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Interplay of chemotaxis and chemokinesis mechanisms in bacterial dynamics
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Motivated by observations of the dynamics ofMyxococcus xanthus, we present a self-interacting random
walk model that describes the competition between chemokinesis and chemotaxis. Cells are constrained to
move in one dimension, but release a chemical chemoattractant at a steady state. The bacteria sense the
chemical that they produce. The probability of direction reversals is modeled as a function of both the absolute
level of chemoattractant sensed directly under each cell as well as the gradient sensed across the length of the
cell. If the chemical does not degrade or diffuse rapidly, the one-dimensional trajectory depends on the entire
past history of the trajectory. We derive the corresponding Fokker-Planck equations, use an iterative mean-field
approach that we solve numerically for short times, and perform extensive Monte Carlo simulations of the
model. Cell positional distributions and the associated moments are computed in this feedback system. Average
drift and mean squared displacements are found. Crossover behaviors among different diffusion regimes are
found.
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I. INTRODUCTION

The dynamics and pattern formation of bacteria serve
paradigms in understanding many properties of multicellu
interacting systems, such as collective behavior, s
organization, evolution, and development@1,2#. The charac-
teristics of bacterial motility and aggregation depend on
merous biological and chemical parameters, which inclu
light exposure, temperature, concentration of food or of ot
substances, and lead to the existence of many classes o
motion. Since a bacterium cannot utilize electromagnetic
acoustic radiation to sense its environment, it must rely
physical contact, and its motility may depend on the prod
tion, diffusion, and degradation of a relevant set of sen
chemicals. These chemicals are called chemoattractan
chemorepellants if they attract or repel bacteria, respectiv
Examples of chemoattractants include food—sugars
amino acids—whereas antiobiotics, fatty acids, or other n
ious substances are chemorepellant.

A prototype and well-studied example of bacterial mo
ity is the run and tumble mechanism used byEscherichia
coli in liquid environments. The specialized structures allo
ing for cellular motion are known as flagellae, spinning h
lical tails that extend from the cellular membrane into t
surrounding environment: counterclockwise rotation of
flagellar motor leads to a one-directional run, whereas clo
wise rotation causes tumbling in a random direction. Dur
its run, anE. coli cell periodically senses for chemosensiti
substances, and, by comparing concentration levels in
and old environments, adjusts its motion and its likelihood
tumble in a new, randomly chosen, direction@3,4#. If the cell
is moving in the direction of increasing attractant, for i
stance, the probability of tumbling is lowered, so that the
time and ‘‘mean free path’’ length in this direction are i
creased. AnE. coli cell, thus, compares chemical concent
tions at nearby points, so that its future motion is determin
by a chemical gradient@5,6# via the mechanism ofchemot-
axis.
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Chemotaxis may occur in other nonacqueous syste
such as in colonies of the bacteriumMyxococcus xanthusor
of the eukaryoteDictyostelium discoideum~slime-mould!,
which crawl on agar plates@7#. The exact regulatory mecha
nism leading to the surface gliding of these rodlike and sl
moving organisms is yet unknown, and responses to exte
stimuli appear to be more complex than in enteric bacte
such asE.coli @8#. The cells undergo chemotaxis, but lack,
show very modest, responses to specific nutrient stim
@9,10#, suggesting that the chemotactic behavior is d
mainly to self-generated signaling chemicals@11#. The fact
that cell density regulates typical reversal frequencies may
a consequence of one bacteria sensing the higher leve
signaling chemical in the presence of others@12#. In particu-
lar, under starving conditions, the cells are driven by auto
leased fibril trails to aggregate and form multicellular co
pounds called fruiting bodies. These compounds raise ab
the agar plate and eventually sporulate into new and m
resistant organisms, which are then released to the envi
ment in search of new sources of nutrients.

One major difference between these systems and en
bacteria is that the chemoattractants embedded in or
deposited on the agar plates are relatively immobile on
time scale of bacterial motility, whereas chemoattractant s
stances in acqueous environments have a finite diffusion c
stant. LikeE. coli, the gliding cells can only sense what the
come into immediate contact with, and since the chemos
sitive substance diffuses slowly, large fibril concentrati
differences exist over the length of the cell. The gradie
driving the chemotaxis mechanism is then determined
tween positions within a cell body length, as opposed to
large distances involved in enteric bacteria chemotaxis.

