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A Network Model of Immigration and Coexistence
By Yao-li Chuang, Tom Chou,    
and Maria R. D’Orsogna

In the summer of 2015, more than 
one million refugees from the Middle 

East, Central Asia, and Africa arrived in 
Europe via dangerous routes across the 
Mediterranean Sea and the Balkans [7]. 
German Chancellor Angela Merkel wel-
comed the newly arrived with an enthu-
siastic “Wir schaffen das”—“We can do 
this”—embodying the collective spirit 
of optimism that pervaded Europe at the 
time. The vast majority of migrants were 
fleeing civil wars, brutal dictatorships, or 
religious persecution; others were seeking 
better economic opportunities. Preferred 
destinations among the more prosperous 
nations included Germany, Sweden, and the 
U.K., whereas European law and geography 
placed most of the burden of processing 
asylum claims on border nations such as 
Italy, Greece, and Hungary, which were not 
prepared to cope with such unprecedented 
numbers of new arrivals.

Measures including the forced return of 
illegal migrants to Turkey in exchange for 
economic concessions attempted to stem the 
flow. Hungary closed its borders, and Italy 
eventually closed its ports. European law-
makers were unable to devise a clear bur-

den-sharing system among member states; 
at the same time, refugees and smugglers 
quickly found and exploited new migrant 
routes as existing ones saw increased 
patrolling and border controls. Eventually, 
the perception of an unmanageable crisis 
touched the entire continent. Discontent 
among the general public grew, as did dis-
cussions on safety, integration, European 
identity, secularism, resource availability, 
and the role of non-governmental organiza-
tions. As a result, the issue of migration has 
dominated elections across Europe over the 
past few years, and nationalist parties have 
enjoyed large gains in many countries.

It is within this larger sociopolitical con-
text that many migrants have settled into 
European cities, each with their own per-
sonal story of adaptation, hurdles, discover-
ies, kindness, and hostility from strangers. 
Outcomes have thus far been mixed; refu-
gees have successfully integrated in many 
communities from Italy to Sweden, but in 
some cases there have been challenges and 
mistrust. A common observation is that 
newcomers who do not adapt well—either 
by circumstance, aversion from natives, 
lack of resources and/or motivation, etc.—
tend to self-segregate and create insular 
communities [5]. While these enclaves pro-
vide immigrants with advantages and a 

sense of belonging, they may also 
prevent them from fully integrating 
into the larger society.

The fateful summer of 2015 pre-
sented a most daunting question: Is 
it possible to integrate vast num-
bers of asylum seekers in a way 
that is constructive for natives and 
migrants alike? This issue is also at 
the core of our recent mathematical 
modeling work, wherein we offer a 
quantitative setting for the study of 
immigration and coexistence [2]. 
We consider two communities—
“hosts” ( )Nh  and “guests” ( )Ng —
as nodes that interact on a social 
network, both seeking to improve 
their socioeconomic status. Each 
node i  carries a time-dependent 
attitude xi

t  towards others and is 
assigned a utility function Ui

t  that 
depends on its mi

t  connections. 
Over time, nodes adjust attitudes 
and reshape links to increase their 
utility; as a result, the network 
evolves towards either integra-
tion or segregation between hosts 
and guests. While the utility func-
tion follows game theoretic rules, 
attitudes are assumed to evolve 

The Mathematical Fight for Voting Rights
By Matthew R. Francis

State and local governments will redraw 
voting districts based on new informa-

tion following completion of the 2020 U.S. 
Census. Ideally, this process ensures fair 
representation. In practice, however, dis-
tricting often involves gerrymandering: the 
deliberate planning of districts to dilute the 
voting power of certain groups in favor of 
others, which violates the law.

Racial gerrymandering—drawing dis-
tricts to limit the power of voters of color 
to select candidates they favor—is a particu-
larly pernicious problem. Section 2 of the 
Voting Rights Act (VRA) of 1965 specifi-
cally prohibits this practice, but that has not 
stopped authorities from doing it anyway. 
“A number of court decisions have pur-
posefully asked mathematicians, political 
scientists, and statisticians to use specific 
methods to try and understand racial ger-
rymandering,” Matt Barreto, a professor of 
political science and Chicana/o studies at the 
University of California, Los Angeles, said. 

