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Outline

central schemes for hyperbolic conservation laws: overview
and implementation

central schemes and MHD equations: the ∇ ·B = 0 constraint

some examples: Euler equations of Gas Dynamics and Ideal
MHD equations
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Hyperbolic Conservation Laws

We consider hyperbolic conservation laws in general

In one space dimension:

ut + f (u)x = 0,

and two space dimensions:

ut + f (u)x + g(u)y = 0,

with some initial data

u(x , y , 0) = u0(x , y),

where the Jacobian matrices ∂f
∂u

and ∂g
∂u

are diagonizable with real
eigen values.
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Challenges

discontinuous solutions: even when the initial conditions are
smooth, they evolve into steep gradients
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Challenges

discontinuous solutions: even when the initial conditions are
smooth, they evolve into steep gradients
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onset of spurious oscillations

additional challenges may come from the specific problem,
e.g., for MHD equations, we need to solve a large system with
an additional constraint

we seek efficient numerical schemes capable of handling these
challenges
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What do central schemes offer?

simplicity: no Riemann solvers

Upwind Scheme Central Scheme

xj−1 xj xj+1

ūj+1(t)

u

x

ūj−1(t)

ūj(t + ∆t)

ūj(t)

fj−1 fj

xj+ 12xj xj+1 x�unj + (ux)nj (x� xj)

u �un+1j+ 12
�unj+1 + (ux)nj+1(x� xj+1)

requires a Riemann solver to distinguish from

right- and left-going waves

evolves solution over staggered grid, no Riemann solver

is needed, but staggering requires smaller time step
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ease of implementation: no dimensional splitting in
multidimensional models
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More Advantages

ease of implementation: no dimensional splitting in
multidimensional models

straight forward extension to higher space dimensions

highly adaptable implementation: minor changes required to
solve different problems

easy to parallelize: sequential function calls → concurrent
function calls
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Fully-discrete Central Schemes – One Dimension

We begin by integrating the conservation law

ut + f (u)x = 0
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Fully-discrete Central Schemes – One Dimension

We begin by integrating the conservation law

1

∆x

Z tn+1

tn

Z x+ ∆x
2

x− ∆x
2

ut dt dx = −
1

∆x

Z tn+1

tn

Z x+ ∆x
2

x− ∆x
2

f (u)x dt dx

over the control volume [xj , xj+ 1
2
] × [tn, tn+1],
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Fully-discrete Central Schemes – One Dimension

We begin by integrating the conservation law

ut + f (u)x = 0

over the control volume [xj , xj+1] × [tn, tn+1], this leads the equivalent cell
average formulation

ū
n+1

j+ 1
2

= ū
n

j+ 1
2
−

1

∆x

Z tn+1

tn

h

f (u(xj+1, t)) − f (u(xj , t))
i

dt

We now proceed in two steps:
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Fully-discrete Central Schemes – One Dimension

We begin by integrating the conservation law

ut + f (u)x = 0

over the control volume [xj , xj+1] × [tn, tn+1], this leads the equivalent cell
average formulation

ū
n+1

j+ 1
2

= ū
n

j+ 1
2
−

1

∆x

Z tn+1

tn

h

f (u(xj+1, t)) − f (u(xj , t))
i

dt

We now proceed in two steps:

xj+ 12xj xj+1 x�unj + (ux)nj (x� xj)

u �un+1j+ 12
�unj+1 + (ux)nj+1(x� xj+1)

1. From the cell averages {ūn
j }, a

non-oscillatory polynomial reconstruction,

ũ(x , tn) =
X

j

pj(x , tn) · 1Ij ,

is formed to recover {ūn

j+ 1
2
}; where

Ij = [xj − ∆x/2, xj + ∆x/2].
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Fully-discrete Central Schemes – One Dimension

2. Time evolution
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Fully-discrete Central Schemes – One Dimension

2. Time evolution

predict intermediate point values, u
n+β
j , by Taylor expansion or

Runge–Kutta integration.
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Fully-discrete Central Schemes – One Dimension

2. Time evolution

predict intermediate point values, u
n+β
j , by Taylor expansion or

Runge–Kutta integration.

approximate flux integrals with simple quadrature formulae (e.g.,

midpoint or Simpson’s).

