1	$\begin{array}{c c}1 & \forall x(Larger(x,a) \rightarrow Tet(x)) \\ rm(a) = b \\ \hline 3 & Large(b) \land Small(a) \\ & Tet(rm(a)) \land rm(a) \neq a \end{array}$	STRATEGY for a derivation using =Elim and AnaCon
2	We plan to build the goal conjunction1 2 rm(a) = b $\forall x(Larger(x,a) \rightarrow rm(a) = b)$ 32 Large(b) \land Small(a)by \land Intro. So we aim 	(<u>a)</u>
3	To help get 'Tet(rm(a))', we notice 'Tet' in line 1. So we apply \forall Elim. We aim the antecedent of that conditional so that we will be able to apply \rightarrow Elim	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
4	Because we have2 $rm(a) = b$ ' $rm(a) = b$ ' on line 2,3 $Large(b) \land$ we can substitute3Large(b) \landeither term for the other. We could do that to reach this new goal if we could use the information in lineLarger(mail Larger(rm(a)))) (a),a) (a),a) \rightarrow Tet(rm(a)) \forall Elim
\$	'Larger(b,a)' follows from the meanings of 'Large', 'Small', and 'Larger'. Since we are applying AnaCon only to literals (atomic sentences and their negations), we must break apart line 3. We also notice that we now have all we need to justify line ' $rm(a)\neq a$ ', because nothing is larger than itself.	$1 \forall x(Larger(x,a) \rightarrow Tet(x)) \\ rm(a) = b \\ 3 \underline{Large(b) \land Small(a)} \\ 4 Large(b) \land Small(a) \\ 4 Large(b) \land Elim: 3 \\ 5 Small(a) \land Elim: 3 \\ 6 Larger(b,a) \qquad AnaCon: 4,5 \\ 7 Larger(rm(a),a) \rightarrow Tet(rm(a)) \forall Elim: 1 \\ 9 Tet(rm(a)) \qquad \rightarrow Tet(rm(a)) \forall Elim: 1 \\ 9 Tet(rm(a)) \qquad \rightarrow Elim: 7,8 \\ 10 rm(a) \neq a \qquad AnaCon: 7 \\ 11 Tet(rm(a)) \land rm(a) \neq a \qquad \land Intro: 9,10 \\ \end{cases}$

If we did not have AnaCon, we would need two additional premises. What general premises would express the relevant meaning relations?

STRATEGY: { $\forall x(C(x) \leftrightarrow D(x)), C(a), \exists xD(x) \rightarrow \forall xM(x), \forall x(M(x) \rightarrow L(x))$ } /.: $\forall xL(x)$

