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We model the hierarchical evolution of an organized criminal network via antagonistic recruitment and pursuit
processes. Within the recruitment phase, a criminal kingpin enlists new members into the network, who in turn
seek out other affiliates. New recruits are linked to established criminals according to a probability distribution
that depends on the current network structure. At the same time, law enforcement agents attempt to dismantle the
growing organization using pursuit strategies that initiate on the lower level nodes and that unfold as self-avoiding
random walks. The global details of the organization are unknown to law enforcement, who must explore the
hierarchy node by node. We halt the pursuit when certain local criteria of the network are uncovered, encoding if
and when an arrest is made; the criminal network is assumed to be eradicated if the kingpin is arrested. We first
analyze recruitment and study the large scale properties of the growing network; later we add pursuit and use
numerical simulations to study the eradication probability in the case of three pursuit strategies, the time to first
eradication, and related costs. Within the context of this model, we find that eradication becomes increasingly
costly as the network increases in size and that the optimal way of arresting the kingpin is to intervene at the
early stages of network formation. We discuss our results in the context of dark network disruption and their

implications on possible law enforcement strategies.
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I. BACKGROUND

Modeling criminal socioeconomic systems using tools from
statistical mechanics, complex networks, partial differential
equations, and game theory, and building on well-established
social and behavioral phenomena, has become of great interest
in recent years [1-3]. This interdisciplinary effort has helped
shed light on the formation of crime hotspots [4-6], the
dynamics of criminal behavior [7,8], the mechanics of gang
rivalries [9], and recidivism trends [10]. In this paper, we bring
some of these tools to the problem of organized crime.

Underworld syndicates can be quite successful in profiting
from exploitation, theft, intimidation, and murder through
complex webs of disciplined units governed via authority
structures, division of labor, and strict behavioral codes. Con-
versely, governments must effectively protect their citizens,
maintain internal order, and safeguard the channels of the
legal economy. Since organized criminal associations mostly
operate in sophisticated and secretive ways, a pertinent way of
studying them is through the well-known framework of dark
networks [11,12]. Here, actors and links are predominantly
hidden to possible disruptors. Criminals must decide who to
interact with and how to balance the threat of possibly being
arrested with the profits afforded by criminal collaboration
[11]. On the other hand, police agents must eradicate the
criminal enterprise often without an a priori full knowledge
of the global network.

Within the context of criminal behavior, the disruption
of dark networks has been studied via probability distribu-
tions that embody the limited information available to law
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enforcement agents and that govern dismantling attempts
[11,13,14]. Other models analyze network eradication when
the entire structure is known [15,16]. Typically, each criminal
is assigned a utility value based on his or her prominence in
the organization, which is then used by law enforcement to
orchestrate optimal intervention strategies. Several disruption
tactics were tested on a well-documented drug trafficking
network in the Netherlands [12]. Here, disruption was modeled
as a process of node removal from a dynamic network, where
some of the disruption strategies assume full knowledge of
the network. New players are not introduced, but once a
node has been eliminated, the network is allowed to “recover”
and links among nodes may readjust. The authors found that
interventions are most effective at the very early stages of the
disruptive process, since, in the long run, perturbations and
reorganizations lead to a more robust and resilient network. In
other work, data from well-known transnational terrorist and
criminal networks were used to simulate different disruption
strategies, comparing the removal of “bridge” and “hub” nodes
[17]. All models described above offer insight into fully visible
or dark network disruption, but none of them factors in growth
or recruitment.

The goal of this paper is to fill this void and to study
criminal networks as they expand, in an effort to increase
reach and profitability, while law enforcement engages in their
suppression. Different types of networks can be studied, such
as white-collar, racketeering, or terrorist organizations; for
concreteness we focus on vertically organized crime networks,
such as the Central and South American drug cartels whose
constituents are usually structured by ranks of influence,
seniority, and activity [18-21]. We thus study disruption
strategies on hierarchical, growing, dark criminal networks.
Within the context of this work, a hierarchal criminal network
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is defined to be one where every criminal has precisely one
link to a more senior member, except for the organization’s
head, whom we refer to as the kingpin. The network links
are thus assumed to be professional connections, not social
ties. Concurrent to law enforcement eradication attempts, we
include a mechanism for criminal recruitment. As we will
see, the hierarchal structure and the interplay between the
two antagonistic trends—recruitment and disruption—Ilead
to interesting dynamics and implications for the optimal
strategies to be used in eradicating the criminal organization.

To model recruitment we use a variation of preferential
attachment models that were originally proposed to study the
topology of the Internet [22,23] and that are now implemented
in a variety of contexts [22-28]. The central assumption,
roughly speaking, is that the “rich get richer,” meaning that
webpages with many existing links are more likely to be
connected to newly introduced ones. We use these preferential
attachment models to guide the design and analysis of our
recruitment mechanism. Particularly useful is the notion of
a “social distance” [24,29] that we use to model criminal
recruitment. Here, each node of a static network is associated to
a set of socially relevant features such as profession, religion,
or location that can be used to construct an ad hoc metric
quantifying the “social” distance between nodes, and that can
be different from the topological distance.

The aim of law enforcement is to disrupt and possibly
eradicate the criminal network by capturing the kingpin,
as successfully accomplished by the Colombian government
in collaboration with the Drug Enforcement Administration
(DEA) in the case of the Medellin cartel [30]. According to the
DEA, a major factor leading to the collapse of Pablo Escobar’s
drug organization was the so-called kingpin strategy, where the
senior cartel members overseeing network operations were
specifically targeted. The Mexican government is pursuing
the same strategy in its current war on drugs against the
Sinaloa, Gulf, Juarez, Tijuana, Beltran Leyva, and Guerreros
Unidos cartels [31], although with mixed results. The arrest
mechanism we utilize draws on probabilistic node and link
removal processes including cascades that arise when the
elimination of a single node triggers the removal of others.
Node removal cascades are often used to model wireless
networks and power grids where the failure of a tower may
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isolate others [32,33]; they have also been adapted and used
to model contagion [34], neuronal [35-37], and terrorist
networks [38]. In this work, we tailor node removal processes
to represent criminal arrest by law enforcement.

While all the applications described above are not neces-
sarily related to organized crime, we draw upon these many
different perspectives to best model criminal recruitment and
dark network disruption on the model we describe below.

II. OVERVIEW

In this section, we present an overview of our dynami-
cal, hierarchal criminal network stemming from a so-called
kingpin. Our model alternates between two key processes: the
recruitment of criminals to the network and the concurrent,
antagonistic pursuit and disruption by law enforcement.

