Paleocene pareorine turritellid gastropods from the Pacific slope of North America

Richard L. Squires
Department of Geological Sciences
California State University
Northridge, CA 91330-8266 USA
richard.squires@csun.edu

LouElla R. Saul
Invertebrate Paleontology Section
Natural History Museum of Los Angeles County
900 Exposition Boulevard
Los Angeles, CA 90007 USA
lousaul@earthlink.net

ABSTRACT

This paper presents the first detailed study of *Mesalia martinezensis* (Gabb, 1869) and *Mesalia clarki* (Dickerson, 1914a), the only two known pareorine (spout-bearing) turritellid gastropods from the Pacific slope of North America. Both species are redescribed, in light of new morphologic information that also confirms their assignment to genus *Mesalia* Gray, 1847, which we believe to be congeneric with *Sigmesalia* Finlay and Marwick, 1937. New stratigraphic information allows for refinement of the chronologic range of each species. *Mesalia martinezensis* is of early late Paleocene (late Danian) to early late Paleocene (early Thanetian) age and ranges from northern California to northern Baja California. *Mesalia clarki* is of late middle to early late Paleocene age (late Selandian to early Thanetian) and is known only from California; in southern California it is restricted to a coralline-algal facies. Both species have considerable variability in their spiral sculpture.

Mesalia has long been reported (e.g., Cossmann, 1912) as originating during either the Late Cretaceous (Maastrichtian) in northern Africa or the Early Paleocene (Danian) in northern Africa and western Iran. Our review of the literature shows that the genus most likely originated during either the Late Cretaceous (Maastrichtian) or the Early Paleocene (Danian) in this Old World region.

INTRODUCTION

The object of this study was to rectify the identification uncertainties concerning the only two known pareorine (spout-bearing) turritellid gastropod species from shallow-marine rocks on the Pacific slope of North America. They are *Mesalia martinezensis* (Gabb, 1869) and *Mesalia clarki* (Dickerson, 1914a). Most modern workers (e.g., Zinsmeister, 1983) have generally placed both species in *Mesalia* Gray, 1847, but some workers (e.g., Saul, 1983a: fig. 2; Squires, 2003: table 2.4) have been hesitant to unequivocally use the genus name because of inadequate morphologic information about these species. The shape of the aperture of the latter one was unknown until now, and apertural information is critical in distinguishing pareorine gastropods from similar looking turritellids (see “Systematic Paleontology” for morphological comparisons). There has also been the possibility that *Mesalia macreadyi* Waring, 1914, which has commonly been put into synonymy with *M. martinezensis*, could be a distinct species.

We conclude that there are only two species, both belonging to *Mesalia*, which we believe to be congeneric with *Sigmesalia* Finlay and Marwick, 1937. In addition to providing new morphologic information about the study area *Mesalia*, we refine their geographical (Figure 1) and chronologic ranges (Figure 2). Both *M. martinezensis* and *M. clarki* have considerable variability in their spiral sculpture.

Mesalia has long been reported (e.g., Cossmann, 1912) as originating during the Late Cretaceous in the region between northern Africa and western Iran. Our review of the literature shows that the genus most likely originated during either the Late Cretaceous (Maastrichtian) or the Early Paleocene (Danian) in this Old World region.

Modern systematic studies of *Mesalia* are sorely lacking as are detailed ecologic studies of the few extant species. The classification scheme used here follows that of Bouchet et al. (2005: 249), and morphological terms are taken from Cox (1960). Pacific slope of North America Turritella zones are taken from Saul (1983b).

Institutional abbreviations used in the text are: ANSP: Academy of Natural Sciences of Philadelphia; LACM: Natural History Museum of Los Angeles County, Malacology Section; LACMIP: Natural History Museum of Los Angeles County, Invertebrate Paleontology Section; UCMP: University of California, Berkeley, Museum of Paleontology.
STRATIGRAPHY AND DEPOSITIONAL ENVIRONMENTS

The geologic ages of the formations and most of the depositional environments of the formations containing the two studied species are mentioned in Squires (1997).

Mesalia martinezensis is widespread in the study area (Figure 1) and always found in siltstone or sandstone beds that formed either as storm accumulations of mollusk-rich assemblages in shelfal-marine depths or as localized displaced shallow-marine mollusks in deeper depths. These mollusks commonly include shallow-marine mollusks such as naticid and buccinid gastropods, as well as glycymerid and crassatellid bivalves. All are indicative of normal marine salinities.

The type locality of *Mesalia martinezensis* has been generally assigned (e.g., Keen and Benton, 1944) to the “Martinez Formation” in the vicinity of the city of Martinez, Contra Costa County, northern California (Figure 1). The history of how early workers referred to this originally poorly defined “formation” has been summarized by Mallory (1959). In this present study, we follow the work of Weaver (1953), who refined the stratigraphy of the Paleocene and Eocene formations in the vicinity of the area where the “Martinez group” was first established. He established new stratigraphic names, and the rocks that pertain to the type locality of *M. martinezensis* belong in his Paleocene Vine Hill Sandstone.

Mesalia clarki is only known from two locales: 1) its type locality (UCMP loc. 1540, see “Appendix”) on the north flank of Mount Diablo, Contra Costa County, northern California, and 2) from the Santa Monica Mountains, Los Angeles County, southern California (Figure 1). Its type locality is near the site of Stewartville, and approximately 24 km east-southeast of the city of Martinez, and, according to Dickerson (1914a: 74), this locality is “300 to 400 ft. above the base of the Martinez in hard, gray-green glauconitic sandstone.” Numerous mollusks have been found at this locality (Dickerson, 1914a: 75). They consist of turritellid and buccinid gastropods, crassatellid bivalves, and other shallow-marine species, all indicative of normal marine salinities. *Turritella infragranulata pacheocensis* Stanton, 1896, which is found at this locality, is indicative of the upper middle Paleocene (upper Selandian) (Figure 2). On the geologic map of Brabb et al. (1971), the locality plots within the glauconitic sandstone lower member of the “Martinez” Formation. Megafossils are generally scarce in the “Martinez” Formation in the vicinity of this type locality (E. Brabb, personal commun.), thus, it seems plausible that the fossils probably occur in storm-derived, isolated lenses.

Mesalia clarki in the Santa Susana Formation in the Palisades Highlands area of the Santa Monica Mountains, southern California, is always found near outcrops of coralline-algal limestone. Hoots (1931: 91–92, 133–134, pl. 19B) reported that these limestones are resistant, can be cliff forming, weather white, are nodular and irregularly bedded, up to 35 m thick, up to 1200 m in lateral extent, and commonly terminate in an abrupt wall. Additional geologic and/or paleontologic details concerning these limestones are mentioned in Strathearn et al. (1988), Colburn (1996), Squires and Saul (1998), Squires and Kennedy (1998), and Squires and Saul (2001).