Barreto and his colleagues employ pow-
erful statistical methods and draw on census 
and other public data to identify gerryman-
dered districts. Utilizing these tools, math-
ematicians can test proposed district maps 
or draw their own, designing them from the 
ground up to prevent voter dilution. 

Since gerrymanderers use the same data 
to intentionally disenfranchise voters, the 
question is whether mathematical approach-
es alone are enough to fight the problem. 
Just as machine learning algorithms can 
“learn” racism from their training data,1 
studies show that the results of algorithmic 
districting can be as bad as deliberate ger-
rymandering [2]. To put it another way, can 
math solve problems it did not create? 

“Previous efforts that used mathematics 
were not as accurate, and they did white-
wash over some of the black and brown 
voters living in communities,” Barreto said. 
“By going that extra step and purposefully 
trying to bring in accurate data on racial and 
ethnic minorities, we can go back to our 
trusted mathematical and statistical meth-

ods to make sure we’re getting 
accurate counts of people.”

Racial Polarization,                 
Racial Gerrymandering

In 1812, cartoonist Elkanah 
Tisdale noticed that one of 
the districts created under 
Massachusetts Governor 
Elbridge Gerry looked like 
the mythical fire-monster sala-
mander, so he dubbed it the 
“Gerry-Mander” (that argu-
ably makes “gerrymandering” 
the most important legal term 
ever coined in a cartoon, which 
pleases me as a frequent com-
ics writer). This original ger-
rymander is a prime example 
of partisan gerrymandering 
because it was created to favor 

1 https://sinews.siam.org/
Details-Page/the-threat-of-ai-
comes-from-inside-the-house

the Democratic-Republican Party over the 
Federalists (see Figure 1).

Racial gerrymandering has garnered 
less attention than its partisan counterpart, 
though the two often go hand in hand. 
However, racial gerrymandering also hap-
pens in effective one-party regions, such 
as cities where the Democratic Party domi-
nates local politics. In practice, testing for 
unethical districting involves looking for 
racially polarized voting patterns — places 
in which minority voters strongly prefer 
one candidate over another, but districts 
are drawn to favor white voter preferences. 
Chicago—with a history of just two elected 
African American mayors despite its large 
black population—is a classic example of 
this form of gerrymandering.

Consider an imaginary mayoral election 
with two candidates: Smith, who is preferred 
by white/Anglo voters, and Herrera, who is 
preferred by Latinx voters. The city is divid-
ed in a such way that Latinx voters never 
amount to more than 40 percent of the total 
population in any district, while white voters 
never comprise fewer than 50 percent — 
regardless of the city’s total racial and ethnic 
makeup. Racial gerrymandering ensures that 
Smith always wins over Herrera and Latinx 
preferences are never represented, which is a 
violation of the VRA. Perhaps the districting 
scheme splits apart Latinx-majority neigh-
borhoods and lumps the fragments with 
white-majority areas; a more equitable and 
representative division would keep those 
neighborhoods whole, possibly even allow-
ing for Latinx-plurality districts.

The challenge for mathematicians involves 
reconstructing racial voting patterns without 
violating voter privacy, which is protected 
by law. Barreto and his collaborators use 
ecological inference (EI), a technique that 
infers individual behaviors from population-
level datasets. Their EI methods involve 
an iterative Bayesian approach, utilizing 
publicly available data from petitions, voter 
records (which merely tabulate if a regis-
tered voter casts a ballot), and the census.