1 $\forall x(C(x) \leftrightarrow D(x))$ Prules like \land 2 $C(a)$ Psubproof w3 $\exists xD(x) \rightarrow \forall xM(x)$ Pthat's not or4 $\forall x(M(x) \rightarrow L(x))$ Pan instanceconstant in	ach our goal by easy , \exists , or \forall Elim. Next best iild it by \forall Intro. Start a ith a boxed constant utside the subproof; get of our goal with the the box. So aim for ubproof starting with b . 1 $\forall x(C(x) \leftrightarrow D(x)) P$ C(a) P $\exists xD(x) \rightarrow \forall xM(x) P$ $\forall x(M(x) \rightarrow L(x)) P$ b $\forall xL(x) \forall Intro$
31 $\forall x(C(x) \leftrightarrow D(x))$ 12C(a)12C(a)13 $\exists xD(x) \rightarrow \forall xM(x)$ 1premise4 $\forall x(M(x) \rightarrow L(x))$ 1with 'L' is5 $ \textbf{b} $ 4, so use::the::the::the:: 4 with 'b'. $ M(b) \rightarrow L(b) \forall Elim:4$ $\forall xL(x) \forall Intro$	P To use this 3 To use this 3 to reach 4 'L(b)', we 5 also need 'M(b)', so aim for that. C(a) P $\exists xD(x) \rightarrow \forall xM(x) P$ $\forall x(M(x) \rightarrow L(x))$ P b M(b) $M(b) \rightarrow L(b) \forall Elim: 4$ $L(b) \rightarrow Elim$
5 'M' is in only two premises. In 4, it's in the antecedent of the conditional to which ' $\forall x'$ applies, so that's no help. But in 3 it's in the consequent. Also, that corneceptotic	$ \begin{vmatrix} \forall x L(x) & \forall Intro \end{vmatrix} $ $ \begin{array}{c} P \\ P \\ x) & P \\ \end{array} \begin{array}{c} \bullet \\ To get & 2 \\ \hline C(a) \\ \hline \exists x D(x) \\ \hline \exists x D(x) \\ \hline \end{array} \begin{array}{c} P \\ P \\ \hline C(a) \\ \hline \end{array} \begin{array}{c} P \\ P \\ \hline P \\ \hline \end{array} \begin{array}{c} \bullet \\ \end{array} \begin{array}{c} \bullet \\ P \\ \hline \end{array} \begin{array}{c} \bullet \\ P \\ \hline \end{array} \begin{array}{c} \bullet \\ P \\ \hline \end{array} \begin{array}{c} \bullet \\ \end{array} \begin{array}{c} \bullet \\ \end{array} \begin{array}{c} \bullet \\ P \\ \hline \end{array} \begin{array}{c} \bullet \\ \end{array} \end{array}$
Our goal is an existential. Since we can't pull it out of anything, build it by $\exists Intro.$ So we need an instance. Except for 3, the only premise with 'D' is line 1, so we'll use an instance of ' $\exists xD(x)'$. We need a constant we can get after 'C'. Line 2 is 'C(a)', so we use 'a'.1 $\forall x(C(x) \leftrightarrow D(x))$ $(C(a))$ $\exists xD(x) \rightarrow \forall xN)$ $\forall x(M(x)) \rightarrow U(x)$ $\exists xD(x)$ $\forall xM(x)$ $M(b)$ $\forall xL(x)$	$\begin{array}{c cccc} P & Vx(C(x) \Leftrightarrow D(x)) & P \\ \hline A(x) & P & all we & 3 \\ \hline x)) & P & all we & 3 \\ \hline abla & bla & bla \\ \hline x)) & P & all we & 3 \\ \hline abla & bla \\ \hline abla & bla \\ \hline x) & bla \\ \hline bb \\ \hline C(a) \Leftrightarrow D(a) & \forall Elim: 1 \\ \hline bb \\ \hline C(a) \Leftrightarrow D(a) & \forall Elim: 2,5 \\ \hline abla & bla \\ \hline bb \\ \hline C(a) \Leftrightarrow D(a) & \forall Elim: 2,5 \\ \hline abla & bla \\ \hline bb \\ \hline c(a) \Leftrightarrow D(a) & \forall Elim: 1 \\ \hline bb \\ \hline c(a) \Leftrightarrow D(a) & \forall Elim: 2,5 \\ \hline abla & bla \\ \hline c(a) & \phi & bla \\ \hline c(a) &$