At LACMIP loc. 10508, in the Palisades Highlands area, abundant specimens of *M. clarki* are found in a thin coralline-algal-rich micaceous muddy siltstone bed about 1 m stratigraphically below a blocky, coralline-algal-limestone interval approximately 24 m thick. Also found
in this bed is the large neritid gastropod *Corsania (Janucitia) rhoga* Saul and Squires, 1997, as well as the bivalves *Plicatula lapidicina* Squires and Saul, 1998, and *Plicatula trailerensis* Squires and Saul, 1998. Occurring in nearby beds in close association with the coralline-algal deposits are the gastropods *Terebratula susana* Squires and Kennedy, 1998, and *Campanile greennellum* Hanna and Hertlein, 1939. All of these aforementioned mollusks indicate very nearshore, tropical to subtropical conditions (Squires and Saul, 1997; Squires and Kennedy, 1998). The latter workers concluded that the coralline-algal limestones, like those at locality 10508, were deposited in a protected bay (no deeper than 40 to 70 m) with warm-algal-limestone buildups associated with shoals on the bay floor. These limestone buildups are very similar in lithology and sedimentologic/tectonic setting to limestones in the Paleocene Sepulutra and Bahia Ballenas formations in northern Baja California (Abbott et al., 1995), as well as similar to limestones in the upper Paleocene to lower middle Eocene Sierra Blanca Limestone in Santa Barbara County, southern California. These limestones were deposited when tectonic plate-edge strain in the fore-arc basin caused local basement highs to form within the otherwise deeper marine environment (Whidden et al., 1995; Abbott et al., 1995). It is likely that the Santa Susana Formation coralline-algal limestones formed under similar conditions.

Although *Mesalia clarki* and *Mesalia martinezensis* both occur in the Santa Susana Formation in the Santa Monica Mountains, southern California, they never occur together in the same beds. *Mesalia martinezensis* is not associated with the coralline-algal facies there or anywhere else in the study area.

PALEOBIOGEOGRAPHIC IMPLICATIONS

Kiel and Bandel (2004: 120, fig. 71) reported two specimens of *Mesalia cf. multilineata* (J. Müller, 1851) from Cenomanian strata at the Kasssenberg quarry in Germany. If these specimens actually belong to *Mesalia*, they would be the geologically oldest. The conical-turritulate shell with convex whorls bearing strong spiral ribs does resemble *Mesalia*, but there are no specimens with an intact aperture nor with a protoconch. *Turritella multilineata* J. Müller (1851: 29, pl. 4, figs. 4, 6) was originally reported from the lower Cretaceous strata at southern India (Stoliczka, 1868: 227, pl. 17, fig. 15) from the Siwalik rocks of the Himalayas. These limestones were deposited when tectonic plate-edge strain in the fore-arc basin caused local basement highs to form within the otherwise deeper marine environment. However, there are no specimens with an intact aperture. *Turritella multilineata* was also figured by G. Müller (1898: 97, pl. 13, figs. 4, 5), who reported it from middle Santonian to lower Cretaceous strata at Braunschweig/Tilsede, Germany. There is also a mention of *T. multilineata* in Kollmann and Odin (2001: 441), and they also consider this Cretaceous species to belong to genus *Turritella*. The pleural angle of J. Müller’s figure is much narrower than that of Kiel and Bandel (2004), and in our opinion, Kiel and Bandel’s M. cl. *M. multilineata* (J. Müller) does not look like J. Müller’s species. Kiel and Bandel (2004) tentatively synonymized J. Müller’s specimens and G. Müller’s specimens with their Kasssenberg quarry specimens. We believe, however, that Kiel and Bandel’s Cenomanian specimens have nothing to do with *T. multilineata* and represent, at best, a very questionable *Mesalia*. More specimens of this possible *Mesalia* from the Cenomanian of Germany are needed in order to determine its generic assignment.

Cossmann (1912: 126) reported the chronologic range of *Mesalia* to be Late Cretaceous (Turonian) to Recent, as did Wenz (1939), who apparently simply reiterated Cossmann’s findings. We were unable, however, to corroborate any of Cossmann’s Cretaceous occurrences. He reported *Mesalia gazellensis* Whitfield (1891: 424, pl. 9, fig. 10) as being from the Turonian of Syria, but the aperture of this species is unknown. In addition, the sculpture is obsolete, which is unlike *Mesalia*.

Cossmann (1912: 126) listed five *Mesalia* species of Late Cretaceous (Senonian) age, and these are discussed in the following sentences. *Arcocia indica* Stoliczka (1868: 215, 469, pl. 16, figs. 12, 12a; pl. 19, fig. 6) from southern India is not a *Mesalia*. This species is also discussed later under “Systematic Paleontology.” Specimens of *Turritella ventricosa* Forbes (1846: 123, pl. 13, fig. 3; Stoliczka, 1868: 227, pl. 17, fig. 15) from southern India are missing the aperture. *Turritella multilineata* Gabb (1869: 159, pl. 28, fig. 51) from California is not of Cretaceous age. *Mesalia nettoana* White (1857: 164–165, p. 18, figs. 3, 4) from the Maria Farinha beds in Brazil is Paleocene age. *Mesalia hebe* White (1857: 165, pl. 18, fig. 5), also from Brazil, looks like a juvenile specimen of *M. nettoana*.

Cossmann (1912: 126) also listed two Late Cretaceous (Maastrichtian) species. The first one is *Mesalia jovisamonis* (Quaas, 1902: 256, pl. 26, figs. 18–20), which Quaas reported, in a very generalized way, to be associated with the *Exogyra overwegi* biozone at Ammonite Hill in the Great Sand Sea in western Egypt. This biozone can also be recognized in the Maastrichtian (but not latest Maastrichtian) part of the Ammonite Hill Member of the Campanian to Paleocene Dakhla Formation in western Egypt (Barthel and Herrmann-Degen, 1981). Tantawy et al. (2001) assigned this member an early to late Maastrichtian age, based on planktic foraminifera, calcareous nannofossils, and macrofossils. They also determined, however, that the entire formation ranges in age from early Maastrichtian to early Danian. Immediately above the widespread K/T disconformity in the region, a sedimentologically complex sequence marks the lower Danian Bir Alu Minqar horizon, which contains a mixture of Maastrichtian (reworked) and Danian fossils, including both microfossil and macrofossil species (e.g., including some ammonites). Unfortunately, Quaas did not provide any information as to where exactly in the stratigraphic section he collected the specimens of *M. jovisamonis*. His specimens were lost, so it is not possible to match their rock matrix to actual outcrops. Recollecting of this gastropod is necessary to decipher its exact geologic age.
Abbass (1963: 39–40, pl. 2, figs. 20–22) illustrated *M. jovisammonis* from eastern Egypt and referred to it as *Mesalia* (*Woodsalia*) *jovisammonis* of Maastrichtian age. He did not provide, however, any discussion as to how this age was determined.