Another possible mechanism driving cellular motility
chemokinesis. Here, changes in the direction of motion or
the cell velocity are determined locally, without recourse
the determination of concentration gradients. Chemokine
may be a function of temperature, substrate adhesion,
concentration, or substances affecting the internal meta
©2003 The American Physical Society25-1
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lism of the cell, slowing or enhancing its motion or turnin
frequency@13#.

The observed patterns of movement ofM. xanthusand of
slime-mould suggest that the motility of these systems m
be affected by self-induced chemokinesis as well as s
induced chemotaxis.M. xanthusmove by shooting out and
retracting pili from the ends of their prolate bodies@14,15#.
In nutritionally abundant environments or under conditio
of high population density, both cellular systems gener
repulsive fibril trails, leading to cell dispersion and the co
nization of new regions of the agar plate. The mechanism
hypothesized to be dictated by chemokinesis@16,17#.

Previous theoretical studies into the collective dynam
of interacting motile bacteria, both ofE. coli andM. xanthus
types, include coarse-grained convective-diffusive transp
type models@18–22# and lattice-type simulations@23–25#.
These studies have considered the effects of interactions
concentration fields, modeling chemotaxis or chemokine
or, as in Ref.@26#, both chemosensitive mechanisms. T
continuum theories take into account turning rates, a
change in speed or direction of motion; however, they g
erally ignore long time path history effects induced by t
sensed chemicals. In these systems, the bias to the m
arises from an external fixed stimulus, and not a dynam
one. Similar studies—with a fixed external trail—have be
presented in different contexts, such as the aggregatio
ants due to chemotaxis@27#. Other authors@28# have pre-
sented systems in which the fibril trail that dictates the m
tion of the cells is determined over an extended area an
not sensed locally.

The aim of this paper is to model and disentangle
effects ofself-generatedchemotaxis and chemokinesis, ac
ing individually or concurrently and under diverse attractra
and repulsive conditions. In contrast to many of the previo
studies, the chemical trail of our systems will emerge fro
the motion of the bacterial cells and evolve with the cellu
motion itself. Observations of individual organism paths m
be more revealing of cellular dynamics than multicellu
ensembles, and we restrict our attention to the behavior
single bacterium. Even if isolated, the dynamics of t
single cell will be affected by its self-secreted fibril trail, an
the resulting pattern will be that of a self-interacting rando
walker. We shall try to understand cellular motion by dev
oping, and analytically solving, the equations of motion
an isolatedM. xanthuscell under a mean-field approxima
tion, and by means of simple Monte-Carlo simulations,
corporating chemotaxis and chemokinesis to various degr
The underlying assumption of this paper is that t
chemosensitive material acts as a regulator of cell mo
affecting only the frequency of direction reversal, v
chemokinesis or chemotaxis. The speed of the bacteriu
assumed constant in either direction and is controlled by
herent cellular bioenergetics.

Experimental single cell trajectories show that an isola
cell travels along its axis, occasionally veering off, and
the sake of simplicity, we will only consider one-dimension
dynamics. In order to validate our models, cell particle tra
ing can be eventually performed in one-dimensional etchi
or imprints into the agar plates.
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II. CONSTANT REVERSAL RATES

In this section we derive a general Fokker-Planck eq
tion for the single one-dimensional random walker. As d
cussed in the Introduction, we assume that the ‘‘bacterium
or particle, travels with constant speedv0, and is subject to
an ad hoc directional reverse mechanism that incorpora
both chemotaxis and chemokinesis. To start, we ignore
effect of both phenomena, and we simply investigate the r
of a constant reversal rate.

The probability that a bacterium is centered at positiox
at time t with velocity 6v0 will be denoted byP6(x,t) and
the probability of a directional switch in timedt is dt/t
5gdt. If g is independent of (x,t) we can write

P1~x,t !5P1~x2v0dt,t2dt!~12g1dt!1P2~x,t !g2dt,
~1!

P2~x,t !5P2~x1v0dt,t2dt!~12g2dt!1P1~x,t !g1dt.
~2!