Figure 1. Cartoonist Elkanah Tisdale’s 1812 depiction of 
Massachusetts Governor Elbridge Gerry’s partisan ger-
rymandering in favor of the Democratic-Republican Party. 
Public domain image. See Voting Rights on page 4

See Immigration on page 2

Figure 1. Each node i  is characterized by a variable 
attitude − ≤ ≤1 1xi

t  at time t.  Negative (red) values 
indicate guests and positive (blue) values represent 
hosts. The magnitude | |xi

t  represents node i’s degree 
of hostility towards members of the other group. All 
nodes j k,  that are linked to node i  represent the 
green-shaded social circle W i

t  of node i  at time t. The 
utility Ui

t  of node i  depends on its attitude relative to 
that of its mi

t  connections. Nodes maximize their utility 
by adjusting their attitudes xi

t  and establishing or sev-
ering connections. Figure courtesy of Yao-li Chuang [2].
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4  Recognizing the 2020 
JPBM Communications 
Award Recipients

 Every year, the Joint Policy 
Board for Mathematics 
(JPBM) presents the JPBM 
Communications Award, which 
acknowledges communicators 
who routinely help convey 
mathematical ideas to non-
mathematical audiences. The 
recipients of the 2020 JPBM 
Communications Award are 
Chris Budd and James Tanton.

5  Mean Field Game Theory: A 
Tractable Methodology for 
Large Population Problems

 Mean field game (MFG) theory 
finds applications in a wide 
variety of areas, including 
vaccination strategies, crowd 
dynamics, algorithmic trading 
in competitive markets, and 
demand management for domes-
tic users on electrical power 
grids. Peter E. Caines presents 
the basic notions of MFG 
theory in the context of illustra-
tive examples that involve cell 
phone energy management and 
optimal execution in finance.

7  Helping Faculty Prepare 
Students for the Workforce

 Educators in STEM fields 
routinely strive to ready their 
students for the workforce. 
While core scientific curricula is 
undoubtedly important, skills like 
interdisciplinary collaboration, 
effective communication, and 
data literacy are equally valu-
able — especially for positions 
in industry. Kathleen Kavanagh, 
Joe Skufca, Ben Galluzzo, 
and Karen Bliss outline some 
of the initiatives presented at 
the 2020 Joint Mathematics 
Meetings in January.

8  SIAM: The Early Years
 Executive director James 

Crowley reflects on two recent 
coincidences that inspired him 
to examine SIAM’s history, 
establishment, and incorpora-
tion as the society we know 
today. He explores Ed Block’s 
pivotal role in SIAM’s found-
ing, as well as the ENIAC’s 
development and subsequent 
influence on the newly-
emerging computer industry 
and the city of Philadelphia.

7  Professional Opportunities 
and Announcements
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through opinion dynamics; the two inform 
each other in a synergistic way.

Attitudes xi
t  vary between − ≤ ≤1 0xi

t  
for guests and 0 1£ £xi

t  for hosts; the 
magnitude | |xi

t  indicates the degree of 
hostility towards the other group. Thus, 
xi
t → ±0  characterizes most receptive 

guests or most hospitable hosts, while 
xi
t =±1  represents the highest level of 

xenophobia (see Figure 1, on page 1). The 
utility Ui

t  is given by a pairwise reward—
to which each node j  linked to i  contrib-
utes—and by a cost function for maintain-
ing mi

t  connections, such that

U A
x x m

i
t

ij
j

i
t

j
t

i
t

i
t

= −
−

−
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Ω

exp
( )

exp .( ) ( )
2

2σ α

Here, Wi
t  is the set of nodes linked to i  at 

time t,  so that mi
t  is given by its cardinal-

ity: mi
t

i
t=| | .Ω  The pairwise reward depends 

on the attitude difference | |x xi
t

j
t-  between 

nodes i  and j;  a diminishing attitude dif-
ference correlates with an increasingly high 
reward. Therefore, if both i  and j  are 
hosts or immigrants, the reward is maxi-
mized for x xi

t
j
t= ,  leading to consensus 

within the group. But if i  and j  are from 
different groups, the reward is optimized 
only if both nodes adopt more coopera-
tive attitudes: xi

t → −0  and x j
t → +0 .  The 

parameter s  controls the reward’s sensitiv-
ity to attitude differences, the amplitude Aij 
specifies the maximum possible reward, 
and the scaling coefficient a  governs the 
cost of maintaining active links. Other mod-
els have considered residential segregation 
between two ethnic groups, with nodes 
seeking “friendly” neighbors with whom 
to connect. The most famous of these is the 
seminal Schelling model of segregation [3, 
4, 6]. Our utility function Ui

t  adds socio-
economic status as a decision-making factor 
in the link establishment process. 