The fully discrete approximation reads:

predictor:

u
n+ 1

2
j := ū

n
j −

λ

2
f
′
j , λ =

∆t

∆x
,
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Fully-discrete Central Schemes – One Dimension

2. Time evolution

predict intermediate point values, u
n+β
j , by Taylor expansion or

Runge–Kutta integration.

approximate flux integrals with simple quadrature formulae (e.g.,

midpoint or Simpson’s).

The fully discrete approximation reads:

predictor:

u
n+ 1

2
j := ū

n
j −

λ

2
f
′
j , λ =

∆t

∆x
,

corrector:

ū
n+1

j+ 1
2

=
1

2
[ūn

j + ū
n
j+1] +

1

8
[u′

j − u
′
j+1] − λ

ˆ

f (u
n+ 1

2
j+1 ) − f (u

n+ 1
2

j )
˜

.
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Fully-discrete Central Schemes – Two Dimensions

xj xj+ 12

�un+1j+ 12 ;k+ 12

xj+1
zk zk+ 12 zk+1

The staggered scheme can be extended to two

space dimensions
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Fully-discrete Central Schemes – Two Dimensions

xj xj+ 12

�un+1j+ 12 ;k+ 12

xj+1
zk zk+ 12 zk+1

The staggered scheme can be extended to two

space dimensions

predictor

u
n+ 1

2
j,k := ū

n
j,k −

λ

2
f
′
j,k −

µ

2
g

8

j,k ,

where λ = ∆t
∆x

and µ = ∆t
∆z
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Fully-discrete Central Schemes – Two Dimensions

xj xj+ 12

�un+1j+ 12 ;k+ 12

xj+1
zk zk+ 12 zk+1

The staggered scheme can be extended to two

space dimensions

predictor

u
n+ 1

2
j,k := ū

n
j,k −

λ

2
f
′
j,k −

µ

2
g

8

j,k ,

where λ = ∆t
∆x

and µ = ∆t
∆z

corrector

ū
n+1

j+ 1
2

,k+ 1
2

=
1

4
(ū

n
j,k + ū

n
j+1,k + ū

n
j,k+1 + ū

n
j+1,k+1) +

1

16
(u
′

j,k − u
′

j+1,k )

−
λ

2

"

f (u
n+ 1

2
j+1,k

) − f (u
n+ 1

2
j,k

)

#

+
1

16
(u
′

j,k+1 − u
′

j+1,k+1) −
λ

2

"

f (u
n+ 1

2
j+1,k+1

) − f (u
n+ 1

2
j,k+1

)

#

+
1

16
(u

8

j,k − u
8

j,k+1) −
µ

2

"

g(u
n+ 1

2
j,k+1

) − g(u
n+ 1

2
j,k

)

#

+
1

16
(u

8

j+1,k − u
8

j+1,k+1) −
µ

2

"

g(u
n+ 1

2
j+1,k+1

) − g(u
n+ 1

2
j+1,k

)

#
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Semi-discrete Central Schemes – One Dimension

Modified central differencing (Kurganov and Tadmor, 2000)

u �un+1j
�wn+1j
�unj�unj�1

�wn+1j+1
�wn+1j�1 �wn+1j+ 12

xnj� 32 ;r xnj� 12 ;l xnj� 12 ;r xnj+ 12 ;rxnj+ 12 ;l xnj+ 32 ;l
�unj+1�wn+1j� 12

xj�1 xj� 12 xj xj+ 12 xj+1 x

Using the information provided by the
local speed of propagation,

a
n

j+ 1
2

= max
u∈C(u−

j+ 1
2

,u+

j+ 1
2

)

ρ
“ ∂f

∂u
(u)

”

