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Intro

Outline

@ central schemes for hyperbolic conservation laws: overview
and implementation

@ central schemes and MHD equations: the V- B = 0 constraint

@ some examples: Euler equations of Gas Dynamics and Ideal
MHD equations



Intro

Hyperbolic Conservation Laws

We consider hyperbolic conservation laws in general
In one space dimension:
ur + f(u)x =0,
and two space dimensions:
ue + Fu) + (), =0,
with some initial data

U(Xuyu 0) = UO(Xu_y)7

where the Jacobian matrices 8

eigen values.

f and 8“” are diagonizable with real



Intro

Challenges

@ discontinuous solutions: even when the initial conditions are
smooth, they evolve into steep gradients
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Intro

Challenges

@ discontinuous solutions: even when the initial conditions are
smooth, they evolve into steep gradients

@ onset of spurious oscillations

@ additional challenges may come from the specific problem,
e.g., for MHD equations, we need to solve a large system with
an additional constraint

@ we seek efficient numerical schemes capable of handling these
challenges



Central Schemes

What do central schemes offer?

simplicity: no Riemann solvers

Upwind Scheme

W, + At)

4tk

)

requires a Riemann solver to distinguish from

right- and left-going waves

Central Scheme

evolves solution over staggered grid, no Riemann solver

is needed, but staggering requires smaller time step
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Central Schemes

More Advantages

ease of implementation: no dimensional splitting in
multidimensional models

straight forward extension to higher space dimensions

highly adaptable implementation: minor changes required to
solve different problems

easy to parallelize: sequential function calls — concurrent
function calls
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Fully-discrete Central Schemes — One Dimension

We begin by integrating the conservation law

ur+ f(u)x =0
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Fully-discrete Central Schemes — One Dimension

We begin by integrating the conservation law

1 ,tn—l )XJF XJrAx
A_/ / deth———/ / dth
X Jn 'X7A2

: n .n+l
over the control volume [XJ,XH%] x [t "],
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Fully-discrete Central Schemes — One Dimension

We begin by integrating the conservation law
u+ f(u)x =0

over the control volume [x;, xj+1] x [t", t™!], this leads the equivalent cell
average formulation

¢+l

—n —-n 1
= - ar [ [ )~ a0 o

We now proceed in two steps:
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Fully-discrete Central Schemes — One Dimension

We begin by integrating the conservation law
u+f(u)x =0

over the control volume [xj, xj+1] x [t", t™"*], this leads the equivalent cell
average formulation
tn+1

—-n+l _ —=n 1
T =0 - ax [, [fW0s0) = Fuls, )] ot

We now proceed in two steps:

1. From the cell averages {i'}, a
non-oscillatory polynomial reconstruction,

fI(X, tn) = ij(xv tn) ’ 1/,7
J

is formed to recover {u , }; where
2
I =[x — Ax/2,% + Ax/2)].
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2. Time evolution

@ predict intermediate point values, ujf’+ﬁ, by Taylor expansion or
Runge—Kutta integration.

@ approximate flux integrals with simple quadrature formulae (e.g.,
midpoint or Simpson'’s).
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@ predictor:
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Fully-discrete Central Schemes — One Dimension

2. Time evolution

@ predict intermediate point values, ujf’+ﬁ, by Taylor expansion or
Runge—Kutta integration.

@ approximate flux integrals with simple quadrature formulae (e.g.,
midpoint or Simpson'’s).
The fully discrete approximation reads:

@ predictor:

@ corrector:

—n 1o, - 1 n+l n+i
oy = E[Uj + ] + g[uj/ — U] - )\[f(ujﬂz ) — f(u 7).

il
Jjt3 J
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Fully-discrete Central Schemes — Two Dimensions

The staggered scheme can be extended to two

space dimensions
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Fully-discrete Central Schemes — Two Dimensions

The staggered scheme can be extended to two
space dimensions

@ predictor
u"+%_-n )‘f—/_pf\
- i = Uik T STk T S5 8k
PR where A = &L and At
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Fully-discrete Central Schemes — Two Dimensions

The staggered scheme can be extended to two
space dimensions

@ predictor
1
nt3 _ _n A o
Ui =0k = S h— S8k
. e At _ é£
o we where A = 2 and u = 7

@ corrector

—n+1

1 / ’
o (@}, + @ + o + ol Y+ —(ul  — ul )
/+%,k+% Jok ALk T Tk T L kAL 16 Sk Jtlk

n n 1, , A nt+3 nt+d
Flujyale) = oy )} + e Wikt — ) = 5 | FTen) — (42

1 1
\ \ 12 n+§ nt+3
E(“jﬂ,k = U1 kt1) T E) |:g(uj+1,k+1) - g(uj+1,k)



Central Schemes

Semi-discrete Central Schemes — One Dimension

Modified central differencing (Kurganov and Tadmor, 2000)