Mesalia cf. *M. multisulcata* (Lamarck 1804), reported by Serra (1937: 313–315, pl. 16, figs. 12, 12a, 13) from near Tripoli, Libya, looks like it might be conspecific with *Mesalia jovisammonis*. Serra provided no detailed stratigraphic or geologic age information.

The second species that Cossmann (1912) listed from the Maastrichtian is *Mesalia fasciata* (Lamarck, 1804) from Iran. Cossmann based this occurrence on work by Douvillé (1904: 329–330, pl. 47, figs. 23–27), who reported *M. fasciata* from the “Couches à Cérites” beds in the Luristan region in west-central Iran. Douvillé (1904) believed that these Iranian specimens of *M. fasciata*, whose type locality is in middle Eocene (Lutetian Stage) strata at Grignon in Paris Basin, France (Eames, 1952: 34), are of Maastrichtian age, but the “Couches à Cérites” beds contain the bivalve “*Cardita* beaumontii” d’Archiac and Hâime, 1854, which is diagnostic of earliest Danian age in Iran and Pakistan (Douvillé, 1928; Eames, 1952; Davies, 1975). *Mesalia fasciata* is long-ranged geologically (early Paleocene to late Eocene) and widespread geographically (western Europe to Pakistan) (Eames, 1952).

Another *Mesalia* that needs investigation as to its precise stratigraphic position and geologic age is *Mesalia foucheri* Pervinquiére (1912: 44, pl. 3, figs. 6–15), from the Ghadames (Garat Temblili) region in Tunisia, northern Africa. Pervinquiére (1912: 336) reported the species as being of Maastrichtian age, but no critical geologic details are provided. He did differentiate between Maastrichtian and Danian fossils; thus, like in nearby Egypt and Libya, the stratigraphic section containing *M. foucheri* and other macrofossils in Tunisia, also spans the K/T boundary.

Two species of so-called *Woodsalia* Olsson, 1929, from Upper Cretaceous (Campanian?) strata in northwestern Peru (Olsson, 1944) might eventually be placed in *Mesalia*, once their apertures become known. They are: *Woodsalia paitana* Olsson (1944: 69–70, pl. 11, fig. 5) and *Woodsalia paitana robusta* Olsson (1944: 70, pl. 11, figs. 3, 9).

The so-called *Mesalia* (*Mesalia*) *mauryae* Allison (1955: 414–415, pl. 41, fig. 3; Perrilliat, 1989: 149, fig. 51h) from the upper Aptian upper member of the Alisitos Formation, Punta China region, Baja California, Mexico, is, according to Squires and Saul (2006), *Turritella seriatinggranulata* Roemer, 1849.

In addition to the above-mentioned Old World Danian species of *Mesalia*, three New World Danian species are known from the Gulf Coast of the southeastern United States. They are from the Clayton Formation (Palmer and Brann, 1966), which is of earliest Danian age (Dockey, 1986). The three species are: *Mesalia allentonensis* (Aldrich, 1894: 246–247, pl. 13, figs. 4a, 4b, 6; Stenzel and Turner, 1942: card 110); *Mesalia hardemanensis* (Gabb, 1860: 392, pl. 68, fig. 15; Stenzel and Turner, 1942: card 116); and *Mesalia pumila* (Gabb, 1860: 392, pl. 68, fig. 14; Stenzel and Turner, 1942: card 118).

In summary, our search of the literature revealed that *Mesalia* most likely originated during either the Maastrichtian in northern Africa or the early Paleocene (Danian) in northern Africa and western Iran. During the Danian it spread quickly to the Gulf Coast of the United States by means of westward-flowing ocean currents emanating from the western Tethyan region. These currents, which existed during the Late Cretaceous (Gordon, 1973; Johnson, 1999) and continued into the Paleocene and Eocene (Saul, 1986; Squires, 1987), were part of a circumglobal-tropical current that contributed to a widespread dispersal of marine biota (Haq, 1981). By the late Danian, it reached California and northern Baja California, Mexico, as well as Belgium (Cox, 1930; Glibert, 1973). By middle Paleocene, it reached Greenland (Kollmann and Peel, 1983), and by the late Paleocene, it reached Nigeria (Adegoke, 1977). During the Paleocene and Eocene, *Mesalia* reached its peak diversity and became most widespread, with occurrences mainly in the Old World western Tethys Sea region. We did not detect, however, any reported occurrences in Australia, New Zealand, Japan, or Antarctica. The Paris Basin of France (see Cossmann and Pissarro, 1910–1913), southwestern Nigeria (Adegoke, 1977), and the Gulf Coast of the United States (Stenzel and Turner, 1940, 1942; Palmer and Brann, 1966) are the principal areas in which numerous species of *Mesalia* have been recognized. Some species became very widespread. For example, as mentioned earlier, *Mesalia fasciata* ranged from the Paris Basin, France to Pakistan (Eames, 1952). After the warm greenhouse conditions that existed during the Eocene, *Mesalia* was much reduced in its distribution and mainly occurred in what is now the Mediterranean Sea region (Cossmann, 1912).

MODERN MESALIA

Mesalia is extant and review of the scant literature, as well as use of the internet (note: <http://www.alboranshells.com/turritellidae> was particularly helpful), revealed as many as possibly six species. The they are the following: *M. mescal* (Adanson, 1757), *M. brevisialis* Lamarck, 1822; *M. varia* Kiener, 1843; *M. opalina* Adams and Reeve, 1850; *M. freytagi* von Maltzan, 1884; and *M. flammifera* Locard, 1897, which includes the subspecies *M. flammifera* *flammifera* Locard, 1897 and *M. flammifera* *simplicis* Locard, 1897. There is much confusion as to exactly how many species there are, and potential synonyms need to be resolved. For example, some workers (e.g., Smith, 1915; Bowles, 1939) equated *M. mescal* with *M. brevisialis*, but other workers (e.g., Ardovini and Cosignani, 2004) separated them. Bowles (1939) gave a thorough review of the nomenclatural history of *Mesalia brevisialis*.
A comprehensive malacological study of the modern species of *Mesalia* is greatly needed. Because of the uncertainties stemming from the poorly known systematics, it is confusing to try to determine which species is found where. We were able to establish with certainty (see references below), however, that modern *Mesalia* is only found in the Atlantic coastal areas of southern Portugal, southwestern Spain, Morocco, Canary Islands, Western Sahara, Mauritania, Senegal, and Guinea, as well as in the westernmost Mediterranean Sea, particularly in the Alboran Sea (i.e., Strait of Gibraltar to southern Spain on the north and Morocco on the south) and the Aegean Sea region of western Turkey.