,

where

u
+

j+ 1
2

:= pj+1(xj+ 1
2
) and u

−

j+ 1
2

:= pj(xj+ 1
2
),
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Semi-discrete Central Schemes – One Dimension

Modified central differencing (Kurganov and Tadmor, 2000)

u �un+1j
�wn+1j
�unj�unj�1

�wn+1j+1
�wn+1j�1 �wn+1j+ 12

xnj� 32 ;r xnj� 12 ;l xnj� 12 ;r xnj+ 12 ;rxnj+ 12 ;l xnj+ 32 ;l
�unj+1�wn+1j� 12

xj�1 xj� 12 xj xj+ 12 xj+1 x

Using the information provided by the
local speed of propagation,

a
n

j+ 1
2

= max
u∈C(u−

j+ 1
2

,u+

j+ 1
2

)

ρ
“ ∂f

∂u
(u)

”

,

where

u
+

j+ 1
2

:= pj+1(xj+ 1
2
) and u

−

j+ 1
2

:= pj(xj+ 1
2
),

we distinguish between the regions where the solution remains smooth –

no Riemann fans, and regions where discontinuities propagate
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Semi-discrete Central Schemes – One Dimension

two sets of evolved values are calculated:

staggered values over non-smooth regions {w̄n+1
j+ 1

2

}

non-staggered evolution over smooth regions {w̄n+1
j }
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Semi-discrete Central Schemes – One Dimension
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non-staggered evolution over smooth regions {w̄n+1
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the values in these two sets can be interpolated and reprojected as

cell averages {ūn+1
j } onto the original non-staggered grid (Jiang et.

al., 1998)



Intro Central Schemes Central Shcemes and MHD Numerical Results

Semi-discrete Central Schemes – One Dimension

two sets of evolved values are calculated:

staggered values over non-smooth regions {w̄n+1
j+ 1

2

}

non-staggered evolution over smooth regions {w̄n+1
j }

the values in these two sets can be interpolated and reprojected as

cell averages {ūn+1
j } onto the original non-staggered grid (Jiang et.

al., 1998)

or one can take the limit as ∆t → 0 to arrive at the semi-discrete
formulation:

d

dt
ūj(t) = lim

∆t→0

ūn+1
j − ūn

j

∆t
= −

Hj+ 1
2
(t) − Hj− 1

2
(t)

∆x
,
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Semi-discrete Central Schemes – One Dimension

two sets of evolved values are calculated:

staggered values over non-smooth regions {w̄n+1
j+ 1

2

}

non-staggered evolution over smooth regions {w̄n+1
j }

the values in these two sets can be interpolated and reprojected as

cell averages {ūn+1
j } onto the original non-staggered grid (Jiang et.

al., 1998)

or one can take the limit as ∆t → 0 to arrive at the semi-discrete
formulation:

d

dt
ūj(t) = −

Hj+ 1
2
(t) − Hj− 1

2
(t)

∆x
,

where Hj+ 1
2
(t) :=

f (u+

j+ 1
2

(t))+f (u−
j+ 1

2

(t))

2 −
a

j+ 1
2
(t)

2

[

u+
j+ 1

2

(t) − u−

j+ 1
2

(t)
]
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Semi-discrete Central Schemes – Two Dimensions

xj+ 1

2

xj+1xj−1

Djk

xjxj− 1

2

zk+1

zk−1

zk− 1

2

zk

zk+
1

2

1

Similarly, in two space dimensions, we apply:
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Semi-discrete Central Schemes – Two Dimensions

xj+ 1

2

xj+1xj−1

Djk

xjxj− 1

2

zk+1

zk−1

zk− 1

2

zk

zk+
1

2

1

Similarly, in two space dimensions, we apply:

staggered evolution over red cells
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Semi-discrete Central Schemes – Two Dimensions

xj+ 1

2

xj+1xj−1

Djk

xjxj− 1

2

zk+1

zk−1

zk− 1

2

zk

zk+
1

2

1

Similarly, in two space dimensions, we apply:

