Derive conclusion from premises: (1) STRATEGY: $\forall x(O(x) \rightarrow \exists y S(x,y))$ 1 $\{\forall x(Q(x) \rightarrow \exists yS(x,y)), \neg \exists xQ(x) \rightarrow \exists x\exists yR(x,y))\}$ $2 \mid \neg \exists x Q(x) \rightarrow \exists x \exists y R(x,y))$ $/:: \exists x \exists y (R(x,y) \lor S(x,y))$ $\exists x \exists y (R(x,y) \lor S(x,y))$ Our goal is an existential sentence. We have no (2) $\forall x(Q(x) \rightarrow \exists yS(x,y))$ 1 constant, so no particular instance is obviously 2 $\neg \exists x Q(x) \rightarrow \exists x \exists y R(x,y))$ easy to get to use for \exists Intro. We have no 3 $\neg \exists x \exists y (R(x,y) \lor S(x,y))$ existential premise, which would lead us to reach our goal by \exists Elim. So as a last resort, assume the ⊥ Intro negation of the goal sentence. A contradiction $\neg \exists x \exists y (R(x,y) \lor S(x,y))$ ¬Intro will yield the double negation of the goal $\exists x \exists y (R(x,y) \lor S(x,y))$ ¬Elim sentence. Then drop the double negation. 1 $\forall x(Q(x) \rightarrow \exists y S(x,y))$ 2 3 $\neg \exists x Q(x) \rightarrow \exists x \exists y R(x,y))$ The only negated sentence 3) we have to work from is line $\neg \exists x \exists y (R(x,y) \lor S(x,y))$ 3, so our contradictory pair will probably consist of 3 $\exists x \exists y (R(x,y) \lor S(x,y))$ and the sentence it negates. ⊥ Intro \bot $\neg \neg \exists x \exists y (R(x,y) \lor S(x,y))$ ¬Intro $\exists x \exists y (R(x,y) \lor S(x,y))$ ¬Elim 1 $\forall x(Q(x) \rightarrow \exists yS(x,y))$ 2 $\neg \exists x Q(x) \rightarrow \exists x \exists y R(x,y))$ 3 $\neg \exists x \exists y (R(x,y) \lor S(x,y))$ Further strategizing requires us to think 4) 4 about what provisional assumption might $\exists x Q(x)$ be useful. Assuming $\exists xQ(x)'$ will enable us to use the first premise. Getting a $\neg \exists x O(x)$ contradiction under that PA would yield $\exists x \exists y R(x,y)$ ' $\neg \exists x Q(x)$ ', which we could use with line 2. So this is promising for our next stage. $\exists x \exists y (R(x,y) \lor S(x,y))$ ⊥ Intro \bot $\neg \neg \exists x \exists y (R(x,y) \lor S(x,y))$ ¬Intro $\exists x \exists y (R(x,y) \lor S(x,y))$ **¬Elim** 1 $\forall x(Q(x) \rightarrow \exists y S(x,y))$ $\neg \exists x \hat{Q}(x) \rightarrow \exists x \exists y R(x,y))$ 2 3 $\neg \exists x \exists y (R(x,y) \lor S(x,y))$ 4 $\exists x Q(x)$ 5 a <u>Q(a)</u> The only way we will be able (5) to use line 4 is by applying the **∃** Elim rule to it. So we start a $\neg \exists x Q(x)$ subproof for that, using a $\exists x \exists y R(x,y)$ boxed constant that does not occur outside this subproof. $\exists x \exists y (R(x,y) \lor S(x,y))$ ⊥ Intro $\neg \neg \exists x \exists y (R(x,y) \lor S(x,y))$ ¬Intro $\exists x \exists y (R(x,y) \lor S(x,y))$ ¬Elim CONTINUE $\Rightarrow \Rightarrow$ ⇒

(CONTINUED)

 $\forall x(Q(x) \rightarrow \exists yS(x,y))$ $\neg \exists xQ(x) \rightarrow \exists x\exists yR(x,y))$ 1 (6)⇒ 2 3 $\neg \exists x \exists y (R(x,y) \lor S(x,y))$ To get \perp under line 3, 4 $\exists x Q(x)$ 5 a Q(a)aim for \perp under line 4, 11 5 $\exists x \exists y (R(x,y) \lor S(x,y))$ then apply \neg Intro. Get \perp \bot under line 4 \bot by **J**Elim. $\neg \exists x Q(x)$ $\exists x \exists y R(x,y)$ To get \perp $\exists x \exists y (R(x,y) \lor S(x,y))$ under line 5, \perp Intro aim for a \bot contradiction $\neg \exists x \exists y (R(x,y) \lor S(x,y))$ ¬Intro $\exists x \exists y (R(x,y) \lor S(x,y))$ ¬Eelim with line 3.

