
“ ∂f

∂u
(u)

”

,

where

u
+

j+ 1
2

:= pj+1(xj+ 1
2
) and u

−

j+ 1
2

:= pj(xj+ 1
2
),



Intro Problem Central Schemes Numerical Results

Semi-discrete Central Schemes – One Dimension

Modified central differencing (Kurganov and Tadmor, 2000)

u �un+1j
�wn+1j
�unj�unj�1

�wn+1j+1
�wn+1j�1 �wn+1j+ 12

xnj� 32 ;r xnj� 12 ;l xnj� 12 ;r xnj+ 12 ;rxnj+ 12 ;l xnj+ 32 ;l
�unj+1�wn+1j� 12

xj�1 xj� 12 xj xj+ 12 xj+1 x

Using the information provided by the
local speed of propagation,

a
n

j+ 1
2

= max
u∈C(u−

j+ 1
2

,u+

j+ 1
2

)

ρ
“ ∂f

∂u
(u)

”

,

where

u
+

j+ 1
2

:= pj+1(xj+ 1
2
) and u

−

j+ 1
2

:= pj(xj+ 1
2
),

we distinguish between the regions where the solution remains smooth –

no Riemann fans, and regions where discontinuities propagate
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ūj(t) = lim

∆t→0
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Semi-discrete Central Schemes – One Dimension

two sets of evolved values are calculated:

staggered values over non-smooth regions {w̄n+1
j+ 1

2

}

non-staggered evolution over smooth regions {w̄n+1
j }

the values in these two sets can be interpolated and reprojected as

cell averages {ūn+1
j } onto the original non-staggered grid (Jiang et.

al., 1998)

or one can take the limit as ∆t → 0 to arrive at the semi-discrete
formulation:

d

dt
ūj(t) = −

Hj+ 1
2
(t) − Hj− 1

2
(t)

∆x
,

where Hj+ 1
2
(t) :=

f (u+

j+ 1
2

(t))+f (u−

j+ 1
2

(t))

2 −
a

j+ 1
2
(t)

2

[

u+
j+ 1

2

(t) − u−

j+ 1
2

(t)
]



Intro Problem Central Schemes Numerical Results

Semi-discrete Central Schemes – Two Dimensions

xj+ 1

2

xj+1xj−1

Djk

xjxj− 1

2

zk+1

zk−1

zk− 1

2

zk

zk+
1

2

1

Similarly, in two space dimensions, we apply:
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staggered evolution over red cells
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Semi-discrete Central Schemes – Two Dimensions

xj+ 1

2

xj+1xj−1

Djk

xjxj− 1

2

zk+1

zk−1

zk− 1

2

zk

zk+
1

2

1

Similarly, in two space dimensions, we apply:

staggered evolution over red cells

staggered evolution in one direction

over green strips

non-staggered evolution over Dj,k , and

reprojecting over original cells and taking the limit as ∆t → 0, we
arrive at:

d

dt
ūj,k (t) = −

Hx
j+ 1

2 ,k
(t) − Hx

j− 1
2 ,k

(t)

∆x
−

Hz
j,k+ 1

2

(t) − Hz
j,k− 1

2

(t)

∆z
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Central Schemes – Reconstruction

Examples of non-oscillatory reconstructions:

second order minmod reconstruction (Van Leer, 1979)

pj,k (x , z) = ūn
j,k + u′

j,k

(x − xj)

∆x
+ u8

j,k

(z − zk)

∆z
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Central Schemes – Reconstruction

Examples of non-oscillatory reconstructions:

second order minmod reconstruction (Van Leer, 1979)

pj,k (x , z) = ūn
j,k + u′

j,k

(x − xj)

∆x
+ u8

j,k

(z − zk)

∆z

third order CWENO reconstruction (Kurganov and Levy, 2000)
direction-by-direction

pj,k (x , zk) = wLPL(x , zk)+wCPC(x , zk )+wRPR(x , zk), x ∈ [xj− 1
2
, xj+ 1

2
]

fourth order genuinely two-dimensional reconstruction (Levy et. al.,
2002):

pj,k(x , z) =

1
∑

r,s=−1

wr,sPr,s(x , z)
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Semi-discrete Central Schemes – Time Evolution

Solution evolved with SSP RK Schemes (Shu, 1988, S. Gottlieb et.
al., 2001),

Example: Third-order scheme

u(1) = u(0) + ∆tC [u(0)],

u(2) = u(1) +
∆t

4
(−3C [u(0)] + C [u(1)]),

un+1 := u(3) = u(2) +
∆t

12
(−C [u(0)] − C [u(1)] + 8 C [u(2)]),

where

C [w(t)] = −
Hx

j+ 1
2
,k

(w(t)) − Hx

j− 1
2
,k

(w(t))

∆x
−

Hz

j,k+ 1
2
(w(t)) − Hz

j,k− 1
2
(w(t))

∆z
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Central Schemes – Solenoidal Constraint

How do we enforce ∇ · B = 0?