To recruit new criminals into the network, we use a
preferential attachment mechanism, a schematic of which is
shown in Fig. 1. Criminal nodes are added to the network
at a constant rate, each forming a link to a more senior
member. Here, we assume that there is a large pool of
potential new members the criminal network can recruit from,
as documented for Central and South American drug cartels
[19-21,39-41]. We assume the entire network structure to
be initially hidden to law enforcement except for the visible
“street-level” criminals at the end of the network that do not
have any further underlings. These street criminals are the ones
that are the most directly involved in drug dealings while more
nested members of the hierarchy are assumed to act more like
masterminds: the higher up a criminal is in the network, the less
likely he or she is to overtly engage in criminal enterprises,
effectively shielding themselves from criminal implications
[18,41]. We thus assume that police intervention must begin
from street criminals, later progressing to higher nodes, so
that the network structure becomes visible to law enforcement
gradually, in a node by node fashion.

The distance between a given criminal node on the network
and visible street-level activity is defined as the smallest
number of connections separating the given node from any
street criminal. The closer a criminal is to visible street-level
activity, the more vulnerable he or she is to detection and

Kingpin
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FIG. 1. A simulated recruitment process for = 0,1,2,3. The network starts with a single kingpin, depicted as a large dark purple circle,
and then evolves according to the preferential attachment mechanism described in the text. Here, the number of new criminals introduced into
the network is given by the recruitment index k = 5. The yellow, small nodes represent criminals without underlings, and are referred to as
street criminals. Of these, the nodes with the darker boundary are those freshly recruited at the given time step. For example, the number of
street criminals when ¢ = 3 is 9, of which 5 are new recruits. Intermediate level criminals are depicted as medium-sized red circles.
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arrest. As such, senior criminals will seek to maintain a buffer
between themselves and street criminals [42—44]. Due to their
visibility, the latter are assumed to have greater access to
potential recruits and to aggressively seek new underlings
in order to avoid their own exposure to law enforcement.
Combining these two heuristics, we posit that, within the
recruitment process, prospective criminals are most likely to
establish a link with street criminals, rather than with more
nested members of the criminal hierarchy. This description of
recruitment is echoed in Refs. [18,39,41,45,46], and a precise
mathematical formulation is given in the next section.

As mentioned above, law enforcement agents can pursue
the kingpin starting only from street criminals, progressively
moving to more nested, connected links. We let each node
encountered by law enforcement be subject to an “investi-
gation” and impose that the overall motion of an agent be
represented by a self-avoiding random walk. Since agents
have access to incomplete or inaccurate information, their
movements may appear random to an observer with perfect
information of the organization’s layout. At any point during
the pursuit, the criminal under investigation can be “arrested”
with all of its associated underlings. Although we refer to node
removal as arrest, the latter may represent exile, extradition,
or assassination [47,48]. By removing criminals from the
network, the kingpin becomes more vulnerable to future
capture. However, since the overall structure of the network
is unknown to law enforcement, the random walk may also
lead to a dead end: in moving from node to node, the officer
may reach a new street criminal without underlings, with
no further investigation possible. In this case, the pursuit is
terminated and deemed unsuccessful. If instead the kingpin is
reached and arrested, the criminal network is assumed to be
eradicated.

While our modeling assumptions are necessarily simplified
for mathematical analysis, they are motivated from in-the-field
methodologies and outcomes used by governmental agencies.
For example, when the DEA employs its “buy and bust”
strategy to bait high-level drug traffickers [49], certain metrics
are used to assess the value of a possible arrest, including the
criminal’s influence and the likelihood of reaching the kingpin
[41]. On certain occasions these sequences of investigations
lead to the arrest of high ranking drug traffickers [50], while in
other circumstances they yield dead ends, resulting in public
embarrassment [51].

Finally, before illustrating our recruitment and arrest model
more in detail, in Table I we list standard network terminology
and the corresponding nomenclature used here, for context.
For example, in standard network terminology, our network is
atree, the street criminals are the leaves, and the kingpin is the
root.

PHYSICAL REVIEW E 93, 022308 (2016)

III. RECRUITMENT

We now focus on the mathematical aspects of the recruit-
ment process. We start with an initial criminal network formed
solely by the kingpin. The network evolves recursively so that
at time ¢ it contains a set C(¢) of criminals, including the
kingpin. Of these, the subset S(7) denotes street criminals,
those without any underlings. We also introduce the metric
o (j; 1) to denote the distance separating criminal j from street
activity and defined as the minimum number of links between
criminal j and any other street criminal in the hierarchy
beneath it. At every time step increment, from ¢ to r 4 1, we
add k new recruits to the network according to a preferential
attachment mechanism. Every node j is assigned a weight
w(j;t) to quantify the relative likelihood that it will link a
new criminal underling. Since, as discussed above, a plausible
assumption is that street criminals are the most likely to recruit
new criminals into the organization, we let w(j; #) be inversely
proportional to the distance between j and S(#) so that

w(jst) = (D

o(j;t)+a’

where a is a parameter, which we set to a = 1 for simplicity.
With these choices, w(j; t) embodies the proximity of criminal
Jj to visible street-level activity on a scale from zero to 1, with 1
being the closest possible. If criminal j is a street criminal, then
o(j;t) =0 and w(j;t) = 1/a = 1, the maximum possible
value. On the other hand, as the network keeps growing, higher-
level nodes can become progressively detached from street
activity, so that in principle o (j;¢) — oo and w(j;t) — O.
Note that the choice a — oo leads to a uniform weight w(j; )
for all criminals. In this case, the recruitment process can
be described as the growth of a recursive tree [26,27]. On the
other extreme, the choice a — 0 would restrict the recruitment
process exclusively to street criminals, barring higher ranking
criminals from adding subordinates. Our decision to use a
finite, nonzero value a = 1 ensures that recruitment is not
exclusive to S(z).

After evaluating w(j; #) for all existing nodes, we iteratively
introduce k new criminals to the network. We add them one by
one to nodes that are selected according to the relative weights
w(j;t). Note that each existing criminal can add multiple
underlings within a single time step, since the recruitment of
one new member does not exclude the possibility of a different
new member being recruited by the same criminal. We call k
the recruitment index. In Fig. 2 we depict a particular network
configuration, including the explicit weights w(j; ) assigned
to each criminal j. We list all parameters that describe the
recruitment mechanism in Table II.

TABLE I. A table comparing the terminology used in this paper with that of standard network theory.

This model Network theory
Kingpin Root
Underlings of criminal j Children of node j

Criminal network
C(t): Criminals (including kingpin) at time ¢
S(1): Set of criminals without underlings

Rooted directed tree
Vertices or nodes (including root) at time ¢
Set of leaves at time ¢, i.e., nodes of out degree zero
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FIG. 2. The criminal network at t = 3 with the values of w(j;?)
explicitly shown. Here, the recruitment index k = 5 and the initial
configuration was that of a single kingpin. All criminals j within
S(t) have weight w(j; ) = 1 since on these nodes o (j;t) = 0.