Mesalia mesal and *M. brevialis* have the widest distribution. *Mesalia mesal* has been reported from the Algarve region of southern Portugal, the Algeciras region of southwestern Spain, and the Alboran Sea (Poppe and Goto, 1991), the Canary Islands (Macedo and Borges, 1999), Senegal (Bouchet, 1977; Ardovini and Cossignani, 2004), and western Turkey (Demir, 2003). *Mesalia brevialis* has been reported from the Algarve region of southern Portugal (Afonso et al., 2000; Alves et al., 2003), southwestern Spain and the Alboran Sea (Hidalgo, 1917), Senegal (Ardovini and Cossignani, 2004), and Guinea (Pasteur-Humbert, 1962). *Mesalia opalinia* has been reported from the Canary Islands and Morocco (Poppe and Goto, 1991), as well as from Mauritania (Ardovini and Cossignani, 2004). The other modern species/subspecies of *Mesalia* are apparently restricted to the northwestern coast of Africa (Ardovini and Cossignani, 2004).

Mesalia melanoides Reeve, 1849, was reported (Smith, 1915) to be from West Australia, but this species is now the type species of *Neodistoma* Cotton, 1932, which differs from *Mesalia* by having axial sculpture on the early spire. Marwick (1957) summarized the systematics of *Neodistoma* and classified it as a paroerine.

Mesalia is found today on both muddy and sandy bottoms in coastal waters ranging in depth from lower intertidal to 20 m (Hidalgo, 1917; Pasteur-Humbert, 1962; Poppe and Goto, 1991; Afonso et al., 2000; Demir, 2003; Alves et al., 2003). Bouchet (1977) reported that *M. mesal*, although not common there, can be found in the seaward part of mangrove-swanp systems along the coast of Senegal. Specimen LACM 17316 (Figures 3–7) of *M. mesal* was collected in approximately 5 m depth, on sand and rubble in Senegal.

Large numbers of *M. mesal* have been reported (Afonso et al., 2000) as almost always being partially infaunal (with their apices pointed upward) when found on exposed low-tide mud flats on the inner lagoon sides of islands within the Bio Formosa coastal-lagoon system of southern Portugal.

The modern ecological parameters mentioned above are not totally reliable for fossil *Mesalia* because preferences for substrate and depth of water might have possibly changed over time. In addition, the fossil occurrences of *Mesalia* had a pan-Tethyan distribution, whereas the modern occurrences have contracted primarily to the Iberian Peninsula, Alboran Sea, and northwestern Africa.

SYSTEMATIC PALEONTOLOGY

Superfamily Cerithioidea Fleming, 1822

Family Turritellidae Lovén, 1847

Discussion: Allmon (1996: 9–12, table 1) thoroughly reviewed the history of the classification of turritellid gastropods and listed the five subfamilies and all the genera/subgenera within each subfamily. These subfamilies are: *Turritellinae* Löven, 1847; *Protominae* Marwick, 1957; *Pareorinae* Finlay and Marwick, 1937; *Vermiculariae* Lamark, 1799; and *Turritellopsinae* Marwick, 1957. Bouchet et al. (2005) included the first four of these subfamilies, but removed *Turritellopsinae*. Instead, they included subfamily *Orectospirinae* Habe, 1955.

Subfamily Pareorinae Finlay and Marwick, 1937

Discussion: Pareorine turritellids are characterized from the other subfamilies of family Turritellidae by having an aperture obliquely effuse over the anterior end of the columella and forming a sinus (short spout), with the adapical margin of the sinus usually making a spiral ridge on the columella (Marwick, 1957).

Mesalia can be readily identified if its aperture is intact, but when it is missing, workers have commonly misassigned it to the similar looking genus *Turritella* Lamark, 1799, sensu lato, a group comprising at least 35 genera and subgenera names (Allmon, 1996), all of which are turritellines whose apertures do not have a sinus (short spout) at the anterior end of the aperture nor have a spiral ridge on the columella. In addition, according to Smith (1915), the conoide operculum of *Mesalia* is paucispiral and not multispiral, as in *Turritella,* but this later distinction is not useful when studying fossil species.

Ten pareorine genera were listed by Marwick (1957), who also provided illustrations of the growth-line traces of some of these genera. Comparative information about the stratigraphic range, growth-line details, whorl profile, and protoconch shape of most of these genera was given by Allmon (1996: table 1).

Genus *Mesalia* Gray (*nomen nudum*, 1840), 1847

Type Species: *Cerithium mesal* Adanson, 1757 [=*Turritella mesal* Deshayes, 1843], by original designation; Recent, southern Portugal, southwestern Spain, Alboran Sea, Canary Islands, Senegal, and western Turkey.

Description: Small to large (up to approximately 95 mm shell height), turritelliform, slender to conical round. Pleural angle ranges from 15° to 41°. Protoconch conical, small, smooth, and approximately two whorls. Protoconch to teleconch transition gradual. Teleconch whors up to 16, whorl sides convex to flattish/concave. Sculpture on early juvenile teleconch whors variable, ranging from nearly smooth or with very fine, unicostate, bicostate, or tricostate spiral lirae; sculpture on adult
whorls highly variable, ranging from smooth to numerous, weak to moderately strong closely spaced spiral ribs, but less commonly with fewer and more prominent spiral ribs. Growth lines parasilrugoidal on last whorl (including base); lateral sinus variable in amount of concavity (flexure). Aperture with shallow effuse spout, ranging from somewhat constrained to broad. Adapical edge of spout usually forms weak spiral ridge that continues onto columnella.

Discussion: Mesaliopsis Thiele, 1929 [type species: *Mesalia opalina* (Adams and Reeve, 1850)]. Recent, was reported by Wenz (1939) to be a subgenus of *Mesalia*, but future work might show it to be synonymous with *Mesalia*.

Mesalia somewhat resembles Lithotrochus Conrad, 1855, from Jurassic age from Chile, South America. Cossmann (1912: 125) reported *Lithotrochus* to be a junior synonym of *Mesalia*, but Wenz (1938: 250, fig. 596) and Cox (1960: 1248–1249, fig. 159,11) believed *Lithotrochus* to be a trochid. It is an extraordinarily large gastropod (height 125 mm) with a wide pleural angle, domed upper spire, turritelliform shape, anteriorly carinate whorls, and relatively few spiral ribs. Details of its aperture are unknown.