We don’t do anything!

Numerical results indicate central schemes maintain ∇·B small (∼ 10−13)

Also, using the constraint transport approach and notation, it can be
shown that the magnetic field, as evolved by the second order
fully-discrete staggered scheme (JT), can be written as

B
x,n+1

j+ 1
2
,k+ 1

2

=
1

2

`

b
x,n+1

j,k+ 1
2

+ b
x,n+1

j+1,k+ 1
2

´

with

b
x,n+1

j,k+ 1
2

= b̃
x,n

j,k+ 1
2

−
∆t

∆z

“

Ω
n+ 1

2

j,k+ 1
2

− Ω
n+ 1

2

j+1,k+ 1
2

”

,

and a similar expression for B
z,n+1

j+ 1
2
,k+ 1

2
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Central Schemes – Solenoidal Constraint

This result allows us to write

(∇ · B̄)n+1
j+ 1

2
,k+ 1

2

= (∇ · B̄)n
j+ 1

2
,k+ 1

2

where B̄n
j+ 1

2
,k+ 1

2

is the reconstructed cell average of the magnetic

field at the vertex (j + 1
2 , k + 1

2) (not the cell center) at time t = tn
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Brio-Wu Rotated Shock Tube

One-dimensional Riemann problem with initial states given by

(ρ, vx , vy , vz , Bx , By , Bz , p)⊤ =



(1, 0, 0, 0, 0.75, 0, 1, 1)⊤ for x < 0

(0.125, 0, 0, 0, 0.75, 0,−1, 0.1)⊤ for x > 0

Solved over a two dimensional domain with the direction of the flow
rotated 45◦

Solution computed up to t = 0.2, x ∈ [−1, 1], with 600× 600 grid points,

γ = 2.
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Brio-Wu Rotated Shock Tube

Solution at t = 0.2
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From top to bottom and from left to right: density, transverse velocity, transverse magnetic filed, parallel magnetic

field, and pressure. The divergence of the reconstructed polynomial ∼ 10−13 . Results computed with Jacobian

free formulation of 2nd order JT scheme.
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Orszag-Tang Vortex System

This test problem considers the evolution of a compressible
vortex system with several interacting shock waves

The initial data is given by

ρ(x , z , 0) = γ2, vx (x , y , 0) = − sin z , vz (x , z , 0) = sin x ,

p(x , z , 0) = γ, Bx (x , z , 0) = − sin z , Bz (x , z , 0) = sin 2x ,

where γ = 5/3.

The problem is solved in [0, 2π] × [0, 2π], with periodic
boundary conditions in both x- and z-directions using a
uniform grid with 288 × 288 cells. Results computed with 3rd
order semi-discrete scheme, using Kurganov and Levy’s
CWENO reconstruction.
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Orszag–Tang Vortex System

Solution at t = 1.0
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Orszag–Tang MHD turbulence problem with a 288 × 288 uniform grid. There are 16 contours for density (left) and

pressure (second from left). Red–high value, blue–low value. Second from the right: velocity field and right:

magnetic filed.
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Orszag–Tang Vortex System

Solution at t = 3.0
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Orszag–Tang MHD turbulence problem with a 288 × 288 uniform grid. There are 16 contours for density (left) and

pressure (second from left). Red–high value, blue–low value. Second from the right: velocity field and right:

magnetic filed.
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Shock – Cloud Interaction

Disruption of a high density cloud by a strong shock

Initial conditions

(ρ, vx , vy , vz , Bx , By , Bz , p)
⊤

=

(

(3.86, 0, 0, 0, 0, −2.18, 2.18, 167.34)⊤ for x < 0.6

(1, −11.25, 0, 0, 0, 0.564, 0.564, 1)⊤ for x > 0.6

high density cloud – ρ = 10, p = 1 – centered at x = 0.8, y = 0.5, with

radius 0.15,

Solved up to t = 0.06, (x , z) ∈ [0, 1] × [0, 1], with 256 × 256 grid points,

CFL number 0.5 and γ = 5/3
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Shock – Cloud Interaction

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Solution of shock-cloud interaction, left: density at t=0, center: density at t=0.06, right: magnetic field lines at

t=0.06. Results compputed with 3rd order semi-discrete scheme.