A. Out degree distribution

We can now investigate the statistics related to our re-
cruitment model. First, we explore how the total number of
underlings a criminal has varies throughout the network; i.e.,
we analyze the out degree probability distribution. By out
degree we indicate the number of nodes in the hierarchy
directly beneath a criminal, excluding higher nodes from
the enumeration. For example, in Fig. 2 the out degree of
the kingpin is five criminals. Of these five, the upper left
two have out degree 1 and the other three have out degree
2. We do not impose any limitations on the number of
underlings connected to any given node, either directly or
indirectly. In principle, thus, a node can have an infinitely
large number of subordinates. However, due to the choices
made in modeling the attachment weights w(j;t) we expect
that, as the organization grows and more senior criminals
become more entrenched within the network, their likelihood
of adding new recruits decreases in favor of criminals that are
closer to street activity. As a result, we expect our organized
crime network to grow several hierarchal levels and to have a
few key players, such as the kingpin, who directly oversee a
relatively large number of criminals while the rest have at most
one or two underlings that “report” to them. We introduce the
time dependent out degree probability distribution P(d;¢) fora
randomly selected node to have d direct underlings at time . At
the onset of network growth, when the only criminal present
is the kingpin, P(0;0) = 1. As the number of added nodes
n = kt + 1 increases, we conjecture that for large enough d,
P(d;t — 00) can be approximated via an exponential form

Poo(d) = P(d;t — 00) = cre™ ¢, )

TABLE II. The parameters of the recruitment mechanism.

Parameter Description

t Time

k Recruitment index: number of new criminals added
to the network at each time step

a Node weight parameter in w(j;?)

n Number of criminals on network at time
t,n=kt +1
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k=1

(cy,¢0) =(0.82, 0.89)
k=10

(cp,¢0) =(0.92, 0.92)
k=20

(cy,¢,) =(0.86, 0.90) |1

0o 2 4 6 8 10 12 14 16
Out Degree d

FIG. 3. The out degree distribution P..(d) of nodes on a criminal
network determined from numerical simulations for t — oo. The
three curves correspond to recruitment indices £ = 1,10,20. Simula-
tions were terminated when the total number of criminals exceeded
5 x 10°. All curves for P.,(d) are averaged over 100 runs. The tail
of the degree distribution is noisy due high degree nodes occurring
sporadically. Running the simulations for longer times will extend the
range of the domain in d, but not the form of P, (d). We conjecture
the degree distribution to follow an exponential law independent of
k and fit it to a decaying exponential distribution as discussed in the
text. The value for P,.(d = 0) = 0.39 for all values of k.

for constants c¢y,c;. Following the above discussion on the
nature of w(j;#), we expect that as + — oo most of the new
underlings will be connected to existing street criminals, re-
sulting in Py, (d = 0) >~ Py (d = 1). Using this approximation
and Eq. (2) ford > 1, weexpectcy,cs, Poo(d = 0) to be related
by

c1 = [1 — Px(d = 0)](e”? — 1). 3)

In Fig. 3, we grew the network to 5 x 10° criminals and
found Eq. (2) to accurately describe the out degree distribution
for d > 1, with Eq. (3) being accurate to first approximation.
We also varied k between 1 and 20 and did not notice
substantial variations in fitted parameter values. Moreover, we
considered smaller sized networks (not shown here) with 500
criminals and found that Eq. (2) still described the data well.
These results suggest that, at large times, network structure
is independent of its rate of growth. In particular, as t — oo
our results show that the probability that any given node has
no underlings is given by the k-independent, universal value
Py (d = 0) = 0.39. The average out degree d is given by

> 1 — Py(d =0)
(d) = c; Zde’“d =
d=1

1 —e

“

B. Criminal density and position

We now investigate how criminals are positioned relative
to the kingpin, at the core of the network. We expect the
distribution of criminals relative to the kingpin to become more
uniform as the network grows in scale. In Fig. 4 the recruitment
process is stopped at a fixed time ¢, when we measure p(y),
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FIG. 4. The distribution of criminal position relative to the
kingpin after 100 runs. The three curves represent the different times
t at which the recruitment was stopped. Here, t = 100,200,300. The
recruitment index was set at k = 5 and the initial configuration of
the network was that of the single kingpin. The probabilities were
fit using the shifted I' density pq g (y) found in Eq. (5) and with
parameters y(«,f,s) specified in the legend. Similar shaped curves
arise for larger values of k.

the ratio of criminals at a distance y from the kingpin with
respect to the total number of nodes. Our measured p(y) is
then fitted to a shifted I" probability density, the continuous
analog of negative binomial distribution [52], and given by

')

fory > s and o > 1. Our choice was motivated by the fact that
this distribution is supported only on a portion of the horizontal
axis. Using the fitted values of p, g (y) the probability that a
criminal is a distance y from the kingpin can be estimated as

pﬂhﬁﬁ()’) = (y— s)a—le—ﬁ(y—s) )

y
/ Pa.ps(¥) dy'. (6)
N

From Fig. 4 we note that, as ¢ increases, the average distance
from the kingpin increases and that the distribution of criminals
becomes broader, as can be expected. We also used different
initial conditions, starting the recruitment process on given,
already established networks, and found that, at long times, the
shifted I" probability density remained a valid approximation

for p(y).

C. Street criminals

In our model, street criminals are the nodes in S(#) without
any underlings. We assume theirs is the only activity to be
visible to law enforcement, making street criminals the most
vulnerable to arrest. At the same time, due to the choices made
for w(j;t), street criminals also have the highest probability
of recruiting new members into the organization. Since the
network grows linearly in time, we expect the total number
of street criminals, s(¢), to increase accordingly, and that
the proportion of street criminals with respect to the total
number of nodes will remain fixed at the universal value

PHYSICAL REVIEW E 93, 022308 (2016)
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FIG. 5. Top: Number of street criminals, s(), as a function of time
for recruitment rates £ = 10,50,100. In each case, the recruitment
process was terminated when the total number of criminals exceeded
5 x 10° and averaged over 100 runs. We fit the data to s(t) = r;¢ + 1
and expect r; ~ Py (d = 0)k with the universal factor Py (d = 0) =
0.39. This scaling is confirmed by the fitted values of r; as can be
seen from the values shown in the legend. Bottom: The slope values
r, as a function of k with the r, values in the top display shown in
dark symbols. These data are then linearly fit as shown in the bottom
legend, confirming our conjecture r;, ~ P, (d = 0)k.

Py (d = 0) = 0.39 as shownin Fig. 3. In Fig. 5 we plot s(¢) and
fit the data to a linear form s(¢) = rst + 1, where the unitary
intercept is chosen since at t = 0 the only criminal present is
the kingpin, who does not have any underlings yet. We expect
ry > Px(d = 0)k as verified in the lower panel of Fig. 5.

