Truth-functional compounds containing quantifiers

Domain limited to people in this room

- 1. If anyone cheats, someone will be punished.
- 2. If anyone cheats, he or she will be punished.
- 3. Only those who cheat will be punished.
- 4. If everyone studies, no one will fail.
- 5. No one who studies will fail.

(Anyone who studies will not fail.)

- 6. I'll be disappointed in anyone who cheats.
- 7. If anyone cheats, I'll be disappointed.
- 8. Everyone will be punished unless someone confesses.

Symbolization with multiple quantifiers

Domain = people,L(x,y) = x likes y $\exists x \forall y L(x,y) =$ There is someone who likes everyone. $\exists x \forall y L(y,x) =$ There is someone whom everyone likes. $\forall x \exists y L(x,y) =$ Everyone likes someone (or other). $\forall x \exists y L(y,x) =$ Everyone is liked by someone (or other).(For everyone, there is someone who likes that person.)

Domain not limited:	F(x,y) = x is a flavor of y i = ice cream	P(x) = x is a person L(x,y)=x likes y

- 1. Everyone likes all flavors of ice cream.
- 2. Some people like all flavors of ice cream.
- 3. Nobody likes every flavor of ice cream.
- 4. For every flavor of ice cream, there is someone who likes it.
- 5. Everyone likes at least one flavor of ice cream.
- 6. There's a flavor of ice cream everyone likes.

Identity and numbers

Dictionary: Domain = states in the US

L(x,y) = x is larger than y

a = Alaskac = Californiat = Texas

- 1. Alaska is larger than any other state.
- 2. Alaska is the only state that is larger than Texas.
- 3. No state is larger than Alaska.
- 4. At least one state is larger than Texas.
- 5. At least two states are larger than California.
- 6. At most one state is larger than Texas.
- 7. At most two states are larger than California.
- 8. Exactly one state is larger than Texas.
- 9. Exactly two states are larger than California.
- 10. Alaska and Texas are the only states that are larger than California.

Dictionary:

f	= Felix	C(x) = x is a cat		h = Herman	H(x,y) = x hates y	
g	= Garfield	P(x) = x is a person		j = Jason	L(x,y) = x likes y	
t =	= Tina	F(x,y) = x is more famous	s than y	Dom	ain = people	
		L(x,y) = x likes y				
1.	. Everyone likes at least one cat. 13. 1		13. N	No one hates himself.		
2.	2. There's no cat that everyone likes. 14. H		14. E [.]	Everyone likes himself.		

Dictionary:

- 3. Felix is the only cat Tina likes.
- 4. There is only one cat that Tina likes.
- 5. Tina likes at most one cat.
- 6. Tina likes at least two cats.
- 7. Tina likes exactly two cats.
- 8. Tina likes at most two cats.
- 9. Tina likes at least three cats.
- 10. If any cat is more famous than Felix, Garfield is.
- 11. Felix is more famous than any other cat.
- 12. Felix is more famous than any other cat except Garfield.

- 15. Nobody hates everybody.
- 16. Nobody hates anybody.
- 17. Nobody hates anybody who likes him or her.
- 18. Everyone who likes anyone likes himself or herself.
- 19. If Jason likes anyone, he likes Herman.
- 20. Herman hates everyone except Jason.
- 21. Jason and Herman do not like any of the same people.
- 22. There is at least one person who likes, and is liked by, Jason.
- 23. There are exactly two people whom both Jason and Herman like.
- 24. Jason hates at most three people.