Cossmann (1912: 125) also reported *Lithotrochus* to be a junior synonym of Arcotia Stoliczka, 1868, whose type species, *Arcotia indica* Stoliczka (1868: 215, 469, pl. 16, figs. 12, 12a; pl. 19, fig. 6) is from Upper Cretaceous (Trichinopoly Group) strata near the town of Alundanapooran, southern India. According to Sundaram et al. (2001: fig. 3), this town's name is also referred to as Ahundalippur and, from information in their map, this town is underlain by the Kulakkalnattam Formation of Turonian age. Wenz (1939) synonymized *Arcotia* with *Mesalia*. Finlay and Marwick (1937) reviewed the morphology of *Arcotia* and reported that, based on its straight growth lines and open umbilicus, this genus is not a synonym of *Mesalia*. They reported, furthermore, that *Arcotia* appears to be a mathildid. Bandel (2000) came to the same conclusion.

Mesalia is similar to the pararine Woodsalia Olsson 1929, whose type species, *Woodsalia negritosensis* Olsson (1929: 13–15, pl. 4, figs. 5, 6) is from lower Eocene rocks in northwestern Peru. Woods (1922: 78–79, pl. 7, figs. 5–7; pl. 8, figs. 1–3) and Wenz (1939: 651, fig. 1852, two views) also illustrated this species. The full shape of the aperture of this Peruvian gastropod, however, is not known.

Genus Sigmesalia Finlay and Marwick, 1937, was originally erected to accommodate a group of Eocene gastropods from the Paris Basin, France that were previously identified as *Mesalia*. There has been no consensus as to whether or not *Sigmesalia* is a distinct genus. Marwick (1957) reported it to be a separate genus, as did Le Renard (1904). Eames (1952) reported it to be a subgenus of *Mesalia*, and Palmer and Brann (1966) reported *Sigmesalia* to be synonymous with *Mesalia*.

Various views of representative specimens of the type species of *Mesalia* are illustrated in Figures 3–9, and various views of a representative specimen of the type species of *Sigmesalia* are illustrated in Figures 10–13. Its type species, *Sigmesalia koeneni* Le Renard, 1994 [new name for *Turritella sulcata* Lamarck, 1804 (original designation), *non* Bosc, 1801], is of middle Eocene (Lutetian) age and from Paris Basin, France. Finlay and Marwick (1937) stated that the aperture and growth lines of the type species of *Mesalia* seem to be generically different than those of the Paris Basin shells, but they did not provide any details. Davies (1971: 312, figs. 677a, 677b) mentioned that the growth lines of *Sigmesalia* have a more flexed outer lip sinus than does *Mesalia*. According to Marwick (1957: 163), *Sigmesalia* differs from *Mesalia* by usually having a wider pleural angle. The following paragraphs deal with our observations concerning these proposed diagnostic features of *Sigmesalia*.

Inspection of representative specimens of several of the Eocene Paris Basin species, including the type species of *Sigmesalia*, stored in the LACMIP collection, as well as inspection of photographs of 17 Paris Basin species (see Cossmann and Pissarro, 1910–1913; pl. 21, figs. 126–1 to 126–15), revealed variability in the shape of the aperture of *Sigmesalia*. For example, the aperture of *Sigmesalia incerta* (Deshayes, 1832; Cossmann and Pissarro, 1910–1913; pl. 21: fig. 126–4, two views) is similar to that of *M. mesal*, in that the spout is broad and not well constrained. The aperture of *Sigmesalia koeneni* however, is better developed (Cossmann and Pissarro, 1910–1913: pl. 21, fig. 126–15).

The amount of flexure of the outer lip sinus is basically similar in all the Eocene Paris Basin species, although *Mesalia solida* (Deshayes, 1861) does show some variability. The amount of flexure of this feature is variable in *M. mesal* and can be similar to the amount seen on Eocene Paris Basin species. Variability in the amount of flexure for both the Eocene and modern *Mesalia* shells can also occur in proximity of growth checks and breakages of the outer lip incurred during the life of the gastropod.

The pleural angle of the Eocene Paris Basin shells is quite variable, ranging from 21° to 41°, but the low end of this range [e.g., *Mesalia ecki* (Laubrière, 1881; Cossmann and Pissarro, 1910–1913: pl. 21, fig. 126–2)] is very close to the value (16° to 18°) on *M. mesal*. *Sigmesalia koeneni* has one of widest pleural angles (41°; see Figures 10 and 12). For comparative purposes, an illustration (Figure 14) is provided for *Sigmesalia solida*. It has a relatively narrow pleural angle of 25°, more like that found on *M. mesal* (Figures 3, 4, and 7).

Other morphologic features that are variable on the Eocene Paris Basin shells are strength and number of spiral ribs, pattern of development of sculpture on the early juvenile teleoconch whors, and degree of indentation of the suture. Even the strength of the spiral ridge (Figure 10) on the columella is variable. *Mesalia mesal* possesses a spiral ridge on the columella, as do most specimens of *Sigmesalia koeneni* (compare Figures 8 and 11).
A few species of *Sigmesalia* are similar to *Mesalia* in having a relatively narrow pleural angle and bicostate sculpture on the early juvenile whorls but not on the adult whorls. They are the following: *Sigmesalia instabilis* (Briart and Cornet, 1873: 86, pl. 12, figs. 9a–9b) of early Paleocene (Danian) age from Belgium; *Sigmesalia salvani* (Adegoke, 1977: 86–88, pl. 14, figs. 10–16) of Paleocene age from Nigeria; and *Sigmesalia fasciata* (Lamarck, 1804: 217) from Eocene strata in France, Belgium, and Pakistan (Cossmann and Pisarro, 1910–1913; Cox, 1930; Eames, 1952); *Sigmesalia pagoda* (Cox, 1930: 160–161, pl. 18, figs. 6a–b, 7a–b) from Eocene strata in Pakistan; *Sigmesalia biplicata* (Bowles, 1939: 328, pl. 34, figs. 6, 8) from Paleocene strata in Alabama; and *Sigmesalia gomin* (Bowles, 1939: 326–327, pl. 33, fig. 9) from Paleocene strata in South Carolina.

The protoconchs of *Mesalia mesal* and *Sigmesalia solida* are very similar (compare Figures 5 and 15); both are small, smooth, have essentially the same shape, and the transition to the teleoconch is gradual.

In summary, we found that the morphologic features of the Eocene Paris Basin shells are variable. We could find no reliable, constant morphologic characters to distinguish *Mesalia* from *Sigmesalia*; hence, we regard them as congeneric.

Mesalia martinezensis (Gabbe, 1869)
(Figures 16–23)

Turrtila martinezensis Gabbe, 1869: 169–170, 228, pl. 28, fig. 51; Dickerson, 1914a: pl. 13, fig. 10; Waring, 1917: 100, pl. 14, fig. 5.