We can also write an iterative equation for s(¢ + 1) [53,54].
At a given time ¢ the likelihood of adding a new street criminal
to the network is given by the probability of adding a new
node to a senior criminal, one that already has underlings.
Conversely, the net number of street criminals will not change
upon adding a new node to existing street criminals, since for
every new street criminal added to the enumeration, there will
be one that will be removed, having added a new underling.
This is illustrated in Fig. 6. The weight associated to adding a
new node to a senior criminal is given by

> wGin= ) w(in - % (7)

JelC(t)—=8®)] jeC(t)

since the number of street criminals is s(¢) and their weight
is given by 1/a. The total probability of adding a criminal
to a senior node is thus given by Eq. (7), normalized with
respect to the total weight ) jecw w(Js1). We can now write
our iterative equation for s(¢ + 1). The number of added new
street criminals is given by the probability of adding a street
criminal to a senior one as described above, multiplied by
the total number of available new criminals at each time step,
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FIG. 6. Schematic of the addition of new nodes from time ¢ to
time ¢ 4 1. Here, k = 5 and the new nodes are depicted in light color.
The addition of a street criminal to a more senior one, represented
by the node surrounded by a solid ring on the lower left hand side,
will increase s(¢ 4+ 1) by one unit with respect to s(¢). Vice versa, the
addition of a new node to an existing street criminal, as shown by the
nodes surrounded by the dashed circles, will not change the number
of street criminals, since for every new member of S(¢ + 1), one from
S(t) will be removed.

given by k. Using a = 1 we find

D jecin w(st) — s()
ZjeC(r) w(j;1)

We can use this relationship to heuristically determine the
weight of the entire tree Y, ., w(j;?) at long times. The
latter can be assumed to scale linearly, since the total number
of members of the network grows at the same rate, and at
least a fraction of nodes P, (d = 0) will be associated to a
finite, unitary weight. We thus posit ) ;o w(j31) =~ Wt. as
t — 00. We also use s(t) > ryt as t — 00 so the recursion
relation Eq. (8) at long times becomes

W —rg

o~
" W

s+ 1) >~s(t)+

®)

€))

yielding
kr k Poo(d = 0)
k—ry  1—Pyo(d=0)
and where the last term is obtained via r; >~ k Py (d = 0). In
Fig. 7 we plot the total weight of the network as a function of
time for k = 10,20,30,40 and find that it scales linearly, as we

had assumed. We also find that the corresponding numerical
fits yield good agreement with the estimates from Eq. (10).

W ~

(10)

IV. POLICE PURSUIT

In this section, we introduce police agents to our model
and describe the pursuit mechanisms they are engaged in on
a network that is concurrently growing in time. The ultimate
goal of law enforcement is to reach the kingpin, capture him
or her, and dismantle the expanding criminal organization.
The ultimate goal of the criminal enterprise is to expand as
much as possible. As discussed earlier, it is reasonable to
assume that the global structure of the network is unknown
to law enforcement agents who can begin their “investigative”
activities only at the bottom of the network, populated by

Total Weight
3000} £og . o
/ / ’ a
/ / ° i g
/ 0 4 -
~ 4 1
B L s '/'x
% i , // /./
2 2000} R "
E / // ,/ ' g =
< J " - -~ (W=6.36, w, =5.31)
D K o /"" ®m k=10
= i 8 = -~ (W=12.72, w, =14.86)
© 1000 A " ° o k=20 1
2 Je 8 = - - (W=19.08, w, =20.63)
ie .. 0 0 k=30
how -~ (W=25.49, w, =21.23)
,,f;f‘ A 4 k=40
0 100 200 300 400 500
Time Step ¢

FIG. 7. The total weight of the network Zjec(,) w(j;t) as a
function of time averaged over 100 runs for k = 10,20,30,40. At the
onset the network consisted of the kingpin alone; simulations were
stopped when the total number of criminals exceeded 5 x 10°. We fit
the data to a linear form Wt + wy and find that the extrapolated values
of W shown in the figure legend are in excellent agreement with the
ones predicted from Eq. (10), given by W = 6.39,12.79,19.18,25.57
for k = 10,20,30,40, respectively.

street criminals. Once a criminal network is formed, at every
time step ¢ we choose a random street criminal in S(¢) as the
initial search node for the officer. This street criminal is now
considered to be under investigation. The officer can decide
whether to “arrest” the criminal in question or move to one
of its associates, chosen among the nodes that are linked to
the current suspect. In the next section we illustrate three
different ways of making this strategic decision. For now,
we note that if the choice to arrest the current suspect is
made, the latter is removed and this particular investigative
round at time ¢ is complete. If the choice to migrate to a
linked criminal is made, the pursuit continues: the officer is
now faced with the same decision on whether to arrest or
continue investigating. We impose that a node that has already
been visited by law enforcement cannot be visited again. A
sequence of investigative choices thus lead to a self-avoiding
random walk on the criminal network at time 7. The pursuit
ends if an arrest is made or if the officer reaches either the
kingpin or another street criminal.

If the kingpin is reached, we consider the attempts of law
enforcement to be successful: the criminal organization has
been dismantled at time ¢ and the process is terminated. Vice
versa, if the investigative unit ends on another criminal in
S(t), we consider law enforcement intervention at this time
to have failed: no arrests will be made, and the network
stays unchanged. Finally, if law enforcement decides to
perform an arrest on a given node, all of its underlings in
the hierarchal structure will be removed as well. Note that
since the node at which the arrest takes place can be a
few links removed from the original starting point, an arrest
does not necessarily imply that the first street criminal to be
investigated will be removed as well. The case of an arrest
may be considered a partial success, since eliminating a few
nodes on the hierarchical structure may make the kingpin
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more vulnerable in future time steps. After the pursuit phase
at time ¢ is completed and assuming the kingpin has not
been reached, the criminal network is grown according to
the recruitment methods described in the previous section.
Pursuit and recruitment are then iterated at time ¢ + 1 and
until the network reaches a given size n*, with the network
evolving dynamically in time. Note that since at the onset of
our simulation the only criminal present is the kingpin, we do
not introduce the police pursuit at time # = 0, since the kingpin
would be arrested immediately and the criminal organization
would not grow. Rather we consider an existing network, as
shown in Fig. 8 for a full ternary tree of height 3 with 40
criminals, as the initial configuration on which the pursuit is
started. A full ternary network is one where all nodes, except
street criminals, have exactly three underlings. A complete
ternary network is one where all nodes, except street criminals
and the nodes immediately above them, have exactly three
underlings. We use these full or complete networks as initial
conditions for an “unthreatened” criminal organization, prior
to police intervention, and assume that once law enforcement
investigations have begun the network grows according to the
recruitment rules described in the previous section.