In the above equations, we have included the possibility t
g depends on the type of reversal, since in general the re
sal rates from one direction to the other are not the sa
Specifically,

g1 :1v0→2v0 , g2 :2v0→1v0 . ~3!

Expanding Eqs.~1! and ~2! and keeping only theO(dt)
terms, we find

Ṗ1~x,t !1v0]xP1~x,t !52g1P1~x,t !1g2P2~x,t !,
~4!

Ṗ2~x,t !2v0]xP2~x,t !52g2P2~x,t !1g1P1~x,t !.
~5!

The initial conditions are chosen so that att50 the particle
is localized atx50 with amplitudesa6 satisfying the con-
dition thata11a251:

P1~x,0!5a1d~x!, P2~x,0!5a2d~x!. ~6!

We obtain

P1~x,t !5expF ~q2x2q1v0t !

2v0
G H a1

2
@d~x2v0t !

1d~x1v0t !#1Q@v0t2uxu#

3Fa1Qq1

4v0
Av0t1x

v0t2x
I 1S q1Q

2v0
A~v0t !22x2D

1
a2g2

2v0
I 0S q1Q

2v0
A~v0t !22x2D G J , ~7!
5-2



t

s
m
id

s

dif

th
m

oa
at
n
e
a

in

t-
n

d

c-
-
n

n

ec-
that
e-
ro-

ac-
ve
ing
ate

lar

the
tra-

e
n-
ase

ith

n

d by

l

tory

ant
int
the
ake
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P2~x,t !5expF ~q2x2q1v0t !

2v0
G

3H a2

2
@d~x2v0t !1d~x1v0t !#1Q@v0t2uxu#

3Fa2Qq1

4v0
Av0t2x

v0t1x
I 1S q1Q

2v0
A~v0t !22x2D

1
a1g1

2v0
I 0S q1Q

2v0
A~v0t !22x2D G J . ~8!

Here, the parametersq1 , q2 , and Q are defined so tha
q15(g11g2), q25(g22g1) and (q1Q)25(q1

2 2q2
2 ).

The function Q is the Heaviside function,Q(x)51 if x
.0, and theI functions are the modified Bessel function
The d function terms carry the probability of the rando
walker cell having performed no reversals, and the Heavis
terms embody causality.

The total particle probability distribution function i
P(x,t)5P1(x,t)1P2(x,t). Under the symmetric condition
a15a251/2, andg15g2 ~or equivalentlyq250) the so-
lution reduces to that for the generalized Smoluchowski
fusion equation determined by Hemmer@29#, which at large
times is a spreading Gaussian. The Fourier transform of
distribution functions yields the moments of the rando
walker cell from which the cumulants can be extracted.

III. CHEMOKINESIS AND CHEMOTAXIS

We now consider the generation and sensing of chem
tractant or chemorepellant, and its effect on the reversal r
g6 . M. xanthuscells deposit attractant chemical matter co
tained within a fibril slime under the area of cell contact. W
assume that the release of the chemoattractant occurs
constant rate and uniformly over the cell-substrate footpr
In general, for a cell of length,, the fibril concentration
f(x,t) obeys the following equation:

ḟ~x,t !5D¹2f~x,t !1rQ@ l /22ux2X~ t !u#2r df~x,t !,
~9!

where the chemical is generated at a constant rater per unit
area. The Heaviside functionQ in Eq. ~9! limits the increase
in fibril concentration to the region strictly under the foo
print of the bacterium centered atX(t), whereas degradatio
and diffusion are included via the terms proportional tor d
andD. If the surface-deposited chemoattractant does not
fuse appreciably andD¹2f is neglected, we find

f~x,t !5f~x,0!e2r dt1r E
0

t

dt8er d(t82t)Q@,/22ux2X~ t8!u#.

~10!