Sigmesalia maccreadyi Waring, 1914: 783; Waring, 1915: fig. 15 [not fig. 14]; Waring 1917: 87–88, pl. 12, fig. 10.

Mesalia martinezensis (Gabbe).—Cossmann, 1912: 126; Stewart, 1927: 353–354, pl. 25, fig. 1; Schenck and Keen, 1940: pl. 20, fig. 5; Merriam, 1941: 127–128, pl. 39, figs. 1–5, 7; Zinsmeister, 1974: 118–119, pl. 12, figs. 5, 9; Zinsmeister, 1983: pl. 2, fig. 14; Paredes-Mejia, 1989: 173–176, pl. 3, figs. 7–10; Saul, 1983a: text-fig. 2, pl. 1, fig. 2.

Mesalia clarki (Dickerson).—Zinsmeister, 1983: pl. 2, fig. 13.

Description: Large (up to approximately 95 mm height). Turrtiliform. Pleural angle approximately 20°. Protoconch unknown. Teleoconch up to 12 whorls, increasing rapidly in size from the apex. Suture slightly impressed. Sculpture consisting only of spiral ribs of differing strength but dominated by carina located anteriorly: ribs generally becoming stronger with growth; spiral threads on interspaces and on carina surface. Carina usually strongly angulate but can be rounded or even subdied. Posterior to carina, several widely spaced spiral ribs of variable strength occur, ranging from tertiaries to primaries; two ribs on uppermost spire, three to four on upper spire, and one to three on lower spire. Anterior to carina, several spiral ribs of variable strength occur, ranging from tertiaries to primaries; approximately five ribs on upper spire and one to two ribs (both occasionally quite prominent) on lower spire. Last whorl with three primaries, both posterior and anterior to carina. Base with three secondaries, anteriormost one weak; ribs obsolete on short neck. Aperture relatively small, D-shaped; columella relatively broad, smooth; spout effuse and short with anterior end projecting slightly; growth-line trace of last whorl (including base) parasignoidal, with lateral sinus flexure strongest in vicinity of carina.

Holotype: ANSP 4344, height 57 mm, diameter 23 mm.

Type Locality: Martinez, northern California (details not given).

Geologic Range: Late early Paleocene to early late Paleocene (near the Danian-Selandian boundary to early Thanetian).

Distribution: DANIAN = *Turrtila peninsularis qualeyi* Zone: lower San Francisco Formation, Warm Springs Mountain, Los Angeles County, southern California (new stratigraphic occurrence, LACMIP loc. 21581). NEAR THE DANIAN-SELANDIAN BOUNDARY = *Turrtila peninsularis qualeyi* Zone transitional with *Turrtila peninsularis* Zone: Martinez Formation, Herndon Creek east of Lower Lake, Lake County, northern California (Stanton, 1896 [faunal list]; Dickerson, 1914a; Merriam, 1941); upper Las Virgenes Sandstone, Simi Hills, Ventura County, southern California (Waring, 1917; Nelson, 1925 [faunal list]; Merriam, 1941; Zinsmeister, 1983; Saul, 1983a). PROBABLY NEAR THE DANIAN-SELANDIAN BOUNDARY: Reworked specimens in Santa Susana Formation, Poison Oak Canyon, north side Simi Valley, Los Angeles County, southern California (new stratigraphic occurrence, LACMIP loc. 21554); Reworked specimens in Stokes Canyon Breccia Member of the middle Miocene Calabasas Formation, Stokes Canyon, Santa Monica Mountains, Ventura County (new stratigraphic occurrence, LACMIP loc. 25281). SELANDIAN = *Turrtila peninsularis* Zone: Lower Vine Hill Sandstone, Martinez area, Contra Costa County, northern California (Weaver, 1953 [faunal list]); lower San Francisco Formation, Pinyon Ridge east of Big Rock Creek, Valymero area, Antelope Valley, Los Angeles County, southern California (Dickerson, 1914b [faunal list]; Merriam, 1941; Kooser, 1980 [faunal list]); lower Santa Susana Formation (= “Martinez marine member” of Nelson, 1925 [faunal list]), Simi Hills, Ventura County, southern California (Kew, 1923 [faunal list]; Nelson, 1925 [faunal list]; Zinsmeister, 1983; Saul, 1983a). LOWER THANETIAN = *Turrtila infragranulata* Zone: Upper Vine Hill Sandstone, Martinez area, Contra Costa County, northern California (Weaver, 1953 [faunal list]); upper Santa Susana Formation, Paliades Highlands, Santa Monica Mountains, Los Angeles County, southern California (new stratigraphic occurrence, LACMIP locs. 7060 and 11717); Sepultura Formation, Mesa San Carlos, northern Baja California, Mexico (Paredes-Mejia, 1989).
Discussion: The largest specimens of this species occur in the lower San Francisquito Formation, Pinyon Ridge east of Big Rock Creek, Valymero area, Antelope Valley, Los Angeles County, southern California.

There is considerable variability in the strength of the spiral ribs on *M. martinezensis*. Most specimens are carinate on all whorls, including the last whorl. On some specimens, however, the carina becomes weaker on the later whorls as the other spiral ribs become stronger, giving these whorls a convex shape (Figures 19–21), like shells misidentified by some workers as *Turritella macreadyi* Waring, 1914.

The overall teleoconch morphology of the 10 mm-high tip of *Mesalia martinezensis* superficially resembles that of the 15-mm high mathildid *Carinathilda diminuata* (Perrilliat, Vega, and Corona, 2004) illustrated by Kiel et al. (2002: 329–330, fig. 2.4) from the lower Maastrichtian of the Mexcala Formation, Guerrero, southern Mexico. *Carinathilda diminuata* is definitely a mathildid because it has a heterostrophic protoconch. The resemblance be-

Figures 16–23. *Mesalia martinezensis* (Gabb, 1869). Specimens coated with ammonium chloride. 16–18. Hypotype LACMIP 13399, height 58 mm, diameter 25.4 mm. 16. Apertural view. 17. Oblique apertural view. 18. Abapertural view. 19. Hypotype LACMIP 13400, LACMIP loc. 22557, apertural view, height 36.3 mm, diameter 14.1 mm. 20. Hypotype LACMIP 13401, LACMIP loc. 21607, abapertural view, height 38.3 mm, diameter 19.3 mm. 21. Hypotype LACMIP 13402, LACMIP loc. 22698, abapertural view, height 33.9 mm, diameter 21.6 mm. 22. Hypotype LACMIP 13403, LACMIP loc. 26897, apertural view, height 10.6 mm, diameter 6.5 mm. 23. Hypotype LACMIP 13404, LACMIP loc. 22330, base, diameter 17.2 mm.
between these two gastropods, nevertheless, provides evidence that the Late Cretaceous mathildids and lower Paleogene turritellids can have similar looking adult shells.