Our pursuit model could be adjusted to model different
scenarios. For instance, a biased random walk might be more
appropriate to describe the motion of law enforcement if
disruptors are privy to intelligence regarding the hierarchical
criminal structure, or they may wish to re-investigate criminals
during their pursuit based on incoming information.

A. Pursuit strategies

We now discuss the possible strategies that law enforcement
may employ when deciding whether to arrest a criminal or
continue investigating other, neighboring nodes. As already
discussed, the police is assumed not to have full knowledge

Investigation

PHYSICAL REVIEW E 93, 022308 (2016)

of the entire organization but only of the criminals under
investigation and their linked nodes. Because this is a dark
network, the pursuit process may be unsuccessful with law
enforcement reaching street criminals that are low on the
criminal hierarchy, representing a dead end.

The first possible pursuit method we consider is the fixed
investigation number strategy, where, starting from a given
street criminal, a disruptor will investigate p successive nodes
before making an arrest, assuming it has not encountered any
new street criminals along its self-avoiding random walk. This
strategy will be denoted by Q 4(p). The second method is the
minimum out degree strategy, where law enforcement officials
will keep investigating until a node of at least out degree g
is reached, similarly assuming the self-avoiding random walk
does not lead to other street criminals. In this case, it is assumed
that police agents are seeking to maximize the influence of
the criminal to be arrested, since the higher ¢ is, the more
direct underlings the suspect will be affiliated to. We denote
this strategy by Qp(q). Finally, we consider the persistent
investigative strategy where the pursuit is stopped only upon
reaching the kingpin or a dead-end street criminal. This third
and final strategy is denoted by Q;. In Fig. 8, we show a
disruptor pursuing strategy Q 4(¢ = 3) on an initial full ternary
tree of height 3.

The above pursuit strategies reflect certain real-world
objectives of law enforcement. Q4(p), for example, may
be used by agencies that regularly make arrests, possibly
after investigation resources have been depleted, to show
results to the general public in order to garner support [55].
Signaling the presence of authorities via periodic arrests may
also serve to deter the network’s growth [56]. Op(q) may
reflect the oft-pursued strategy of capturing high ranking
criminals to optimally disrupt strong hierarchical operations
[41,49]. Lastly, Q; can represent law enforcement’s choice to
minimize violence. Since the arrest of a high ranking criminal

Arrest

FIG. 8. The pursuit process as described in our text. We start the network as a full ternary tree of height 3 with 40 criminals, as shown by the
light colored nodes. Left: At time # = 1 a law enforcement agent begins an “investigation” from the highlighted yellow criminal on the lower
right branch of the network, without having full knowledge of the network. The investigative trail involves three other nodes, highlighted in
red and linked by a self-avoiding random walk, marked by a solid line. The last node, surrounded by a dark ring, is the criminal that is arrested.
Right: Once a criminal is arrested and removed from the network all related underlings in the hierarchy are removed as well. In this case, all
removed nodes are depicted in blue and have a darker boundary. We note that not all criminals arrested were investigated and vice versa.
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could lead to deadly confrontation or to a network’s violent
reorganization, keeping all investigative operations covert until
the kingpin is reached may generate the least violence [18,47].
Of these strategies, we expect Q; to be the most expensive, as it
either eradicates the network by kingpin capture or the network
is left untouched. Since no intermediate arrests are performed,
the network can effectively grow as if law enforcement were
not present until the kingpin is reached. The above strategies
are related by

plglgo Qalp) = qli>nolo Op(q) = Q1. Y
Qa(1) = Op(D). 12)

Note that as the parameters p and g increase, the chosen
strategies become more and more covert and demanding,
involving more investigations and aiming at higher level
arrests, so that Q 4 and Q p approach Q;. Also, note that under
strategy Q 4(1) law enforcement will remove the node directly
above the street criminal selected as the initial investigative
point. This is the same result that would arise from strategy
Qp(1), since all nodes above street criminals have at least one
linked criminal, i.e., the street criminal itself.

We can evaluate each strategy’s performance for several
recruitment indices k using numerical simulations. Runs were
continued until either the kingpin was arrested, eradicating
the criminal network, or the kingpin was not arrested and the
network exceeded a total, given population size n*. The latter
scenario represents the case of a vast organization permeating
all society. In Fig. 9 we plot the network eradication probability
for Q4(p),0Op(g) and Q; as a function of the recruitment
index k, for various choices of p,q and for various thresholds
of criminal population n*. In all cases, as can be expected,
the probability of capturing the kingpin decreases with k,
as the rate of adding new criminals becomes faster than any
disruption attempts by law enforcement. We also define B(Q),
the “beat number” of strategy Q, as the maximum recruitment
index k of the network for which law enforcement will
reach the kingpin with unit probability across the simulations
performed. The eradication probabilities and B(Q) depend on
the total size of the network, n*, as can be seen from Fig. 9.
B(Q) increases with n* especially for small and intermediate
values of k. Here, growth occurs at a relatively slow rate
and, although increasing n* allows for more criminals to join
the organization, there will also be a relatively large number
of police pursuits during the slow dynamics, allowing for
greater eradication probabilities. Given a fixed value of n*,
we can compare different strategies and their results. From the
left hand panels of Fig. 9 that illustrate results for the fixed
investigation number strategy Q 4(p) we note that for large k
values the eradication probability increases with the number of
investigations, p. In this case the network is rapidly expanding,
and allowing more investigations before an arrest is made also
allows for the possibility of arresting senior, highly nested
criminals with many underlings, greatly undermining network
structure and size. For small values of k few criminals are
added at each time step and each node will have few underlings.
Small values of p restrict law enforcement to activity close
to street level, where nodes have low hierarchical value and
allow for modest but progressive node removal. Increasing p,

PHYSICAL REVIEW E 93, 022308 (2016)

when p is small, is beneficial as can be seen by comparing
the p = 1,2 curves. However, when k is small, increasing p to
larger values may not be the best strategy: since each node has
few underlings, higher values of p increase the possibility that
the self-avoiding random walk performed by law enforcement
reaches a dead end, effectively leaving the network untouched.
This is the case, for example, for Q4(p = 6) and Q4(p = 8)
for which the eradication probability is smaller than for
QOa(p =1)and Q4(p = 2) for small k values. Similar trends
arise for the minimum out degree strategy Qp(g) as shown
in the right hand panels of Fig. 9. Here, for large values of k
the best strategy is to set a target of relatively large g before
performing an arrest, whereas for lower values of k moderate g
values are preferred, due the possibility of reaching dead ends
during the pursuit. The intermediate panels in Fig. 9 show
results stemming from the persistent investigative strategy
Q;, which corresponds to Q4(p — o0) and Qp(g — o0).
Comparing the respective panels of Fig. 9 shows that the
optimal approach from the perspective of law enforcement,
whether engaged in the fixed investigation number pursuit
Q4(p) or in the minimum out degree strategy QO p(q), is to
adjust arrest criteria to an optimal p* or ¢* depending on the
recruitment rate k, if this variable is known or estimates are
available.