Note thatf(x,t) depends on the entire history of the traje
tory X(t8) up to time t85t. To couple the fibril concentra
tion with cell dynamics, we must now include a relatio
betweeng6(x,t) andf(x,t). This relationship will depend
on the particular mechanism of cell direction reversal a
02192
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various choices will be discussed in the following subs
tions. It is important to note that, since we are assuming
fibril sensing is the main factor in determining direction r
versals, we are also implicitly assuming that the sensing p
cess, for example, via a biochemical network within the b
terium, is much faster than the typical time for a cell to ha
moved appreciably. If we further take the molecular sens
apparatus to be distributed uniformly at the cell substr
footprint, the total chemoattractantF„X(t),t… sensed at time
t is just the local contribution integrated over the cellu
length:

F„X~ t !,t…5wE
X(t)2,/2

X(t)1,/2

f~x,t !dx, ~11!

wherew is the width of the cell as depicted in Fig. 1.

A. Chemokinesis

Let us consider the case of chemokinesis first. Here,
reversal rate depends only on the integrated fibril concen
tion. We will assume no intrinsic drift and setg(x,t)
5g1(x,t)5g2(x,t). It is also reasonable to expect th
switching probability to saturate for large enough fibril co
centration, when the cell cannot respond to further incre
in fibril levels. A plausible functional dependence forg on
the total sensed chemoattractantF is of the type found in
cooperative chemical binding, a Michaelis-Menten form w
Hill coefficient b, so that for a cell at positionX(t)5x, the
reversal rate is

g~x,t !5g01k~x,t !5g01dp
Fb~x,t !

F0
b1Fb~x,t !

, ~12!

where F0 and b, the inflection parameter and transitio
sharpness~or Hill coefficient!, are peculiar to the system
being considered. The effect of chemokinesis is measure
dp; with the unbiased choiceg051/2, dp is limited to
21/2<dp<1/2.

We must now solve Eqs.~4! and~5! with the above spatia
and temporal dependence forg(x,t), which, in turn, depends
on the concentrationF(x,t) via Eqs.~10! and~11!. The lat-
ter equations carry an explicit dependence on the past his
of the walker. Our approach will be to consider theg0 con-
tribution of Eq. ~12! as giving rise to Eqs.~4! and ~5! with

FIG. 1. The trajectory of a single bacterium of widthw and
length, crawling in one dimension and depositing chemoattract
~or repellent! on the surface. The density of shading of the footpr
is proportional to the total attractant deposited and arises from
hypothetical trajectory depicted by the arrows beneath. For the s
of simplicity, we have neglected the cell length, in the depiction of
the trajectory.
5-3
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constant reversal rates, and find its associated Green’s f
tion.The k(x,t) term in g(x,t) of Eq. ~12! then generates
non-homogeneous differential equations, whose solu
may be obtained via known Green’s function. We will th
be able to construct an iterative process to obtainP(x,t) as a
function of all preceeding probabilitiesP(x8,t8,t). To build
Green’s matrix functionG(x,t), we note that Eqs.~4! and
~5! can be written as

Ṗ~x,t !5M ~x!P~x,t !, ~13!

whereP(x,t)5@P1(x,t),P2(x,t)#T and

M ~x!5S 2v0]x2g1 g2

g1 v0]x2g2
D . ~14!

For the case of genericg6 , independent of (x,t), the
solution to this equation, with the initial conditions express
by Eqs. ~6! is given by Eqs.~7! and ~8!. In the caseg1

5g25g0 we refer to these solutions asP1
(0)(x,t) and

P2
(0)(x,t). Green’s function for this problem stems from th

modified matrix equation

Ġ~x2x8,t>0!5M ~x! G~x2x8,t !11d~x2x8!d~ t !,
~15!

G~x2x8,t,0!50. ~16!

The fact that

P(0)~x,t !5S P1
(0)

P2
(0)D ~x,t !5G~x,t !S a1

a2
D ~17!

leads to the conclusion that Green’s matrix function is giv
by

G~x,t !5S P1
(0)~x,t !a151 P1

(0)~x,t !a150

P2
(0)~x,t !a250 P2

(0)~x,t !a251
D . ~18!

This result can also be verified by direct evaluation
G(k,v) in the Fourier space. From Eqs.~4! and ~5! it fol-
lows that reversal rates of the typeg6(x,t)5g01k6(x,t)
yield a new matrix equation

Ṗ~x,t !5M ~x!P~x,t !1K ~x,t !P~x,t !. ~19!

where

K ~x,t !5S 2k1~x,t ! k2~x,t !

k1~x,t ! 2k2~x,t ! D . ~20!