To make use of 'Q(a)', apply $\forall E$ (7) rule to line 1. That gives us $\exists yS(a,y)' by \rightarrow Elim.$ $\forall x(Q(x) \rightarrow \exists yS(x,y))$ 1 2 $\neg \exists x Q(x) \rightarrow \exists x \exists y R(x,y))$ 3 $\neg \exists x \exists y (R(x,y) \lor S(x,y))$ 4 $\exists x Q(x)$ 5 a Q(a) $\overline{Q(a)} \rightarrow \exists y S(a,y) \quad \forall Elim:1$ 6 7 \rightarrow Elim:5,6 $\exists y S(a,y)$ $\exists x \exists y (R(x,y) \lor S(x,y))$ \perp Intro \bot **J**Elim \bot $\neg \exists x Q(x)$ $\exists x \exists y R(x,y)$ $\exists x \exists y (R(x,y) \lor S(x,y))$ \perp Intro \bot $\neg \exists x \exists y (R(x,y) \lor S(x,y))$ ¬Intro $\exists x \exists y (R(x,y) \lor S(x,y))$ ¬Elim

(a) From ' $\exists y S(a,y)$ ', it should be easy to get ' $\exists x \exists y (R(x,y) \lor S(x,y))$ ' by $\exists Elim$:

1 $\forall x(Q(x) \rightarrow \exists y S(x,y))$ $\neg \exists x Q(x) \rightarrow \exists x \exists y R(x,y))$ 2 3 $\neg \exists x \exists y (R(x,y) \lor S(x,y))$ 4 $\exists x \hat{Q}(x)$ 5 a Q(a) $\overline{Q(a)} \rightarrow \exists y S(a,y)$ 6 7 $\exists y S(a,y)$ 8 \mathbf{b} S(a,b) 9 $R(a,b) \vee S(a,b)$ 10 $\exists y(R(a,y) \lor S(a,y))$ 11 $\exists x \exists y (R(x,y) \lor S(x,y))$ $\exists x \exists y (\dot{R}(x,y) \lor S(x,y))$ 12 13 $\exists x \exists y (R(x,y) \lor S(x,y))$ 14 \bot 15 $\neg \exists x Q(x)$ 16 $\exists x \exists y R(x,y)$ $\exists x \exists y (R(x,y) \lor S(x,y))$ \bot $\neg \exists x \exists y (R(x,y) \lor S(x,y))$ $\exists x \exists y (R(x,y) \lor S(x,y))$ (9) \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow \Rightarrow

Similarly, it should be easy to get $\exists x \exists y (R(x,y) \lor S(x,y))'$ from $\exists x \exists y R(x,y)'$ by $\exists Elim$.

-				
2]	$\neg \exists x Q(x) \rightarrow \exists x \exists y R(x,y))$			
3	$\neg \exists x \exists y (R(x,y) \lor S(x,y))$			
4	$\exists x Q(x)$			
5	a Q(a)			
2 3 4 5 6	$\overline{Q(a)} \rightarrow \exists y S(a,y)$	∀Elim: 1		
7	$\exists y S(a,y)$	\rightarrow Elim: 5,6		
7 8	$\overline{\mathbf{b}}$ $\mathbf{S}(\mathbf{a},\mathbf{b})$,		
9	$\overline{R(a,b)} \vee S(a,b)$	v Intro: 8		
10	$\exists y(\hat{R}(a,y) \lor \hat{S}(a,y))$	∃ Intro: 9		
11	$\exists x \exists y (R(x,y) \lor S(x,y))$			
12	$\exists x \exists y (R(x,y) \lor S(x,y))$	J Elim:7,8-11		
13	$\exists x \exists y (R(x,y) \lor S(x,y))$	J Elim: 4,5-12		
14		⊥ Intro: 3,13		
15	$\neg \exists x Q(x)$	¬ Intro: 4-13		
16	$\exists x \exists y \hat{R}(x,y)$	\rightarrow Elim: 2,15		
17	$\left \begin{array}{c} c \end{array} \right \exists y R(c,y)$			
18	d R(c,d)			
19	$R(c,d) \vee S(c,d)$	v Intro: 18		
20	$\exists y(R(c,y) \lor S(c,y))$	J Intro: 19		
21	$\exists x \exists y (R(x,y) \lor S(x,y))$	J Intro: 20		
22	$\exists x \exists y (R(x,y) \lor S(x,y))$	H Elim:17,18-21		
23	$\exists x \exists y (R(x,y) \lor S(x,y))$	H Elim:16,17-22		
24		\perp Intro: 3,23		
25	-	¬Intro: 3-24		
26 $\exists x \exists y (R(x,y) \lor S(x,y))$ ¬Elim: 25				

1 $\forall x(Q(x) \rightarrow \exists yS(x,y))$

Image: The show that a sentence is FO-valid, derive it from the null set of premises.
 STRATEGY to show:
$$\exists xF(x) \to \forall x(F(x) \to G(x))$$
 is first-order valid.