The results discussed so far depend on initial conditions,
which can be chosen to be any full or complete tree with b
branches and height /. To analyze different initial conditions,
we can vary the values of b,/ that describe the “unthreatened,”
police-free tree. Note that full trees have a total number
of (B! — 1)/(b — 1) criminals; the case of a full ternary
tree of height 3 discussed above corresponds to b =h =3
with 40 initial criminals. For a fixed number of criminals,
the larger b, the smaller & and the less hierarchical the
initial tree is. The choice of b = 1 is the limiting case of a
linear chain: here, strategy Qp(g > 1) will lead to a unitary
eradication probability since all nodes will have out degree
1 and at the onset of the pursuit phase law enforcement
will proceed until the kingpin is reached, regardless of the
number of total criminals and of /. The eradication probability
decreases on a binary initial tree with b =2, since now
dead ends may be encountered. Further increasing b leads
to diminishing eradication probabilities due to the possibility
of more unsuccessful pursuits. Once a sufficiently large value
for b is reached, however, i will be small enough that reaching
the kingpin may become more feasible. These two opposing
trends are expected to lead to a minimum in the eradication
probability. We find the critical value of b at the threshold
between the two trends to depend on the initial number of
criminals. In the left hand panel of Fig. 10, for example, we
show the eradication probability for O p(¢ = 3) on an initial
network of 40 criminals with varying b and with a fixed value
of k = 30. The complete trees we created were as regular
as possible, with all second-to-last nodes sharing the same
number of underlings as possible. The choice b = 3 is the full
ternary tree case we have analyzed in detail above. Note the
minimum for intermediate values of b. Similar trends arise also
for Q 4(p) although the decrease in the eradication probability
is less pronounced for small 4. In the middle and right hand
panels of Fig. 10 we consider initial networks made of full trees
with fixed b and varying & and vice versa. We expect increases

022308-8



GROWTH AND CONTAINMENT OF A HIERARCHICAL ...

PHYSICAL REVIEW E 93, 022308 (2016)

Q4 (p) Q; Qp (9
1.0 R o, ‘ i
Y > p=1 (S W} > g=1
< T R
68& ! p=2 ! DDD R Ba g=2
o8 | p=4 Y \ 3 o =3
: p=6 . ¢ R s g=t
! p=8 ; “>> . %%% e q=8
I 1 % 1
0.6 ! ! , ! L q=16
: : o, T S
04 ! - b [
: : W» Dlr § ) " *g
' 1 MD’» kN ) 00000
02 | | e S
3 -'m‘ru“:’ﬂu; . E E ) Doy ruLL
. R AR an ' Vo ey,
0.0f !Beat(Q4(p=2))= " 'Beat(Q) =2 'Beat(Qp (¢=3)) =1
- 1-08!% — p=1
+J :eﬁggo 5 p=2
= LN oo p—4
o 0.8 I p=
© ! % p=6
o) !
| p=8
© o6 !
o | 3
C i S
© o4 | -
] : ' I
© ! *
L ; &
T 0.2 |
© |
— 1
L .
0.0f |
1.0} e =1 i
S |
08 4 !
% 6 !
| 8 |
0.6 » :
| : =
% | 8
0.4 AR : cﬂ]
! ! S
0.2 | et . |
: %%% - st |
0.0,  !Beat(Q, (p=2))=11 Beat(Q;) =3

0 16 20 30 40 50 60 70 80 O

10 20 30 40 50 60 70 80 O

10 2‘O 30 40 50 60 70 80

Recruitment Index k

FIG. 9. The network eradication probability as a function of the recruitment index k, obtained by averaging over 10 000 simulations for
different strategies. We consider a total population of n* = 500,1000,2000 individuals and halt our simulations when the criminal network
reaches this size. We specify the B(Q) of each strategy as the maximum value of the recruitment index k for which the network is eradicated
with probability 1, over all simulations. Note that Q; is the limiting strategy for Q4(p — 00) and Qp(q — 00). Our results reveal that the
optimal strategy for fast growing networks with large k is to use investigative strategies with large values of p,q, whereas for slower growing
networks with small values of k, moderate values of p,q yield higher probabilities of eradicating the network. Note that curves for Q4(p = 1)
and Qp(g = 1) are the same and that the Q; curve is the limit for Q(p — 00) = Qp(g — ).

in b or h to lead to lower eradication probabilities since
the number of initial criminals will be larger. In the middle
panel of Fig. 10 we show an initial network of height h = 4
with branching b = 1, representing a chain of criminals, with
b = 2 representing a binary tree, and with b = 4 representing
a quaternary one. As expected, the eradication probability
decreases with k for all b, and with b for fixed k. On the
right hand panel of Fig. 10 we find similar results for an initial

full binary tree with b = 2 and with heights 4 = 2,4,6. The
eradication probability decreases with k for all &, and with &
for fixed k as well.

B. Strategic costs and time to eradication

In the previous section, we implicitly assumed that all
pursuit strategies could be conducted with any value of

022308-9



MARSHAK, ROMBACH, BERTOZZI, AND D’ORSOGNA

PHYSICAL REVIEW E 93, 022308 (2016)

0.4

Eradication Probability

0.2

0.0

@Qp ()
~ o (h=2,b=2) ey ~ (h=4,b=1) [
(h=4,b=2) ¢ % (h=4,b=2)
o oo (h=6,b=2) o (h=4,b=4)
o,
G
b |
y
=Y
b
o, 1 \
Y S s Py
%, e PO \ TR
"Soca ! &
000 ]
m'qwmmﬁm hY
"“’»‘wyumxumoommummrrmxm

0 5 10 15 20 25 30 35 40 O 10 20
Branching Factor

Recruitment Index k

40 50 60 70 0 10 20 30 40 50 60 70
Recruitment Index k

FIG. 10. Varying initial conditions prior to law enforcement intervention. Left: Eradication probabilities on a complete initial tree with b
branches and 40 criminals for k = 30 and law enforcement strategy O (g = 3). On a linear chain (b = 1) the eradication probability is 1,
since no dead ends will be reached. Increasing b allows for more dead ends to be encountered so that the eradication probability decreases
until a threshold value of b when the height of the network becomes small enough to allow for easier access to the kingpin. Here b = 3. Right:
Eradication probabilities using full initial trees with b branches and height 4 as initial conditions and using strategy Qp(¢ = 3). The initial
number of criminals is ("' — 1)/(b — 1). For all values of k eradication is higher for lower values of b,/ indicating that best results will be
obtained with law enforcement intervening on initially contained networks, as can be expected. Qualitatively similar results arise for other

strategies O p(q) and Q A(p).