@ Using the information provided by the

ﬁ“ e local speed of propagation,
o of
o a1 = max (— )
) 74 J+% UGC(uvfl,ufl)p au( ) )
: ' 74 jts it3
N ¥ where
RN N
I uH_% =PJ+1(X+1) and U1 :pj(xﬁ—%)v
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Semi-discrete Central Schemes — One Dimension

Modified central differencing (Kurganov and Tadmor, 2000)

Eal

@ Using the information provided by the

local speed of propagation,

of
n —
G+ = uec(u'ﬁax )p(au(“))’
Jt+
where

uji% = piaxpy) and u = o),

@ we distinguish between the regions where the solution remains smooth —

no Riemann fans, and regions where discontinuities propagate
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Semi-discrete Central Schemes — One Dimension
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Semi-discrete Central Schemes — One Dimension

@ two sets of evolved values are calculated:
o staggered values over non-smooth regions {v'vj’fl1
2
@ non-staggered evolution over smooth regions {|7vj”+1}
@ the values in these two sets can be interpolated and reprojected as

cell averages {Djf’“} onto the original non-staggered grid (Jiang et.

al., 1998)
@ or one can take the limit as At — 0 to arrive at the semi-discrete
formulation:
—n+1 -
d_ ot —ar Hi 1 (t) = Hi_1 (1)
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Semi-discrete Central Schemes — One Dimension

@ two sets of evolved values are calculated:
o staggered values over non-smooth regions {v'vj’:l1
2
@ non-staggered evolution over smooth regions {|7vj"+1}
@ the values in these two sets can be interpolated and reprojected as
cell averages {UJ’-”'H} onto the original non-staggered grid (Jiang et.

al., 1998)
@ or one can take the limit as At — 0 to arrive at the semi-discrete
formulation:
d_ Hiy1(t) = H;_1(1)
e J(t) = - )
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Semi-discrete Central Schemes — One Dimension

@ two sets of evolved values are calculated:
o staggered values over non-smooth regions {v'vj’:l1
2
@ non-staggered evolution over smooth regions {|7vj"+1}
@ the values in these two sets can be interpolated and reprojected as
cell averages {UJ’-”'H} onto the original non-staggered grid (Jiang et.

al., 1998)
@ or one can take the limit as At — 0 to arrive at the semi-discrete
formulation:
d_ o Hi(O—H (1)
EUJ(t) - Ax ’
f(uj*l(t))+f(u,’l(f)) a, 1(t) _
@ where Hj+%(t) =7 2 I [Uﬁ%(t) - Uj+%(t)]
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Semi-discrete Central Schemes — Two Dimensions

Similarly, in two space dimensions, we apply:

1 Ak
Zp.
4}
1 2
Zk’%

T Ak-1

Tj-1 T,% T l,,% Tjt1

J J
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Semi-discrete Central Schemes — Two Dimensions

Similarly, in two space dimensions, we apply:

1 Ak

Fhth @ staggered evolution over red cells
1 %

Zk—%

T Ak-1

Tj-1 T,% T l,,% Tjt1

J J
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Semi-discrete Central Schemes — Two Dimensions

Similarly, in two space dimensions, we apply:

1 Ak

Fhth @ staggered evolution over red cells
1 %k . . . .
@ staggered evolution in one direction
Zk—% .

: over green strips
7 Rk-1

Tj-1 T,% T l,,% Tjt1

J J
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Semi-discrete Central Schemes — Two Dimensions

Similarly, in two space dimensions, we apply:

Zk+1

Fhth @ staggered evolution over red cells

2k . . . .
@ staggered evolution in one direction
Zk—% .

’ over green strips
Zk-1

@ non-staggered evolution over D; x, and
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Semi-discrete Central Schemes — Two Dimensions

Similarly, in two space dimensions, we apply:

Zk+1

Fhth @ staggered evolution over red cells
2k . . . .
@ staggered evolution in one direction
Zk—% .

: over green strips
Zk-1

@ non-staggered evolution over D; x, and

Tj-1 {l“j,% T 1]*% Tjt1

@ reprojecting over original cells and taking the limit as At — 0, we
arrive at:
d H:_l k(t) - H* , k(t) sz,k_,_%(t) - H'zk_l(t)

- J 29 J_§7

—ui(t) = — _
g () Ax Az
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Central Schemes — Reconstruction

Example of a non-oscillatory reconstruction:
second order minmod reconstruction (Van Leer, 1979)

_ (x —x) (z — z)
Pik(x2) = Wi+ o= 25+ Ui
where
1
u'(j, k) = minmod(aA x o}y EAO’X 0l oA Tl ),
Nop H =n 1 =n =n
u'(j, k) = minmod(al ; T, EAO’Z o, A, Ty ),

with 1 < a < 2, and

min x;, if x; >0 Vi
,Xn) = 4 maxxj, if x; <0 Vi

minmod(x1, xa, . . .
0 otherways
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Semi-discrete Central Schemes — Time Evolution