37

 $17 \forall xH(x)$

∀Intro: 3-16

→Elim ∀ Intro

$ \begin{array}{ c c c } \hline 1 & \exists x R(x,x) \rightarrow \forall x (Q(x) \lor S(x)) \\ \hline \forall x (R(a,x) \land \neg Q(x)) \\ \hline \forall x S(x) \end{array} $	$\{\exists x R(x,x) \rightarrow \forall x\}$	STRATEGY for: $A(Q(x) \lor S(x)), \forall x(R(a,x) \land \neg Q(x)))$ $/:: \forall xS(x)$
2 The only 'S' in the premises is in 1. the antecedent. Get the consequent b then try to get ' $\forall xS(x)$ ' from that.		$\begin{array}{c c}1 & \exists x R(x,x) \rightarrow \forall x (Q(x) \lor S(x))\\2 & \forall x (R(a,x) \land \neg Q(x))\end{array}\end{array}$
$ \begin{array}{c} \textcircled{3} \\ 1 & \exists x R(x,x) \rightarrow \forall x(Q(x) \lor S(x)) \\ 2 & \forall x(R(a,x) \land \neg Q(x)) \\ 3 & R(a,a) \land \neg Q(a) & \forall Elim: 2 \\ 4 & R(a,a) & \land Elim: 3 \\ 5 & \exists x R(x,x) & \exists Intro: 4 \\ 6 & \forall x(Q(x) \lor S(x)) & \rightarrow Elim: 1,5 \\ \vdots \\ \forall x S(x) \\ - \end{array} $	then app	$\exists x R(x,x) \\ \forall x(Q(x) \lor S(x)) \\ \forall x S(x) \\ \exists x R(x,x)', we'll get an instance, hy \exists Intro. Use line 2 to get the 'R(a,a)'.$
(4) $\forall xS(x)'$ is not in any statement we Plan to build it by "Intro. Begin a su with a boxed constant that is not in a assumption, and aim for an instance $\forall xS(x)'$ with that constant. Since 'a premise, we must use a different control of the statement of the	lbproof U ⇒ iny of i' is in a	1 $\exists xR(x,x) \rightarrow \forall x(Q(x) \lor S(x)) P$ 2 $\forall x(R(a,x) \land \neg Q(x)) P$ 3 $R(a,a) \land \neg Q(a) \forall Elim: 2$ 4 $R(a,a) \land \neg Q(a) \land Elim: 3$ 5 $\exists xR(x,x) \exists Intro: 4$ 6 $\forall x(Q(x) \lor S(x)) \rightarrow Elim: 1,5$
5 To get 1 $\exists xR(x,x) \rightarrow \forall x(Q(x \land S(b)^{\prime}, 2)) \\ \forall y(R(a,x) \land \neg Q(x)) \\ \forall y(R(a,x) \land \neg Q(x)) \\ \forall x(R(a,x) \land \neg Q(x)) \\ \forall x(a,a) \land \neg Q(a) \\ \forall x(a,a) \\ \forall x(Q(x) \lor x(x)) \\ \forall x(x(x) \lor x(x)) \\ \forall x(x) \lor x(x)) \\ \forall x(x(x) \lor x(x$		7 $
	()⇒⇒	$\begin{array}{c c} 1 & \exists x R(x,x) \to \forall x (Q(x) \lor S(x)) & P \\ 2 & \underline{\forall x (R(a,x) \land \neg Q(x))} & P \end{array}$
$1 \exists xR(x,x) \rightarrow \forall x(Q(x) \lor S(x)) P \\ 2 \forall x(R(ax) \land \neg Q(x)) P \\ 3 R(a,a) \land \neg Q(a) \forall Elim: 2 \\ 4 R(a,a) \land \neg Q(a) \forall Elim: 3 \\ 5 \exists xR(x,x) \exists Intro: 4 \\ 6 \forall x(Q(x) \lor S(x)) \rightarrow Elim: 1,5 \\ 7 \boxed{b} \\ Q(b) \lor S(b) \forall Elim: 6 \\ 9 Q(b) \\ \vdots \vdots \\ S(b) \\ \forall xS(x) \forall xS(x) $	Note that we can get '¬Q (b)' by applying ∀Elim to line 2 again. This yields a contradiction, which we can put to work for us by applying ⊥Elim to get 'S(b)'.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