p,q indistinctly. Here we quantify the efficiency of various
investigative methods by associating a cost measure to each
of them. We assume that investigating criminals requires the
expenditure of societal resources, whereas arresting criminals
can be considered a gain, since an arrest will weaken the
criminal network and the prospect of future crime will
lessen. We thus evaluate cost as the number of investigations
performed by law enforcement within a given pursuit phase
minus the number of criminals removed within the same
pursuit, if this difference is positive. Otherwise, if the number
of investigations is lower than the number of arrests, we let
costs be zero. For example, in the left hand panel of Fig. 8
four nodes are investigated, the street criminal (depicted in
yellow) and three senior members (depicted in red). During the
arrest phase, in the right hand panel of Fig. 8, four criminals
are eliminated (depicted in blue). At this iteration, the costs
associated with investigating four criminals are balanced by
the benefits associated with removing four criminals, so we
tally costs as zero. Total costs are then calculated as the
cumulative cost required to reach the kingpin throughout
the duration of the simulation, assuming the network is
eradicated. If the network is not eradicated, we can still
record the cumulative costs until the entire population n*
has joined the criminal organization. However, we do not
discuss cases where the kingpin is not reached, since here
costs will be proportional to the number of rounds until
the n* criminals are incorporated in the network. Note that
dead ends in this context are very expensive, since there
are no net gains in a pursuit that leads to no arrests. In
the upper panel of Fig. 11 we plot the total cost incurred
by authorities conditioned on the network being dismantled
for a total population size n* = 1000 and for various pursuit
methods Q4(p) and Qp(g) starting on an initial full ternary
tree. We also depict the probability of kingpin capture and
criminal network eradication as shades in the data points.
Costs are identically zero for Q4(p = 1) and Qp(g = 1)

since in these cases there will be two investigations and two
criminals removed at every time step. Similarly, costs stay low
for low values of p,q across both strategies. For example, for
both Q4(p =2) and Qp(g = 3) total expenditures are very
small, indicating that the number of investigations is at most
comparable to the number of criminals removed throughout
the entire network evolution.

For intermediate values of p,q we note that curves in
the upper panels of Fig. 11 are monotonically decreasing, as
can be seen for QA(p = 3), Qa(p =4), and Qp(g =4). To
understand this behavior, we note that several distinct trends
arise upon increasing k for small values of k. On the one hand,
the likelihood of reaching costly dead ends increases. Here,
larger values of k represent faster network growth, with more
nodes being added at every time step. Each criminal is thus
linked to a greater number of underlings and the probability of
moving higher up in the hierarchy decreases. In this case, it is
very likely for law enforcement to eventually reach a dead end,
and for costs to increase. On the other hand, if dead ends are
not reached and arrests are performed, larger k values imply
that more underlings will be eliminated per pursuit, leading
to decreasing costs. Of these two trends, for intermediate
values of p,q, the most important is the greater elimination
of criminals with increasing k. Here, pursuits are short lived
so that the self-avoiding random walks performed by law
enforcement have a slightly lower chance of incurring dead
ends, compared to higher values of p,q. As aresult, the number
of criminals arrested at each time step is contained, but almost
always will criminals be arrested, leading to the monotonically
decreasing curves in the upper panels of Fig. 11. Conversely,
as p,q increase further, pursuits are longer with dead ends
becoming more likely and more costly, failing to limit network
growth. Here, increasing k for small k leads to higher costs, as
can be seen from the Q4(p = 5) and Qp(p =95), Op(p = 6)
curves. Note that the same trend arises for Q;, which is the
limiting behavior for Qo(p — 00) and Qp(p — ©0). As k
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FIG. 11. Top: Costs incurred by law enforcement conditioned on kingpin capture as a function of the recruitment index k. Shades in the data
points represent the probabilities of network eradication. We considered 10 000 simulations and allowed the network to grow to n* = 1000.
Note the emergence in maxima for all curves, due to the conditional nature of cost evaluations. As k increases, the network grows more rapidly
and so does the number of investigations necessary for eradication. Upon reaching a threshold in &, eradication becomes less likely especially
in the latter growth stages so that for large enough k either the kingpin is captured in the early stages of network growth, with little costs, or
it never will be. The requirement for quick capture with growing k for large k is associated with decreases in the cost function, leading to the
maxima in k. Bottom: The mean eradication time as a function of k for various strategies. Similarly as for the above panel, the conditional
nature of the process is manifest from the emergence of maxima in all curves. Note that curves for Q,(p = 1) and Qp(g = 1) are the same

and that the Q; curve is the limit for Q4(p — 00).

increases even further, although the likelihood of reaching
dead ends increases, the gains in eliminating more criminals
prevails and all curves show decreasing costs with increasing
k leading to a maximum for intermediate p,q.

These behaviors are valid for small and intermediate values
of k, when the likelihood of eradication is almost unitary.
Beyond a certain threshold in k, however, the eradication
probability decreases for all choices of p,q and the probability
that the entire society is taken over by organized crime
increases. In this case, either the network is eradicated at its
early stages of growth, or it will never be. Compounded with
the above considerations, the decrease in the cost curves for
all values of p,q for large k are indicative of the conditional
nature of the process: as k increases beyond a certain threshold,
it becomes less and less likely that the kingpin will be captured
and the process must occur more and more swiftly with
fewer investigations, so that costs decrease as a function of k
regardless of p,q. Inthe lower panel of Fig. 11 we plot the time
of first eradication of the network as a function of recruitment
index k and find trends that support these considerations. The
time of first eradication is always nonmonotonic: it increases in
k before decreasing again, with the nonmonotonicity stemming

from the conditional manner in which eradication times are
evaluated. For small k, increasing k requires more time steps
in capturing the kingpin but, beyond a certain threshold,
eradication must be quick or it will never occur at all, leading
to decreasing first eradication times. Indeed, peaks in the
eradication time curves correlate to drops in the eradication
probability, as can be seen from the shaded colors in the lower
panels of Fig. 11. Note that for small to intermediate k values
increasing eradication times may be coupled with lower costs,
indicating that, while more time steps are required to reach the
kingpin, criminals are being eliminated from the network in a
more efficient way.

It is important to note that these results are highly
dependent on the network configuration on which the pursuit
was initiated: different initial conditions will yield different
eradication probabilities, costs, and eradication times. We
simulated different initial tree configurations and found that
given an initial number of criminals, here set at 40, more
hierarchical structures (complete linear or binary trees, with
lower b values) allow for better results in terms of maximizing
eradication probabilities and minimizing costs and eradication
times as discussed in the previous section. In general, initial
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networks have a lower number of initial criminals, with either
lower b or h allowing for shorter eradication times and lower
costs, as can be expected.