Solution evolved with SSP RK Schemes (Gottlieb et. al., 2001),

Example: Third-order scheme

u = O 4 A,

u® = (1>+At( 3C[u ] + C[uD)),

a = = <2>+A( Cu) — Clu] + 8 C[u@]),
where
o) = 2D~ H () Hi ()~ H ()

Ax Az



Central Shcemes and MHD

Ideal MHD Equations

@ conservation of mass:

pr ==V (pv),
@ conservation of momentum:

1

(o) = =V - [pw! + (p+ 552)H3x3 - BB'],

@ conservation of energy:
1
e =—-V- [(—7 p—i——pv2) v — (v X B) X B],
v—1 2
@ transport equation:

B: =V x (vxB)



Central Shcemes and MHD
Ideal MHD Equations

@ conservation of mass:

Pt = -V (pV),

@ conservation of momentum:

1
(pv)e = =V - [pw! + (p + 582)H3X3 - BB'],

@ conservation of energy:

1
e=—-V- [(Llp—l— 5PV ) v — (vx B) X B],
@ solenoidal constraint:

oB

0
6t—V[V><(v><B)] = E(V-B):O

V-
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Solenoidal Constraint

@ Numerical results indicate central schemes maintain V- B
small



Central Shcemes and MHD

Solenoidal Constraint

@ Numerical results indicate central schemes maintain V- B
small

@ Also, using the constraint transport approach and notation
(Evans and Hawley, 1988), it can be shown that the magnetic
field, as evolved by the second order fully-discrete staggered
scheme (JT), can be written as

x,n+1 _1 bx,n-l—l bx,n+1
Jt3.k+3 2( Jok+3 t j+1,k+§)
with

x,n+1 7Xx,n At n+1 nti
bl = (27,2 2 ),

Skt T Tkt Az Tkt Lkt

- . 1
and a similar expression for B> |
Jt5.k+5



Numerical Results

MHD: Brio-Wu Rotated Shock Tube

@ One-dimensional Riemann problem with initial states given by

(1,0,0,0,0.75,0,1,1) " for x < 0

T p—
(p; vx; vy, vz, B, By, Bz, p) _{ (0.125,0,0,0,0.75,0, —1,0.1) T for x > 0

@ Solved over a two dimensional domain with the direction of the flow
rotated 45°

@ Solution computed up to t = 0.2, x € [—1, 1], with 600 x 600 grid points,
¥ =2.



Numerical Results

MHD: Brio-Wu Rotated Shock Tube

Solution at t = 0.2

From top to bottom and from left to right: density, transverse velocity, transverse magnetic filed, parallel magnetic
field, and pressure. The divergence of the reconstructed polynomial ~ 10713, Results computed with Jacobian

free formulation of 2nd order JT scheme.
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MHD: Shock — Cloud Interaction

@ Disruption of a high density cloud by a strong shock
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MHD: Shock — Cloud Interaction

@ Disruption of a high density cloud by a strong shock

@ Initial conditions

(3.86,0,0,0,0, —2.18,2.18,167.34) T for x < 0.6

-
By, By, B =
(Ps vxs vy V25 Bx, By, Bz, p) { (1, —11.25,0,0,0,0.564, 0.564, 1) for x > 0.6

high density cloud — p =10, p = 1 — centered at x = 0.8, y = 0.5, with
radius 0.15,



Numerical Results

MHD: Shock — Cloud Interaction

@ Disruption of a high density cloud by a strong shock

@ Initial conditions

T (3.86,0,0,0,0, —2.18,2.18,167.34) T for x < 0.6
Bx, By, B -
(P, v, vy> ves B, By, Bz, p) { (1, —11.25,0,0,0, 0.564, 0.564, 1) | for x > 0.6

high density cloud — p =10, p = 1 — centered at x = 0.8, y = 0.5, with
radius 0.15,

@ Solved up to t = 0.06, (x, z) € [0,1] x [0, 1], with 256 x 256 grid points,
CFL number 0.5 and v = 5/3



Numerical Results

MHD: Shock — Cloud Interaction

Solution of shock-cloud interaction, left: density at t=0, center: density at t=0.06, right: magnetic field lines at

t=0.06. Results compputed with 3rd order semi-discrete scheme.



Numerical Results

Euler Equations of Gas Dynamics

@ conservation of mass:

Pt = -V (pv)a

@ conservation of momentum:

(pv)e = =V - (pw | + p I353),

@ conservation of energy:

e (e 3o)

@ equation of state:

p=(-1)fe50v?]



Numerical Results

Euler Equations: 2d Riemann Problem

1

‘ﬁ | :i

Solution of a 2d Riemann problem, left: density at t=0 and initial conditions, center: density at t=0.3
(S51 5S35 » S35 » Si1 ). right: pressure at t=0.3. Results compputed with 3rd order semi-discrete scheme using

400 X 400 grid cells.
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