The resulting equation forP(x,t) can be solved iteratively:

P~x,t !5P(0)~x,t !1E
0

t

dt8E
2`

`

dx8 G~x2x8,t2t8!

3K ~x8,t8!P~x8,t8!. ~21!

In the case of chemokinesis, the nonhomogeneous t
k1(x,t)5k2(x,t) is contained in Eq.~12!. In order to sim-
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plify the expression forF(x,t), we assume unit cell width
and take the limit of cellular length,→0. We also neglect
diffusion and decay of the fibril. Under these assumptio
ḟ(x,t)5r ,d@x2X(t)# and F(x,t)5w,f(x,t). The prob-
lem is now a deterministic one, as exemplified by thed func-
tion in the expression forḟ. In order to apply Eq.~21!,
which gives the statistical probability for one bacterium to
at (x,t), we need to know itsexactlocation atX(t8) for all
previous times. In other words, the complete history of
cell is needed to determine future motion and solutions c
not be found.

Nevertheless, we can approximateP6(x,t) by an aver-
aged densityr6 , utilizing a mean-field theory approach
Here, we average the probabilitiesP6 for a single walker
over many distinct independent realizations, so that the s
interaction is to be expressed on theaverageof all replicas of
the system, and does not depend on the history of individ
walkers. We can now rewrite the equation for the fibril co
centration as

ḟ~x,t !5r ,r~x,t !, ~22!

where we indicate the total bacterial density byr(x,t). The
above relationship signifies that, on average, fibril growth
proportional to the total density of bacteria at (x,t). Integrat-
ing Eq. ~22! and taking the initial conditionf(x,0)50, we
obtain

f~x,t !5r ,E
0

t

dt8r~x,t8!, ~23!

from which, using Eq.~21! and the definitionDr(x,t)
5r1(x,t)2r2(x,t), we can write

Dr~x,t !5Dr (0)~x,t !1dpE
0

t

dt8E
2`

`

dx8g~x2x8,t2t8!

3
Dr~x8,t8!fb~x8,t8!

f0
b1fb~x8,t8!

. ~24!

Here g(x,t) is a combination of the matrix elements o
Green’s function:g52g111g121g212g22 and is even inx.
An equation similar to Eq.~24! can be obtained for the tota
densityr(x,t), which depends onDr(x,t):

r~x,t !5r (0)~x,t !1dpE
0

t

dt8E
2`

`

dx8h~x2x8,t2t8!

3
Dr~x8,t8!fb~x8,t8!

f0
b1fb~x8,t8!

. ~25!

Here,h52g111g122g211g22 and is odd inx, as required
by the normalization of bothr(x,t) andr0(x,t). It is useful
to note that the above recursive equations may be use
evaluate the number densityn(x,t) for a system ofN inter-
acting bacteria as well. In this case, the distribution funct
n6(x,t)5Nr6(x,t) and the evolution equations are th
same as Eqs.~24! and ~25!, provided we redefinef0
5-4
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5Nn0. Equations~23!–~25! can now be solved numerically
Once Dr(x,t) and r(x,t) are determined,f(x,t) can be
evaluated and used to calculate the quantities of intere
subsequent times.

B. Chemotaxis

The incorporation of chemotaxis into the determination
the reversal rate follows closely that of chemokinesis. Let
consider chemotaxis as the sole reversal mechanism f
cell of length, traveling atv0 speed in the positive direc
tion, and situated at positionX(t)5x. The chemical gradien
over the cellular length will drive the reversal rate. T
specify the relation between gradient and reversal proba
ties, we first introduce the probability termsm6(x,t):

m6~x,t !5expF7s
f~x1,/2,t !2f~x2,/2,t !