C. Best strategies

From the above results we can try to identify a best strategy
for network eradication. As discussed above, eradication prob-
abilities decrease with k. Law enforcement cannot influence k&
values, as this is an intrinsic feature of the criminal organization
and may depend, for example, on kingpin charisma or on
rewards offered by the network to its members. Indeed, on
dark networks, law enforcement may only have best guesses
for k. We thus assume that law enforcement agencies may only
select which strategy to use given a preset valueof p = g = g*
that is not exceedingly large since for g* — oo all strategies
are the same. Figure 9 shows that for very small and very
large values of &, given a full ternary tree as initial condition,
eradication probabilities do not change significantly across
strategies. However, for intermediate values of k, the minimum
out degree strategy Qp(g*) is associated with slightly larger
eradication probabilities compared to the fixed investigation
number strategy Q4(g*). This can be seen, for example,
by comparing curves for Q4(p = 3) and Op(g = 3) and in
particular by noting that B(Qp(p = 3)) > B(Qa(g = 3)) for
all values of n*. From this perspective, given that typical k
values are not known to law enforcement, it is optimal to
utilize strategy Q p(g™) for a given value of ¢*. The choice of
what g* to select, if there is any information known on the rate
of growth of the criminal organization, is to use lower values
of g* for slowly growing organizations, with lower values of
k, and larger ¢* in the opposite case. If one is interested in
lowering costs, for example when the criminal organization
is not engaged in activities that are deemed to be especially
dangerous for the community, the best intervention method is
to use the less sophisticated investigative methods associated
with lower values of ¢*, since these are associated with lower
costs, albeit with longer eradication times as well. Costs are
lower for Q p(g*) than for Q 4(g*) as can be seen from Fig. 11.
Similarly, if one is interested in lowering eradication times,
the minimum out degree strategy Q p(g*) always yields better
results than the fixed investigation number strategy Q 4(g™*).

V. CONCLUSION

The simple network model presented in this paper provides
insight on the formation and active disruption of growing,
dark criminal networks. We focused on organized, hierarchical
drug syndicates, such as the Medellin and Sinaloa drug cartels
[18-21,40,41,47], some features of which were used to
inform our modeling choices. Other criminal associations
that are hierarchically organized and that our model could
be adapted to study include the American and Sicilian Cosa
Nostra mafia networks [57-59] and the Hells Angels biker
gang [60].

The recruitment mechanism we used is a variation on
standard preferential attachment models, though there are
some important distinctions. For example, the resulting out
degree distribution we find is not heavy tailed [61,62] and
appears to be independent of the recruitment index k. We
also found the distribution of criminal position relative to the
kingpin to be well approximated by a shifted I" distribution
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with parameters depending on the initial configuration, on the
recruitment index k, and on the maximum network size n*.
Our model yielded a linear relationship between the number
of street criminals and the recruitment rate k, for which we
provided a heuristic justification. A more rigorous framework
could be useful to determine the relationship between criminals
of higher degree than street criminals and k. This is a more
difficult task than what was presented in this work for street
criminals, since the distribution would depend on the exact
topography of the network.

Law enforcement pursuit and arrest were modeled as a dark
network disruption problem. We introduced and analyzed the
efficacy of three investigative strategies that could be used:
O p(p) with a preset number of investigations, p, before an
arrest is carried out; Q4(g) by seeking out a criminal with
at least ¢ connections; and Q; by reaching the kingpin. For
a preset value of p = g = ¢* we can heuristically determine
the most effective strategy on a dark network to be Qp(g*),
when the pursuit ends upon reaching criminals with at least ¢*
connections and for moderate values of ¢*. Indeed, strategy
0p(g*) yields comparable or larger eradication probabilities
than Q 4(g*). The optimal value of the arrest parameter ¢g* will
depend on the recruitment rate k and on the overall population
size n*. For example, from Fig. 9 it appears that Qp(8) is
more effective than Q p(3) only when k 2 40 for all values of
n* with the opposite being true for smaller values of k. Also
in terms of minimizing costs and decreasing eradication times
strategy Q p(q*) is more efficient than strategy Q 4(g™*) as can
be seen from Fig. 11. This result is consistent with previous
models of fixed networks where the optimal disruptor strategy
includes seeking the nodes of highest detectable degree
[13,14,17].

We also find that, as k increases and the network grows
at a faster rate, the eradication probability decreases and
either the kingpin is captured in the early stages of network
growth or it will never be. This result provides a mathematical
foundation to the commonsense notion of beneficial quick
intervention and is in agreement with previous results on
attempts to dismantle operational criminal networks. For
example, in studies of drug trafficking networks in the
Netherlands every disruption strategy proposed was largely
ineffective except when performed during the nascent phase
of the criminal organization [12]. While the disruption and
recruitment processes analyzed in the latter work are different
from ours, we can draw a similar conclusion on the importance
of “proactively” attacking organized crime networks before
they become too entrenched within society and eradication
proves more and more elusive.

In this work we have only modeled a professional network
of criminals. However, a social network may be more useful
to law enforcement officials [63], with the possible inclusion
of geospatial constraints. Our preference mechanism can be
generalized to directed networks using the length of the
shortest path to the kingpin as input for node attachment
when a tree structure is not present. Moreover, adjusting
the rate of criminal recruitment might be more realistic for
organized crime networks with external or economic pressures.
The disruption strategies presented here could also be made
adaptive so that, at some time threshold, strategy QO p(g) could
be abandoned in favor of strategy Q(p). All of these could
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make this model more realistic and easier to validate using
criminal network data.

Finally, we performed simulations with 40 initial criminals,
varying the initial configurations prior to police intervention.
We found low branching, such as linear or binary trees, led to
higher eradication probabilities once law enforcement pursuits
are introduced. Similarly extremely large initial branching led
to higher eradication probabilities. These results indicate that
the simplest networks to eradicate are those with initially low
b where once investigations begin, at the early stages of the
pursuit process, almost certainly the kingpin will be reached,
or those that grow in an almost noncentralized manner where
the many initial street criminals provided by very high b allow
for easy access to the kingpin who is just one or two levels
removed from street activity. Extremely prudent (low &) or
ambitious (high b) kingpins are thus the most vulnerable. On
the contrary, the most robust initial networks are those that
grow enough levels and with enough criminal members prior
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to police intervention to effectively shield the kingpin from
arrest as soon as the pursuit process is initiated, thus allowing
for a vigorous successive growth.

VI. CODE

We used NETWORKX, NUMPY, and SCIPY for all the simula-
tions. D3.JS was used for the network diagrams. The code for
the preferential attachment tree, the dynamic game, and the
simulations can be found in Ref. [64].
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