staggered evolution over red cells

staggered evolution in one direction

over green strips
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Semi-discrete Central Schemes – Two Dimensions

xj+ 1

2

xj+1xj−1

Djk

xjxj− 1

2

zk+1

zk−1

zk− 1

2

zk

zk+
1

2

1

Similarly, in two space dimensions, we apply:

staggered evolution over red cells

staggered evolution in one direction

over green strips

non-staggered evolution over Dj,k , and
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Semi-discrete Central Schemes – Two Dimensions

xj+ 1

2

xj+1xj−1

Djk

xjxj− 1

2

zk+1

zk−1

zk− 1

2

zk

zk+
1

2

1

Similarly, in two space dimensions, we apply:

staggered evolution over red cells

staggered evolution in one direction

over green strips

non-staggered evolution over Dj,k , and

reprojecting over original cells and taking the limit as ∆t → 0, we
arrive at:

d

dt
ūj(t) = −

Hx
j+ 1

2 ,k
(t) − Hx

j− 1
2 ,k

(t)

∆x
−

Hz
j,k+ 1

2

(t) − Hz
j,k− 1

2

(t)

∆z
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Central Schemes – Reconstruction

Example of a non-oscillatory reconstruction:
second order minmod reconstruction (Van Leer, 1979)

pj,k (x , z) = ūn
j,k + u′

j,k

(x − xj )

∆x
+ u8

j,k

(z − zk)

∆z

where

u′(j , k) = minmod(α∆+,x ūn
j,k ,

1

2
∆0,x ūn

j,k , α∆−,x ūn
j,k ),

u8(j , k) = minmod(α∆+,z ūn
j,k ,

1

2
∆0,z ūn

j,k , α∆−,z ūn
j,k),

with 1 ≤ α < 2, and

minmod(x1, x2, . . . , xn) =







min xi , if xi > 0 ∀i

max xi , if xi < 0 ∀i

0 otherways
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Semi-discrete Central Schemes – Time Evolution

Solution evolved with SSP RK Schemes (Gottlieb et. al., 2001),

Example: Third-order scheme

u(1) = u(0) + ∆tC [u(0)],

u(2) = u(1) +
∆t

4
(−3C [u(0)] + C [u(1)]),

un+1 := u(3) = u(2) +
∆t

12
(−C [u(0)] − C [u(1)] + 8 C [u(2)]),

where

C [w(t)] = −
Hx

j+ 1
2
,k

(w(t)) − Hx

j− 1
2
,k

(w(t))

∆x
−

Hz

j,k+ 1
2
(w(t)) − Hz

j,k− 1
2
(w(t))

∆z
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Ideal MHD Equations

conservation of mass:

ρt = −∇ · (ρv),

conservation of momentum:

(ρv)t = −∇ · [ρvv⊤ + (p +
1

2
B2)I3×3 −BB⊤],

conservation of energy:

et = −∇ ·
[( γ

γ − 1
p +

1

2
ρv2

)

v −
(

v × B
)

× B
]

,

transport equation:

Bt = ∇× (v × B)
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Ideal MHD Equations

conservation of mass:

ρt = −∇ · (ρv),

conservation of momentum:

(ρv)t = −∇ · [ρvv⊤ + (p +
1

2
B2)I3×3 −BB⊤],

conservation of energy:

et = −∇ ·
[( γ

γ − 1
p +

1

2
ρv2

)

v −
(

v × B
)

× B
]

,

solenoidal constraint:

∇ ·
∂B

∂t
= ∇ · [∇× (v × B)] ⇒

∂

∂t
(∇ · B) = 0
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Solenoidal Constraint

Numerical results indicate central schemes maintain ∇ · B
small
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Solenoidal Constraint

Numerical results indicate central schemes maintain ∇ · B
small

Also, using the constraint transport approach and notation
(Evans and Hawley, 1988), it can be shown that the magnetic
field, as evolved by the second order fully-discrete staggered
scheme (JT), can be written as