Answers to Exercises

- 1. $\forall x(P(x) \rightarrow \exists y[C(y) \land L(x,y)])$
- 2. $\neg \exists x(C(x) \land \forall y[P(y) \rightarrow L(y,x)]) \\ \forall x(C(x) \rightarrow \exists y[P(y) \land \neg H(y,x)])$
- 3. $(C(f) \land L(t,f)) \land \forall x([C(x) \land L(t,x)] \rightarrow x=f)$ $(C(f) \land L(t,f)) \land \neg \exists x([C(x) \land L(t,x)] \land x\neq f)$
- 4. $\exists x([C(x) \land L(t,x)] \land \forall y([C(y) \land L(t,y)] \rightarrow y=x))$
- $\exists x([C(x) \land L(t,x)] \land \neg \exists y([C(y) \land L(t,y)) \land y \neq x))$
- 5. $\neg \exists x \exists y ([(C(x) \land C(y)) \land (L(t,x) \land L(t,y))] \land x \neq y)$
- 6. $\exists x \exists y ([(C(x) \land C(y)) \land (L(t,x) \land L(t,y))] \land x \neq y)$
- 7. $\begin{aligned} &\exists x \exists y [([(C(x) \land C(y)) \land (L(t,x) \land L(t,y))] \land x \neq y) \land \neg \exists z ([C(z) \land L(t,z)] \land (z \neq x \land z \neq y))] \\ &\exists x \exists y [([(C(x) \land C(y)) \land (L(t,x) \land L(t,y))] \land x \neq y) \land \forall z ([C(z) \land L(t,z)] \rightarrow (z = x \lor z = y))] \\ &\exists x \exists y [([(C(x) \land C(y)) \land (L(t,x) \land L(t,y))] \land x \neq y) \land \forall z [\neg (z = x \lor z = y) \rightarrow \neg (C(z) \land L(t,z))]] \\ &\exists x \exists y [([(C(x) \land C(y)) \land (L(t,x) \land L(t,y))] \land x \neq y) \land \forall z [(z \neq x \land z \neq y) \rightarrow \neg (C(z) \land L(t,z))]] \\ &\exists x \exists y [([(C(x) \land C(y)) \land (L(t,x) \land L(t,y))] \land x \neq y) \land \forall z [(z \neq x \land z \neq y) \rightarrow \neg (C(z) \land L(t,z))]] \end{aligned}$
- 8. $\neg \exists x \exists y \exists z[([(C(x) \land C(y)) \land C(z)] \land [(L(t,x) \land L(t,y)) \land L(t,z)]) \land [(x \neq y \land x \neq z) \land y \neq z]]$ 9. $\exists x \exists y \exists z[([(C(x) \land C(y)) \land C(z)] \land [(L(t,x) \land L(t,y)) \land L(t,z)]) \land [(x \neq y \land x \neq z) \land y \neq z]]$
- 10. $\exists x[C(x) \land F(x,f)] \rightarrow F(g,f)$ $\forall x([C(x) \land F(x,f)] \rightarrow F(g,f))$
- 11. $C(f) \land \forall x[(C(x) \land x \neq f) \rightarrow F(f,x)]$ $C(f) \land \forall x[C(x) \land x \neq f) \rightarrow F(f,x)]$
- 12. $[(C(f) \land C(g)) \land \neg F(f,g)] \land \forall x[(C(x) \land (x \neq f \land x \neq g)) \rightarrow F(f,x)]$ $[(C(f) \land C(g)) \land \neg F(f,g)] \land \forall x[(C(x) \land \neg (x=f \lor x=g)) \rightarrow F(f,x)]$ $[(C(f) \land C(g)) \land \neg F(f,g)] \land \forall x[(C(x) \land \neg F(f,x)) \rightarrow (x=f \lor x=g)]$
- $[(C(f) \land C(g)) \land \neg F(f,g)] \land \neg \exists x [(C(x) \land (x \neq f \land x \neq g)) \land \neg F(f,x)]$ 13. $\neg \exists x H(x,x)$ (preferred)
- $\forall x \neg H(x,x)$
- 14. ∀xL(x,x)
- 15. $\neg \exists x \forall y H(x,y)$ (preferred) $\forall x \exists y \neg H(x,y)$
- 16. $\neg \exists x \exists y H(x,y)$ (preferred) $\forall x \forall y \neg H(x,y)$
- 17. $\neg \exists x \exists y (L(y,x) \land (x,y))$ or $\neg \exists x \exists y (L(x,y) \land H(y,x))$ $\forall x \forall y (L(y,x) \rightarrow \neg H(x,y))$ or $\forall x \forall y (L(x,y) \rightarrow \neg H(y,x))$
- 18. $\forall x(\exists yL(x,y) \rightarrow L(x,x))$ (preferred) $\forall x(\neg L(x,x) \rightarrow \neg - -\exists yL(x,y))$
- 19. $\exists x L(j,x) \rightarrow L(j,h)$ (preferred) $\forall x [L(j,x) \rightarrow L(j,h)]$
- 20. $\neg H(h,j) \land \forall x(x \neq j \rightarrow H(h,x))$ (preferred) $\neg H(h,j) \land \forall x(x=j \lor H(h,x))$ $\neg H(h,j) \land \neg \exists x(x\neq j \land \neg H(h,x))$
- 21. $\neg \exists x[L(j,x) \land L(h,x)]$ (preferred) $\forall x \neg [L(j,x) \land L(h,x)]$ $\forall x[\neg L(j,x) \lor \neg L(h,x)]$ 22. $\exists x(L(x,j) \land L(j,x))$ (preferred)
- $\neg \forall x(L(x,j) \land L(j,x)) \qquad (pre \neg L(j,x))$
- 23. $\exists x \exists y[([(L(j,x) \land L(h,x)) \land (L(j,y) \land L(h,y))] \land x \neq y) \land \neg \exists z[(L(j,z) \land L(h,z)) \land (z \neq x \land z \neq y)]] \\ \exists x \exists y[([(L(j,x) \land L(h,x)) \land (L(j,y) \land L(h,y))] \land x \neq y) \land \forall z([L(j,z) \land L(h,z)] \rightarrow (z = x \lor z = y))] \\ \exists x \exists y[([(L(j,x) \land L(h,x)) \land (L(j,y) \land L(h,y))] \land x \neq y) \land \forall z[\neg (z = x \lor z = y) \rightarrow \neg (L(j,z) \land L(h,z))]] \\ \exists x \exists y[([(L(j,x) \land L(h,x)) \land (L(j,y) \land L(h,y))] \land x \neq y) \land \forall z[(z \neq x \land z \neq y) \rightarrow \neg (L(j,z) \land L(h,z))]]$
- 24. $\neg \exists x_1 \exists x_2 \exists x_3 \exists x_4([([H(j,x_1) \land H(j,x_2)] \land H(j,x_3)) \land H(j,x_4)] \land ([(x_1 \neq x_2 \land x_1 \neq x_3) \land x_1 \neq x_4] \land (x_2 \neq x_3 \land x_2 \neq x_4) \land x_3 \neq x_4)]$