 Image: Since the main operator in this sentence is the arrow, we try to build it by \rightarrow -Intro. So we assume the antecedent as PA and aim for the consequent.
 2
 $\exists xF(x) \to \forall x(F(x) \to G(x))$ \rightarrow Intro

 Image: Since the main operator in this sentence is the arrow, we try to build it by \rightarrow -Intro. So we assume the antecedent as PA and aim for the consequent.
 2
 $\exists xF(x) \to \forall x(F(x) \to G(x)) \to intro

 Image: Since the main operator in this sentence is the arrow, we try to build it by \rightarrow -Intro. So we assume the antecedent as PA and aim for the consequent.
 2
 $\exists xF(x) \to \forall x(F(x) \to G(x)) \to intro

 Image: Since the main operator in this sentence is the arrow, we try to build it by \rightarrow -Intro. So we assume the antecedent as PA and aim for the consequent.
 2
 $\exists xF(x) \to \forall x(F(x) \to G(x)) \to intro

 Image: Since the universal with that constant. Plan to use \rightarrow -Intro, then \forall Intro.
 2
 $\exists xF(x) \to \forall x(F(x) \to G(x)) \to intro

 Image: Since the universal with that constant. Plan to use \rightarrow -Intro, then \forall Intro.
 2
 $\exists xF(x) \to \forall x(F(x) \to G(x)) \to intro

 Image: Since the universal with that constant. Plan to use \rightarrow -Intro, then \forall Intro.
 2
 $\exists xF(x) \to \forall x(F(x) \to G(x)) \to intro

 Image: Since the universal with that constant. Plan to use \rightarrow -Intro intro of a contradictory pair, the other will be $\exists xF(x)^{-1}$
 1
 $\exists xF(x) \to \forall x(F(x) \to G(x)) \to intro$$$$$$$

To show 2 sentences are first-order equivalent, derive biconditional from the null (empty) set of premises. Use standard strategy: build biconditional by ↔Intro. STRATEGY: Show that $\forall x(B(x) \Leftrightarrow \neg C(x))$ is first-order equivalent to $\neg \exists x[(B(x) \land C(x)) \lor (\neg B(x) \land \neg C(x))]$