B
x ,n+1

j+ 1
2
,k+ 1

2

=
1

2

(

b
x ,n+1

j ,k+ 1
2

+ b
x ,n+1

j+1,k+ 1
2

)

with

b
x ,n+1

j ,k+ 1
2

= b̃
x ,n

j ,k+ 1
2

−
∆t

∆z

(

Ω
n+ 1

2

j ,k+ 1
2

− Ω
n+ 1

2

j+1,k+ 1
2

)

,

and a similar expression for B
z ,n+1

j+ 1
2
,k+ 1

2
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MHD: Brio-Wu Rotated Shock Tube

One-dimensional Riemann problem with initial states given by

(ρ, vx , vy , vz , Bx , By , Bz , p)⊤ =



(1, 0, 0, 0, 0.75, 0, 1, 1)⊤ for x < 0
(0.125, 0, 0, 0, 0.75, 0,−1, 0.1)⊤ for x > 0

Solved over a two dimensional domain with the direction of the flow
rotated 45◦

Solution computed up to t = 0.2, x ∈ [−1, 1], with 600× 600 grid points,

γ = 2.
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MHD: Brio-Wu Rotated Shock Tube

Solution at t = 0.2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0.7495

0.7496

0.7497

0.7498

0.7499

0.75

0.7501

0.7502

0.7503

0.7504

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

From top to bottom and from left to right: density, transverse velocity, transverse magnetic filed, parallel magnetic

field, and pressure. The divergence of the reconstructed polynomial ∼ 10−13 . Results computed with Jacobian

free formulation of 2nd order JT scheme.
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MHD: Shock – Cloud Interaction

Disruption of a high density cloud by a strong shock
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MHD: Shock – Cloud Interaction

Disruption of a high density cloud by a strong shock

Initial conditions

(ρ, vx , vy , vz , Bx , By , Bz , p)
⊤

=

(

(3.86, 0, 0, 0, 0, −2.18, 2.18, 167.34)⊤ for x < 0.6

(1, −11.25, 0, 0, 0, 0.564, 0.564, 1)⊤ for x > 0.6

high density cloud – ρ = 10, p = 1 – centered at x = 0.8, y = 0.5, with

radius 0.15,
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MHD: Shock – Cloud Interaction

Disruption of a high density cloud by a strong shock

Initial conditions

(ρ, vx , vy , vz , Bx , By , Bz , p)
⊤

=

(

(3.86, 0, 0, 0, 0, −2.18, 2.18, 167.34)⊤ for x < 0.6

(1, −11.25, 0, 0, 0, 0.564, 0.564, 1)⊤ for x > 0.6

high density cloud – ρ = 10, p = 1 – centered at x = 0.8, y = 0.5, with

radius 0.15,

Solved up to t = 0.06, (x , z) ∈ [0, 1] × [0, 1], with 256 × 256 grid points,

CFL number 0.5 and γ = 5/3
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MHD: Shock – Cloud Interaction
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Solution of shock-cloud interaction, left: density at t=0, center: density at t=0.06, right: magnetic field lines at

t=0.06. Results compputed with 3rd order semi-discrete scheme.
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Euler Equations of Gas Dynamics

conservation of mass:

ρt = −∇ · (ρv),

conservation of momentum:

(ρv)t = −∇ · (ρvv⊤ + p I3×3),

conservation of energy:

et = −∇ ·
[( γ

γ − 1
p +

1

2
ρv2

)

v
]

,

equation of state:

p = (γ − 1)
[

e −
1

2
ρv2

]
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Euler Equations: 2d Riemann Problem
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u = 1.206

v= 0

p = 1.5

density = 1.5

u = 0

v = 0

p = 0.029

density = 0.138

u = 1.206

v= 1.206

p = 0.3

density = 0.5323

u = 0

v = 1.206

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Solution of a 2d Riemann problem, left: density at t=0 and initial conditions, center: density at t=0.3

(S←21 , S←32 , S←34 , S←41 ), right: pressure at t=0.3. Results compputed with 3rd order semi-discrete scheme using

400 × 400 grid cells.
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