The dynamics unfold so that connec-
tivities are modified at each time step to 
maximize utility. Attitudes are changed by 
imitation, so that
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where k  governs attitude adjustment. 
Specifically, the timescale for guest 
cultural adjustment tg  is given by k, 
and scaled by the probability of a guest 
being paired with a host N Nh / ,  so that 
τ κg h~ / .N N  Similarly, the host cultural 
adjustment timescale τ κh g~ / .N N  Since 
N Nh g ,  also t th g ; adjustment 
times for hosts are longer than for guests. 
These cultural adjustment timescales are 
compared with the unitary timescale for 
social link remodeling. Finally, initial con-
ditions represent the way in which guests 
are originally settled in the community. 
One extreme case involves a perfectly 
executed welcoming program that pro-
vides refugees with sufficient social ties 

to hosts, and where all nodes are randomly 
connected — regardless of attitudes and 
utilities. The other extreme case is that 
of guests who arrive in a completely for-
eign environment with nonexistent initial 
resources. Hosts are naturally connected 
to one another in their own state of equi-
librium, and guests are introduced without 
any links to hosts or each other.

Figure 2 depicts two representative 
steady-state outcomes. In Figure 2a, hosts 
and guests segregate and maintain highly 
hostile attitudes. Any initial cross-group 
utilities yield low rewards that do not 
increase over time, so that all ties between 
hosts and guests are eventually severed. 
Enclaves emerge when the two separate 
communities adopt uniform but differing 
attitudes xi .  In Figure 2b, all nodes develop 
more cooperative attitudes that increase 
cross-group rewards, so that hosts and 
guests remain mixed. Eventually, xi

t® 0  on 
all nodes. For both scenarios, | |x xi

t
j
t− → 0 

at steady state, but to which configuration 
society converges depends on parameter 
choices and initial conditions.

We find that the main predictor of inte-
gration versus segregation is the magnitude 
of the t tg h,  timescales relative to the uni-
tary network remodeling time. In the case 
of slow cultural adjustment, immigrant 
and host communities tend to segregate 
as accumulation of socioeconomic wealth 
occurs more efficiently through insular, 
in-group connections. Conversely, fast cul-
tural adjustment enables the establishment 
and sustenance of cross-cultural bridges, 
allowing different groups to reach consen-
sus and maintain active cooperation. This 
is shown in Figures 2a and 2b, where the 
only difference is the k  parameter that 
drives t tg h, .  We also find that a high 
guest-to-host ratio N Ng h/  increases the 
likelihood of in-group connections and 
reduces communication between immi-
grant and host populations. 

One possible approach to avoid seg-
regation is the promotion of cross-group 
interactions via government incentives, 
or if newcomers carry or acquire desired 
skill sets, for example. Note that cultural 
adjustment does not necessarily mean 
that either side must abandon their iden-
tity; rather, we find that different groups 

must adopt tolerant attitudes towards one 
another, engaging in rapport building and 
acceptance to bridge differences and pro-
mote integration [1]. This is the long-term 
challenge for the future.

Acknowledgments: This work was 
made possible by support from grant 
W1911NF-16-1-0165.
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Figure 2. Simulated dynamics leading to complete segregation (2a) and integration (2b) 
between guest (red) and host (blue) populations. Initial conditions are randomly connected 
guest and host nodes with attitudes xi, guest

0 1=−  and xi, .host
0 1=  Panels 2a and 2b differ only 

for k, the attitude adjustment timescale, with k=1000  in 2a, where segregated clusters 
emerge, and k=100  in 2b, where a connected host-guest cluster arises over time. Figure 
courtesy of Yao-li Chuang [2].
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SIAM News Transition
Karthika Swamy Cohen, who over-

saw SIAM News as managing editor 
since July 2015, left SIAM last month 
for a new position. We are grateful for 
her contributions to SIAM and wish her 
the best of luck in her future endeavors.

Lina Sorg, who served as the associ-
ate editor of SIAM News since October 
2015, has taken over as managing editor.