(1)
$$\frac{1}{2} | \frac{\forall x(B(x) \leftrightarrow \neg C(x))}{| \neg \exists x((B(x) \wedge C(x)) \vee (\neg B(x) \wedge \neg C(x)))} | | \neg \exists x((B(x) \wedge C(x)) \vee (\neg B(x) \wedge \neg C(x))) | | \neg \exists x((B(x) \leftrightarrow \neg C(x))) | | \neg \exists x((B(x) \leftrightarrow \neg C(x))) | \neg \exists x((B(x) \wedge C(x)) \vee (\neg B(x) \wedge \neg C(x))) | \neg \exists x((B(x) \wedge C(x)) \vee (\neg B(x) \wedge \neg C(x))) | \neg \exists x((B(x) \wedge C(x)) \vee (\neg B(x) \wedge \neg C(x))) | \neg \exists x((B(x) \wedge C(x)) \vee (\neg B(x) \wedge \neg C(x))) | \neg \exists x((B(x) \wedge C(x)) \vee (\neg B(x) \wedge \neg C(x))) | \neg \exists x((B(x) \wedge C(x)) \vee (\neg B(x) \wedge \neg C(x))) | \neg \exists x((B(x) \wedge C(x)) \vee (\neg B(x) \wedge \neg C(x))) | \neg \exists x((B(x) \wedge C(x)) \vee (\neg B(x) \wedge \neg C(x))) | \neg \exists x((B(x) \wedge C(x)) \vee (\neg B(x) \wedge \neg C(x))) | \neg \exists x((B(x) \wedge C(x)) \vee (\neg B(x) \wedge \neg C(x))) | \neg \exists x((B(x) \wedge C(x)) \vee (\neg B(x) \wedge \neg C(x))) | \neg \exists x((B(x) \wedge C(x)) \vee (\neg B(x) \wedge \neg C(x))) | \neg \exists x((B(x) \wedge C(x)) \vee (\neg B(x) \wedge \neg C(x))) | \neg \exists x((B(x) \wedge C(x)) \vee (\neg B(x) \wedge \neg C(x))) | \neg \exists x((B(x) \wedge C(x)) \vee (\neg B(x) \wedge \neg C(x))) | \neg \exists x((B(x) \wedge C(x)) \vee (\neg B(x) \wedge \neg C(x))) | \neg \exists x((B(x) \wedge C(x)) \vee (\neg B(x) \wedge \neg C(x))) | \neg \exists x((B(x) \wedge C(x)) \vee (\neg B(x) \wedge \neg C(x))) | \neg \exists x((B(x) \wedge C(x)) \vee (\neg B(x) \wedge \neg C(x))) | \neg \exists x((B(x) \wedge C(x)) \vee (\neg B(x) \wedge \neg C(x))) | \neg \exists x((B(x) \wedge C(x)) \vee (\neg B(x) \wedge \neg C(x))) | \neg \exists x((B(x) \wedge C(x)) \vee (\neg B(x) \wedge \neg C(x))) | \neg \exists x((B(x) \wedge C(x)) \vee (\neg B(x) \wedge \neg C(x))) | \neg \exists x((B(x) \wedge C(x)) \vee (\neg B(x) \wedge \neg C(x))) | \neg \exists x((B(x) \wedge C(x)) \vee (\neg B(x) \wedge \neg C(x))) | \neg \exists x((B(x) \wedge C(x)) \vee (\neg B(x) \wedge \neg C(x))) | \neg \exists x((B(x) \wedge C(x)) \vee (\neg B(x) \wedge \neg C(x))) | \neg \exists x((B(x) \wedge C(x)) \vee (\neg B(x) \wedge \neg C(x))) | \neg \exists x((B(x) \wedge C(x)) \vee (\neg B(x) \wedge \neg C(x))) | \neg \exists x((B(x) \wedge C(x)) \vee (\neg B(x) \wedge \neg C(x))) | \neg \exists x((B(x) \wedge C(x)) \vee (\neg B(x) \wedge \neg C(x))) | \neg \exists x((B(x) \wedge C(x)) \vee (\neg B(x) \wedge \neg C(x))) | \neg \exists x((B(x) \wedge C(x)) \vee (\neg B(x) \wedge \neg C(x))) | \neg \neg x((B(x) \wedge C(x)) \vee (\neg B(x) \wedge \neg C(x))) | \neg \neg x((B(x) \wedge C(x)) \vee (\neg B(x) \wedge \neg C(x))) | \neg \neg x((B(x) \wedge C(x)) \vee (\neg B(x) \wedge \neg C(x))) | \neg \neg x((B(x) \wedge C(x)) \vee (\neg B(x) \wedge \neg C(x))) | \neg \neg x((B(x) \wedge C(x)) \vee (\neg B(x) \wedge \neg C(x))) | \neg \neg x((B(x) \wedge C(x)) \vee (\neg B(x) \wedge \neg C(x))) | \neg \neg x((B(x) \wedge C(x)) \vee (\neg B(x) \wedge \neg C(x))) | \neg \neg x((B(x) \wedge C(x)) \vee (\neg B(x) \wedge \neg C(x))) | \neg \neg x((B(x) \cap C(x)) \vee (\neg B(x) \wedge \neg C(x))) | \neg \neg x((B(x) \cap C(x)) \vee (\neg B(x) \wedge \neg C(x))) | \neg \neg x((B(x) \cap$$

 $\Rightarrow \Rightarrow \text{CONTINUE} \Rightarrow \Rightarrow$

We need a contradiction under line 6. That will allow us to apply the \neg Intro rule to line 6. We can get contradictions in both subproofs for v Elim. So we'll bring ' \perp ' out of both subproofs in our vElim step.