Mesalia martinezensis resembles “Mesalia” virginiae Stilwell et al. (2004: 29–30, pl. 5, figs. 6–10) from lower Paleocene (Danian) rocks on Seymour Island, Antarctic Peninsula, but M. martinezensis has a subtle effuse spout rather than the longer and more distinct, twisted narrow anterior canal that “M.” virginiae possesses. In addition, M. martinezensis has stronger ribs and a parasigmoidal growth line, rather than an opisthocysty one on the last whorl. In our opinion, the aperture of “M.” virginiae is unlike that of Mesalia.

Gabb (1889) mentioned that the broadly expanding whorl of martinezensis approaches that seen on Turritella robusta Gabb (1864: 135, pl. 21, fig. 74; not = T. (Haustrator) robusta Grzybowski, 1899), but Merriam (1941: 128) reported that the Late Cretaceous T. robusta, which is represented by a single poorly preserved type specimen, is probably not a Mesalia. This type specimen has an umbilicus, therefore it is not a turritellid. It is from the Redding area, northern California, and not from Tuscan Springs, as erroneously reported by Merriam (1941). Jones et al. (1978: pl. 1, fig. 19) identified this specimen, which is of Turonian age, to be Glaucocinia? robusta (Gabb, 1864).

Merriam (1941: 10, 116) stated that mainly in profile the Pacific slope Miocene Turritella tembloreensis Wiedey, 1928, might readily be confused with Mesalia martinezensis. The latter also resembles the Pacific slope Miocene Turritella tembloreensis triteschi Hertlein, 1928, and Turritella ocyonana Conrad, 1857. The latter, however, has a different growth line. In addition, T. martinezensis strongly resembles Turritella fredeai Hodson, 1926, of Miocene age from northern Colombia and northern Venezuela. None of these above-mentioned Miocene species, however, has the effuse spout of Mesalia.

Mesalia clarki (Dickerson, 1914a)
(Figures 24–32)

Description: Medium small (up to approximately 31 mm height). Turritelliform. Pleural angle approximately 21 to 22°. Protoconch unknown. Teleoconch up to 12 whorls, consisting of two whorl shapes: flatish rounded and anteriorly angulate. Sutural area indented. Sculpture consisting only of spiral ribs, variable in number, strength, and spacing. Flattish to rounded whorl shape: upper spire with one or two secondaries on posterior part and two (bicostate) primaries on anterior part; lower spire and last whorl with seven to eight nearly equal strength primaries (anteriorly located ribs can be somewhat angulate); spiral threads on all interspaces; posteriormost rib part of broad band; ribs on anterior part of whorl tend to be slightly stronger than posteriorly located ribs; base of last whorl with three ribs. Angulate whorl shape: upper spire with one secondary on posterior part and two (bicostate), well developed, flat-topped primaries on anterior part; lower spire and last whorl with three primaries on posterior part and two stronger primaries, with one secondary in between each, on anterior part; spiral threads on all interspaces. Base (including short neck) of last whorl with approximately seven, evenly spaced ribs; interspaces and ribs covered by spiral threads. Aperture small; columella narrow with thin cal- lus, occasionally with single,weak fold, slight twist on anterior end of columella. Spout effuse, short, and narrow. Growth-line trace on last whorl (including base) parasigmoidal, with lateral sinus flexure strongest medi ally.

Holotype: UCMP 11936, height 25 mm, diameter 16.5 mm.

Type Locality: UCMP loc. 1540.

Geologic Range: Late Paleocene = Turritella infragranulata Zone.

Distribution: “Martinez” Formation, northeast side of Mount Diablo, Contra Costa County, northern California (Dickerson, 1914a; Merriam, 1941; Zinsmeister and Paredes-Mejia, 1988 [faunal list]; upper Santa Susana Formation, Trailer and Quarry canyons, Los Angeles County, Santa Monica Mountains, southern California (Strathearn et al., 1988 [faunal list]; Squires and Saul, 1998: 1025).

Discussion: Mesalia clarki is abundant in the upper Santa Susana Formation at LACMIP loc. 10508, in the Santa Monica Mountains, Los Angeles County, southern California. The anterior ends of the shells are very fragile, and nearly all the specimens have incomplete apertures. None of the specimens has retained their protoconch, and most specimens are missing their upper spire. Growth lines are hard to discern, usually visible only on a single whorl (typically the penultimate whorl), and were rarely preserved on the base of the last whorl. Some of the specimens appear to have a wider pleural angle (23°) than normal, but these particular specimens have been crushed. A few of the specimens (five percent) have naticid boreholes, and a few other specimens are encrusted, in part, by bryozoans. Rare specimens are coated by calcareous algae.

All previous workers assigned Mesalia clarki to various genera without knowledge of the shape of the aperture. Our cleaning of representative specimens of Dickerson’s species revealed it to have a short, shallow effuse spout (Figures 24–25) and bicostate sculpture on the juvenile whorls (Figure 30). There is considerable variation in the sculpture and the shape of the whorls on M. clarki. Some
specimens have nearly uniform sculpture and flattish whorls (Figure 24), others have carinate whorls (Figure 26), whereas others have uniform sculpture with convex whorls (Figure 29).

Figures 24–32. *Mesalia clarki* (Dickerson, 1914). Specimens coated with ammonium chloride. All from LACMIP loc. 10508. 24. Hypotype LACMIP 13405, apertural view, height 21.5 mm, diameter, 19.6 mm. 25. Hypotype LACMIP 13406, slightly oblique apertural view, height 23.1 mm, diameter 10.8 mm. 26–27. Hypotype LACMIP 13407, height 22.6 mm, diameter 9.4 mm. 26. Abapertural view. 27. Oblique apertural view. 28. Hypotype LACMIP 13408, apertural view, height 23.2 mm, diameter 9.2 mm. 29. Hypotype LACMIP 13409, abapertural view, height 21.5 mm, diameter 11 mm. 30. Hypotype LACMIP 13410, abapertural view, height 23.6 mm, diameter 9.7 mm. 31. Hypotype LACMIP 13411, base, diameter 9.5 mm. 32. Hypotype LACMIP 13408, base of same specimen shown in Figure 28, diameter 8.9 mm.