STRATEGY: {Cube(a), $\neg \exists x \exists y(x \neq y \land SameShape(x,y))$ } /:: $\forall x(Cube(x) \rightarrow x = a)$ Cube(a) 1 (1) (5) 2 $\neg \exists x \exists y (x \neq y \land SameShape(x,y))$ We aim for an instance of the existential. We have one conjunct, so we need the other, which $\forall x(Cube(x) \rightarrow x = a)$ we can get right away by AnaCon. (2) We set up a subderivation to 1 Cube(a) reach our goal by \forall Intro. 2 $\neg \exists x \exists y (x \neq y \land SameShape(x,y))$ 3 b 1 Cube(a) 4 Cube(b) 2 $\neg \exists x \exists y (x \neq y \land SameShape(x,y))$ 5 b≠a 3 b 6 SameShape(b,a) 7 $b \neq a \land SameShape(b,a)$ $Cube(b) \rightarrow b = a$ $\forall x(\text{Cube}(x) \rightarrow x = a)$ $\exists x \exists y (x \neq y \land \text{SameShape}(x, y))$ \bot b = a(3) We start another subderivation to $Cube(b) \rightarrow b = a$ $\forall x(Cube(x) \rightarrow x = a)$ build the conditional we need. 1 Cube(a) 2 $\neg \exists x \exists y (x \neq y \land SameShape(x,y))$ We just need to build up the 6 3 b existential sentence, and 4 Cube(b) complete the justifications. Ρ b = a1 Cube(a) 2 Р $\neg \exists x \exists y (x \neq y \land SameShape(x,y))$ $Cube(b) \rightarrow b = a$ 3 $\forall x(Cube(x) \rightarrow x = a)$ b 4 Cube(b) 5 $b \neq a$ 6 SameShape(b,a) AnaCon: 1,4 The only way to use line 2 is 7 $b \neq a \land SameShape(b,a)$ ∧Intro: 5.6 in a contradiction. So we 8 $\exists y(b=y \land SameShape(b,y))$ **∃**Intro: 7 assume the negation of our 9 current goal, and try to get a $\exists x \exists y (x \neq y \land SameShape(x,y))$ **∃**Intro: 8 contradiction with line 2. 10 \perp Intro: 2,9 \bot $\neg b \neq a$ ¬Intro: 5-10 11 Cube(a) 1 12 b = a¬Elim: 11 2 $\neg \exists x \exists y (x \neq y \land SameShape(x,y))$ 3 b $Cube(b) \rightarrow b = a$ \rightarrow Intro: 4-13 13 4 Cube(b) 14 $\forall x(Cube(x) \rightarrow x = a)$ \forall Intro: 3-13 5 <u>b ≠ a</u> : : : $\exists x \exists y (x \neq y \land SameShape(x,y))$ Without AnaCon, we'd need a third premise. You \bot should be able to complete the modified derivation: b = a1 Cube(a) $Cube(b) \rightarrow b = a$ $\neg \exists x \exists y (x \neq y \land SameShape(x,y))$ 2 $\forall x(\text{Cube}(x) \rightarrow x = a)$ 3 $\forall x \forall y ((Cube(x) \land Cube(y)) \rightarrow SameShape(x,y))$ $\forall x(\text{Cube}(x) \rightarrow x = a)$

(3) Now we are aiming for an existential statement. When we have one existential statement and are aiming for another one, a good way to try to reach that goal is by ∃Elim. So set up a subproof for later use of the ∃Elim rule. Aim for the desired existential statement at the end of the subproof. Then ∃Elim will let us move it to the left, out of the subproof.

To get ' $\exists xG(x,x)$ ', aim for an instance, then use the \exists Intro rule. So you want 'G', followed by two occurrences of the same constant. Since you have a 'G' with an 'a' in line 3, try for 'G(a,a)'.

[4]

(5)

Notice that if you plug in 'a' in place of 'y' using the ∀Elim rule on line 3, you will get a conditional that has your current goal as it's consequent. That is a promising strategy. In this case, it is particularly promising because its antecedent is easy to get by applying ∀Elim to line 2.

Р $\exists x \forall y (F(x) \rightarrow G(x,y))$ 1 2 $\forall xF(x)$ 3 $\blacksquare \forall y(F(a) \rightarrow G(a,y))$ 4 ∀Elim: 3 $F(a) \rightarrow G(a,a)$ 5 F(a) \forall Elim: 2 6 \rightarrow Elim: 4,5 G(a,a)7 $\exists x G(x,x)$ \exists Intro: 6 8 $\exists x G(x,x)$ **Helim**: 1.3-7 9 $\forall xF(x) \rightarrow \exists xG(x,x)$ \rightarrow Intro: 2-8

EXTRA EXERCISES FOR CHAPTER 13, GROUP 2

If the argument is FO-valid, use Fitch to give a proof. Start by opening Proof CStern 130x, where $1 \le x \le 9$, or Proof CStern 13x where $x \ge 10$. Use AnaCon only for literals (atomic sentences and their negations). Do not use TautCon.