(7) 1 In the first subproof, get 2 3 $\forall x(B(x) \Leftrightarrow \neg C(x))$ $\exists x((B(x) \land C(x)) \lor (\neg B(x) \land \neg C(x)))$ 4 $|a|(B(a) \land C(a)) \lor (\neg B(a) \land \neg C(a))$ 5 2,∀ Elim $B(a) \Leftrightarrow \neg C(a)$ 6 $B(a) \wedge C(a)$ 7 B(a) 6, A Elim 8 C(a) 6, A Elim 9 5,7,⇔ Elim $\neg C(a)$ 10 8,9,⊥Intro \bot 11 $\neg B(a) \land \neg C(a)$ 12 $\neg C(a)$ 11,^ Elim 13 5,12,⇔ Elim B(a) 11.[^] Elim 14 $\neg B(a)$ 15 13,14,⊥Intro \bot 4,6-10, 11-15, v Elim 16 \bot 17 3,4-16, **3** Elim 18 $\neg \exists x((B(x) \land C(x)) \lor (\neg B(x) \land \neg C(x)))$ 2-16,¬Intro 19 $\neg \exists x((B(x) \land C(x)) \lor (\neg B(x) \land \neg C(x)))$ $\forall x(B(x) \Leftrightarrow \neg C(x))$ $\forall x(B(x) \leftrightarrow \neg C(x)) \leftrightarrow \neg \exists x((B(x) \land C(x)) \lor (\neg B(x) \land \neg C(x)))$

'B(a)' by \wedge Elim. To get' \neg B(a)', notice that we can easily get both 'C(a)'(by \land Elim) and ' \neg C(a)' (by \Leftrightarrow Elim). To put this contradiction to work for us, apply ⊥Intro. Getting 'B(a)' and ' \neg B(a)' in the second subproof is easy, giving us \perp again.. Moving \perp out of the 2 subproofs by v Elim gives us \perp under line 3. We can then move it to the left, under line 2, by ∃ Elim, justifying ¬Intro. This completes the first subproof.

CONTINUE ⇒ ⇒ ⇒

(CONTINUED)

 $\Rightarrow \Rightarrow$ Entire proof shown on the next page $\Rightarrow \Rightarrow$

In total, our proof showing that $\forall x(B(x) \Leftrightarrow \neg C(x))$ is first-order equivalent to $\neg \exists x((B(x) \land C(x)) \lor (\neg B(x) \land \neg C(x)))$ looks like this:

1 2 3 4 5 6 7 8 9 10	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	∀ Elim: 2 ∧ Elim: 6 ∧ Elim: 6 ⇔ Elim: 5,7 ⊥ Intro: 8,9
11 12 13 14 15 16 17 18	$\begin{vmatrix} \frac{\neg B(a) \land \neg C(a)}{\neg C(a)} \\ B(a) \\ \neg B(a) \\ \bot \\ \neg \exists x((B(x) \land C(x)) \lor (\neg B(x) \land \neg C(x))) \end{vmatrix}$	∧Elim: 11 ⇔Elim: 5,12 11,∧Elim: 11 13,14,⊥Intro: 13,14 ∨ Elim: 4,5-10,11-15 ∃ Elim: 3,4-16 ¬ Intro: 3-17
19 20 21 22 23 24 25 26 27	$ \begin{vmatrix} \neg \exists x((B(x) \land C(x)) \lor (\neg B(x) \land \neg C(x))) \\ b \\ \hline b \\ \hline B(b) \\ B(b) \land C(b) \\ B(b) \land C(b) \lor (\neg B(b) \land \neg C(b)) \\ \neg \exists x((B(x) \land C(x)) \lor (\neg B(x) \land \neg C(x))) \\ \downarrow \\ \neg C(b) \end{vmatrix} $	∧ Intro: 21,22 ∨ Intro: 23 ∃ Intro: 24 ⊥ Intro: 19,25 ¬ Intro: 22-26
28 29 30 31 32 33 34 35 36 37 38 ∀	$ \begin{vmatrix} -C(b) & -B(b) \\ \neg B(b) \land \neg C(b) \\ (B(b) \land C(b)) \lor (\neg B(b) \land \neg C(b)) \\ \exists x((B(x) \land C(x)) \lor (\neg B(x) \land \neg C(x))) \\ \bot \\ \neg \neg B(b) \\ B(b) \\ B(b) \\ \Leftrightarrow \neg C(b) \\ \forall x(B(x) \Leftrightarrow \neg C(x)) \\ \forall x(B(x) \Leftrightarrow \neg C(x)) \\ \forall x(B(x) \Leftrightarrow \neg C(x)) \\ \Rightarrow \neg \exists x[(B(x) \land C(x)) \lor (\neg B(x) \land \neg C(x))] \end{vmatrix} $	28,29,∧ Intro: 28,29 v Intro: 30 ∃ Intro: 31 ⊥ Intro: 19,32 ¬ Intro: 29-33 ¬¬ Elim: 34 ↔ Intro: 21-27,28-35 ∀Intro: 20-36 ↔ Intro: 2-18,19-37