Zinsmeister (1983: pl. 2, fig. 14), Zinsmeister and Paredes-Mejia (1988: table 1), and Paredes-Mejia (1989: table 3) reported *M. clarki* from the Santa Susana Formation in the Simi Hills, southern California. These re-
ports, however, were based on the misidentification of a specimen of *Mesalia martinezensis* that happens to lack a strong anterior carina on the otherwise convex whorls. *Mesalia clarki* resembles *Motyris aralica* (Michailovski, 1912; Wenz, 1939: 652, fig. 1856) from upper Eocene rocks in the Araf Sea region. *Motyris* Eames, 1952, was formerly known as *Tomyris* Michailovski, 1912. See Marwick (1957; 162–163) for more taxonomic information about *Motyris*. *Mesalia clarki* differs from *M. aralica* by not having tabulate whorls with strongly indented sutures. The full aperture of *M. aralica* is unknown, and details about its apical whorl development are wanting. The only other species of *Motyris* that we are aware of is *Motyris pseudoaralica* Eames (1952: 30–31, pl. 1, fig. 15; pl. 2, figs. 58a, b) from Pakistan, but its aperture is unknown. We believe that when the great variability of *Mesalia* is taken into account, *Motyris* will prove to be congeneric.

ACKNOWLEDGMENTS

Earl Brabb (U. S. Geological Survey, Menlo Park) provided very useful information regarding the stratigraphy of the beds in the vicinity of the type locality of *Mesalia clarki*. Lindsey T. Groves (LACM, Malacology Section) kindly provided key literature dealing with the ecology of modern *Mesalia*. The manuscript benefited from the reviews by Warren D. Allmon (Paleontological Research Institute, Ithaca, New York) and Steffen Kiel (University of Leeds, England) and Department of Paleobiology, Smithsonian Institution’s National Museum of Natural History). Steffen Kiel also provided us with an important hard-to-find reference and very useful stratigraphic information.

LITERATURE CITED

Conrad, T. A. 1855. Remarks on the fossil shells from Chili, collected by Lient. Gilliss, with description of the species. Appendix H. U. S. Naval Astronomy Expedition to the

Fleming, J. 1822. The philosophy of zoology or a general view of the structure, functions and classification of animals, etc. Volumes 1 and 2. Edinburgh, 618 pp.

Maltzan, H. v. 1884. Diagnosen neuer Seneganybischer Gas-

Michalowski, G. F. 1912. O nekotorych novych ili redkich ra-
kovinach iz treticnych otozenij severnago poberejja aral-

Müller, G. 1888. Die Molluskenfauna des Untersenn von Braunswegig und Ilse. 1. Lamellibranchiata und Glos-

Reeve, L. A. 1849. Conchologia iconica; or illustrations of the shells of molluscous animals. Volume 5, 147 pls.

Roemer, F. 1849. Texas, mit besonderer rücksicht auf

APPENDIX

LOCALITIES CITED

Localities are LACMIP, unless otherwise noted. All quadrangle maps are U. S. Geological Survey maps.

7004. Elevation 1427 ft., on ridge between Temesal and Santa Ynez canyons at edge of fire road on top of ridge, Topanga Canyon Quadrangle (7.5 minute, 1952, photo-revised 1981), Los Angeles County, southern California. Paleocene. Santa Susana Formation. Coll.: H. D. B. Wilson, June 1, 1941.

10508. North slope of Trailer Canyon near top of ridge between Quarry and Trailer canyons at approximately 1325 ft. elevation and just west of saddles, just below coralline-algal beds in liny siltstone west of small fault, road cut north side of unpaved road 5600 ft. north of San Vicente y Santa Monica Grant boundary, 10,400 ft. east of Los Angeles City boundary, Topanga Quadrangle (7.5 minute, 1952, photo-revised 1981), east of Santa Ynez Canyon, Palisades Highlands, Santa Monica Mountains, Los Angeles County, southern California. Lower upper Paleocene (lower Thanetian). Santa Susana Formation. Coll.: G. Strathearn and others, fall, 1982.

21554. Reworked fossil boulders in conglomerate, in second spur canyon off Poison Oak Canyon east of Las Llagas Canyon, 2500 ft. up canyon (north) from Poison Oak Canyon; on west slope 25 ft. above bottom of canyon, Santa Susana Quadrangle (7.5 minute, 1951, photo-revised 1969), north side Simi Valley, Ventura County, southern California. Paleocene. Santa Susana Formation. Coll.: P. L. Goldman, date unknown.

22557. Sandstone bed below small waterfall [dry] west of road going south through Barclay Ranch, 10,162 ft. south and 5660 ft. wet of junction of Southern Pacific railroad and Los Angeles Ave. about 0.25 mi. east of Santa Susana, Santa Susana Quadrangle (7.5 minute, 1951, photo-revised 1969), Simi Hills, Ventura County, southern California. Paleocene. Santa Susana Formation. Coll.: M. Murphy, spring, 1950.

22698. On first large ridge; trending southwest to west of ridge trending south of hill 2150. Bearing from the northwest corner of the Calabasas Quadrangle is S14°E; distance 12,210 ft., Calabasas Quadrangle (7.5 minute, 1952, photo-revised 1967), Simi Hills, Ventura County, southern California. Paleocene. Santa Susana Formation. Coll.: J. H. Fantozzi, June 1, 1951.

25281. Sandstone at elevation of 1000 ft., about 400 ft. south and 1000 ft. west of northeast corner of section 5, T. 1 S, R. 17 W, Malibu Beach Quadrangle (7.5 minute, 1950, photo-revised 1967), on west side of northern tributary to Stokes Canyon, western Santa Monica Mountains, Los Angeles County, southern California. Reworked Paleocene (Selandian) fossils in middle Miocene Calabasas Formation, Stokes Canyon Breccia Member. Coll.: J. Stark and T. Suziki family, May 5, 1965.

26897. Gull west side of Temesal Canyon opposite 2nd ‘e’ of Temesal at about 1475 ft. elevation; approximately 1082 m (3550 ft.) south; 533m (1750 ft.) east of hill 22036; San Vicente and Santa Monica Grant, Topanga Quadrangle (7.5 minute, 1952, photo-revised 1967), Santa Monica Mountains, Los Angeles County, southern California. Middle upper Paleocene (middle Thanetian). Santa Susana Formation. Coll.: J. M. Alderson, March 9, 1980.

UCMP 1540. Elevation 1000 ft., 1 mi. south of Stewartville (site), northeast corner of NW 1/4, section 15, T. 1 N, R. 1 E, Antioch South Quadrangle (7.5 minute, 1973, photo-revised), 300 ft. south of basal Tejon conglomerate and 600 ft. north of Chico-Martinez contact, northeast side of Mount Diablo, Contra Costa County, northern California. Upper middle Paleocene (Selandian) = Turritella infragranaulata pachecoensis Zone. “Martinez” Formation, lower member. Coll.: R. E. Dickerson, circa 1912.