, G , ~26!

wheres is a constant that measures the strength of chem
axis. For positives, the above expression translates into
low reversal probability wheneverf(x1,/2,t).f(x
2,/2,t), so that the cell is likely to keep moving at spe
1v0. This means we are modeling an attractant fibril tra
On the other hand, negative values ofs will represent a
chemorepellant system. The same argument can be pres
for a bacterium traveling at2v0 speed. In this case, th
direction of motion tends to persist for negative gradien
hence the expression form2(x,t), where positives values
signify chemoattractant systems. In the limit of cellul
length,→0, the above expressions are written as

m6~x,t !5exp@7sfx~x,t !# ~27!

wherefx5]f/]x. We use this exponential function to ca
ture the sensitive chemical signalling such as that found inE.
coli @30#. Another alternative for the functionm6 is to in-
clude a saturation in the form offx /f in the exponent of Eq.
~27!.

We assume the reversal probabilitiesg6(x,t) at position
(x,t) to depend onm6(x,t) through the following:

g6~x,t !5
1

2 F11
m6~x,t !21

m6~x,t !11G , ~28!

so that fors50, in the absence of chemotaxis, the rever
probabilities areg65g05 1

2 .
We are now able to use the same formulation derived

the chemokinesis mechanism and apply it to the chemota
cally driven case. Again, we must resort to the mean-fi
calculation of the densitiesr(x,t) andDr(x,t) by means of
Green’s matrix function. The matrixK appearing in the non
homogeneous term of Eq.~19! now has componentsk6(x,t)
given by

k6~x,t !5
m6~x,t !21

m6~x,t !11
, ~29!
02192
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and Eq. ~21! still holds. Note that sincem2(x,t)
5m1

21(x,t), then k1(x,t)1k2(x,t)50. Repeating the
same type of calculations as for the chemokinesis case
Dr under chemotaxis we find

Dr~x,t !5Dr (0)~x,t !1
1

2 E0

t

dt8E
2`

`

dx8g~x2x8,t2t8!

3r~x8,t8!k1~x8,t8!. ~30!

Here the previous history of the cell is contained
k1(x8,t8) through the derivatives of the fibril concentratio
f(x8,t8). Theg function is the same as defined in the case
chemokinesis. Similarly, the densityr(x,t) is

r~x,t !5r (0)~x,t !1
1

2 E0

t

dt8E
2`

`

dx8h~x2x8,t2t8!

3r~x8,t8!k1~x8,t8! ~31!

and r(x,t) is properly normalized by the fact thath(x,t)
~defined in the preceding subsection! is odd with respect tox.

C. Combined chemokinesis and chemotaxis

If the two mechanisms of chemokinesis and chemota
are active, bothdp and s are nonzero, andg6(x,t) must
include both contributions. Forg6(x,t), we write

g6~x,t !5
1

2 H 11
pk~x,t !@m6~x,t !11#21

pk~x,t !@m6~x,t !21#11J . ~32!

Here, pk(x,t) is the contribution from chemokinesis in th
form expressed by Eq.~12! with g051/2, i.e., pk(x,t)
5g(x,t) from the chemokinesis case. The contribution fro
chemotaxis ism6(x,t) as defined by Eq.~27!.

The choices50 setsg6(x,t)5pk(x,t), that is, the rate
is dictated only by the chemokinesis mechanism. Convers
dp50 sets pk51/2 and g6(x,t) reduces to the purely
chemotactic expressions of Eq.~28!. For boths5dp50 the
reversal rate is 1/2. The correspondingk1(x,t) andk2(x,t)
are contained in Eq.~32! and yield the following recursive
relationship forDr(x,t):

Dr~x,t !5Dr (0)~x,t !1E
0

t

dt8E
2`

`

dx8g~x2x8,t2t8!

3
1

2
@U~x8,t8!r~x8,t8!1V~x8,t8!Dr~x8,t8!#.

~33!

The corresponding equation forr(x,t) is

r~x,t !5r (0)~x,t !1E
0

t

dt8E
2`

`

dx8h~x2x8,t2t8!

3
1

2
@U~x8,t8!r~x8,t8!1V~x8,t8!Dr~x8,t8!#.

~34!
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Here, theU(x,t) andV(x,t) functions depend on chemo
taxis and chemokinesis via

U5
pk~12pk!~12m1

2 !

@pk~m121!11#@m1~pk21!2pk#
, ~35!

V5
m1~122pk!

@pk~m121!11#@m1~pk21!2pk#
. ~36!