If the argument is FO-invalid, use Tarski's World to give a counterexample. Start by opening Sentences CStern 130x for H 13.x, where $1 \le x \le 9$, or Sentences CStern 13x where $x \ge 10$. Save worlds as World CStern 130x or 13x, corresponding to Sentences CStern 130x

- H 13.9 $\begin{array}{|} \exists x(\text{Tet}(x) \land \forall y[\text{Cube}(y) \rightarrow \text{Adjoins}(y,x)] \\ \forall x(\text{Cube}(x) \rightarrow \exists y(\text{Tet}(y) \land \text{Adjoins}(x,y))) \end{array}$
- H 13.10 $\begin{vmatrix} \exists x \text{Cube}(x) \\ \forall x(\text{Cube}(x) \rightarrow \exists y(\text{Dodec}(y) \land \text{Adjoins}(x,y))) \\ \exists x(\text{Dodec}(x) \land \forall y[\text{Cube}(y) \rightarrow \text{Adjoins}(y,x)]) \end{vmatrix}$
- H 13.11 $\forall x \forall y ([Cube(x) \land Tet(y)] \rightarrow SameSize(x,y))$ $\exists x \exists y (Cube(x) \land Tet(y))$ $\exists x [Dodec(x) \land \forall y (Tet(y) \rightarrow Smaller(x,y))]$ $\exists x \exists y (Dodec(x) \land Cube(y) \land Smaller(x,y))$
- H 13.12 $\forall x \forall y ([Cube(x) \land Tet(y)] \rightarrow SameSize(x,y))$ $\exists x \exists y (Cube(x) \land Tet(y))$ $\exists x [Dodec(x) \land \forall y (Tet(y) \rightarrow Smaller(x,y))]$ $\forall x \forall y [(Dodec(x) \land Cube(y)) \rightarrow Larger(y,x)]$
- H 13.13 $\begin{array}{l} \exists x(\operatorname{Tet}(x) \land \forall y[(\operatorname{Tet}(y) \land y \neq x) \rightarrow \operatorname{Larger}(x,y)] \\ \exists x \exists y(\operatorname{Tet}(x) \land \operatorname{Tet}(y) \land y \neq x) \\ \forall x \forall y[(\operatorname{Tet}(x) \land \operatorname{SameCol}(x,y)) \rightarrow \operatorname{SameSize}(x,y)] \\ \underline{\forall x \exists y(\operatorname{SameCol}(x,y) \land x \neq y)} \\ \neg \exists x \exists y(\operatorname{Tet}(x) \land \operatorname{Tet}(y) \land x \neq y \land \operatorname{SameCol}(x,y)) \end{array}$
- H 13.14 $\begin{array}{|} \exists x \exists y (\text{Dodec}(x) \land \text{Tet}(y) \land \text{Larger}(x,y)) \\ \neg \exists x (\text{Tet}(x) \land \forall y (\text{Cube}(y) \rightarrow \text{Smaller}(x,y))) \\ \exists x (\text{Large}(x) \land \text{Cube}(x)) \rightarrow \forall x (\text{Large}(x) \rightarrow \text{Cube}(x)) \end{array}$
- H 13.15 $\begin{array}{|} \exists x(\text{Dodec}(x) \land \forall y(\text{Cube}(y) \rightarrow \text{Larger}(x,y)) \\ \exists x(\text{Cube}(x) \land \forall y(\text{Tet}(y) \rightarrow \text{Larger}(x,y))) \\ \forall x((\text{Cube}(x) \lor \text{Tet}(x)) \rightarrow \exists y(\text{Dodec}(y) \rightarrow \text{Larger}(y,x))) \end{array}$