We have usedm1m251 and suppressed the (x,t) depen-
dence. Note that in the absence of chemotaxis, fors50 and
m151, U50 andV52pk21, leading to the pure chemok
nesis case. In the absence of chemokinesis, forpk51/2, U
5k1 , as defined in the preceding subsection, andV50. We
shall discuss the numerical solution to the equations
r(x,t) and Dr(x,t) in the various cases of chemokines
chemotaxis, or both, in the following section.

IV. DISTRIBUTION FUNCTIONS

In this section, by means of numerical integration,
solve Eqs.~24!, ~25!, ~30!, ~31!, ~33!, and~34! for r(x,t) and
Dr(x,t). Under chemokinesis, Eqs.~24! and ~25! are Volt-
erra equations of the second kind in thet variable, for which
standard methods can be applied@31#. In particular, we dis-
cretize both the temporal and spatial axis according to a
form mesh, of spacingDt andDx, and solve the two coupled
equations iteratively.

Let us assume thatDr(x8,t8,t) and r(x8,t8,t) are
known, wheret8 represent time steps up tot2Dt. At the
subsequent time stept, Dr(x,t) is evaluated by calculating
Dr (0)(x,t) and by adding to it the sum over all previous tim
stepst8,t of the integrand. Of these terms, the last one
t5t8, contains the kernel functiong(x2x8,0)522d(x
2x8), which, when integrated over space, extracts a te
proportional to the quantity of interest,Dr(x,t). The other
contributions of the sum, fortÞt8, are spatial integrals
which are evaluated as sums after the discretization over
x8 variable. These sums contain the known values
Dr(x8,t8,t), as well ask(x8,t8), which depends on the
fibril concentrationf(x8,t8). The latter is just the integrate
r(x8,t8), as follows from Eq.~23!. In order to evaluate
f(x8,t8), a time discretized summation over ther(x8,t8
,t) values is carried out. The assumption here is that
bacterium senses the environment before laying down
fibril, so that the concentrationf(x8,t8) is evaluated not by
the trapeziodal rule, in which the extrema of the integrat
region are weighed each as 1/2, but by weighingt50 with 1
and ignoring t5t8. In the case of chemokinesis, onc
Dr(x,t) is determined, r(x,t), which depends on
Dr(x8,t8), can be calculated in the same way.

In Fig. 2 we plot the results forr(x,t) for a system under
chemokinesis. The meshes are set atDx5Dt50.05 and the
maximum time step, in these units ist5600. Cell velocity is
fixed atv051 and the parameterf050.2. For chemoattrac
tant fibril, or dp.0, the distribution is narrower than th
baredp50 case, also plotted in the graph. Negative valu
of dp represent chemorepulsion and broaden the distribut
eventually leading to a plateaulike region. The existence
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the plateau is due to the fact that for large negative value
dp.21/2 the reversal rate at saturation is almost zero, le
ing to ballistic motion of the cell in the region where th
fibril has been deposited. Once the cell reaches the edg
the plateau region of fibril concentration, the reversal r
increases dramatically and the cell tends to reverse its mo
and travel backwards, until the opposite side of the plat
region is reached. This behavior accounts for the uniform
of the distribution function in the central region. Time ev
lution also tends to broaden—and consequently lower—
plateau region, since the bacteria tend to build up fibril at
edges, thus increasing the range of motion.

For the case of chemotaxis,r(x,t) is easier to evaluate
since it can be calculated without recourse toDr(x,t), as
indicated by Eq.~31!. The procedure is the same as th
outlined for the case of chemokinesis. We take the grad
appearing in the expressions form6 to be evaluated over a
distance,52, so that forx5xi and t5t i of the mesh we
have:

m6~xi ,t j !5expF7
s

2
@f~xi 11 ,t j !2f~xi 21 ,t j !#G . ~37!

Results are plotted in Fig. 3. As discussed in the preced
section, positive~negative! values ofs indicate chemoattrac
tion ~chemorepulsion!. It is interesting to note that for large
negative values ofs two peaks develop~only one is seen
from Fig. 3, the other is its symmetrical image in thex axis!,
with the bacteria traveling towards unexplored regions
space, void of fibril.

When both mechanisms are present, chemotaxis
chemokinesis may enforce or compete against each oth
their localizing or spreading effects. Chemoattractant val
of s.0, for instance, contrast the ballistic tendency ofdp
,0, and vice versa, chemorepulsive values ofs,0 oppose

FIG. 2. Distribution functions in the case of chemokinesis
f050.02 andb53. Note thatdp.0 increases the reversal rat
localizing the cell at the initial position anddp,0 values have the
opposite effect. The time scale isn5600 time steps in units ofDt
50.05.
5-6
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the localizing effect ofdp.0. In Figs. 4–6, we examine th
interplay of the two mechanisms for several values ofs and
dp.

For boths, dp.0 the distribution functions are localize
about the central position, whereas fors, dp,0 two peaks
traveling in opposite directions develop. The sharpness
these peaks increases with increasingusu, as can be seen b
comparing Figs. 5 and 6, and the localization position
creases with increasingudpu as each figure also shows. Com
peting effects arise whendp ands are of opposite signs. Fo
large negative values ofs, the effect of positivedp values is
simply to shift the mean of the spreading peak towards
origin ~Fig. 6!. For smaller negative values ofs increasing
dp tends to localize the distribution functions at the orig
until the traveling peak is washed out and a plateau reg
typical of large positivedp values forms~Fig. 5!. Finally, in

FIG. 3. Distribution functions in the case of chemotaxis f
differents values. Note thats.0 values represent chemoattractio
and the cells are localized at the initial position,s,0 values in-
stead represent chemorepulsion and two repelling opposite p
develop. The time scale isn5600 time steps in units ofDt
50.05.

FIG. 4. Distribution functions under chemotaxis, set ats5
11.0, and chemokinesis set at variousdp values. The time scale is
n5600 time steps in units ofDt50.05.
02192
of
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e
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the regime ofs.0 anddp,0, the localizing tendency due
to chemoattraction is offset by the chemokinesis-plateau
dency. Unusual distribution function patterns may arise a
the case ofs50.5 ors51 anddp520.4 ordp520.48 in
Fig. 4.

V. MONTE CARLO SIMULATIONS

To analyze the statistics of the one-dimensional dynam
of cell motion under chemotaxis and chemokinesis, we a
implemented a stochastic simulation on a 1D lattice. We d
cretize space and time and assume the random walker ce
have finite length,. At time t50, the single cell is posi-
tioned at the origin of a one-dimensional track and there
no fibril substance present. Fibril is constantly secreted
the cell and the dynamics of the particle position obey

Xt115Xt1h t~Xt2Xt21!, ~38!

whereXt11 is the position of the center of the cell at tim
t11 and Xt2Xt21 indicates the direction it was travelin
prior to time t. The stochastic random variableh t is defined
as

h t5H 21 with probability g t

11 with probability 12g t ,
~39!

whereg t is the probability for the cell to reverse its directio
before the time step att11. The initial direction of motion is
chosen so thatX21 is 61 with equal probability. We simul-
taneously model chemotaxis and chemokinesis through
dependence ofg t on the self-secreted fibril concentratio
f(x,t), as in the continuum case. Discretizing Eqs.~9! and
~11! we obtain

f t~x!5(
s50

t

Q~,/22ux2Xsu!, ~40!

ks

FIG. 5. Distribution functions under chemotaxis, set ats5
20.5, and chemokinesis set at variousdp values. The time scale is
n5600 time steps in units ofDt50.05.
5-7
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F t~x!5 (
x52,/2

,/2

f t~Xt1x!, ~41!

wheref t(x) is the amount of chemoattractant that has b
up at locationx andF t is the total amount of chemoattracta
sensed by the cell. Bothf t(x) and F t naturally depend on
the past trajectory of the cell, which we keep track of as
simulation proceeds. We letpt,k represent the probability o
direction reversal based on chemokinesis alone derived f
Eq. ~12!. This probability is then stretched towards 0 or
depending on the local normalized chemical gradient
chemotaxis, through the quantitym t,c . Analogous to Eqs.
~12! and ~26! in the continuum theory, the kinesis an
chemotaxis effects are represented by

pt,k5
1

2
1dp

F t
b

F0
b1F t

b
, ~42!

FIG. 6. Distribution functions under chemotaxis, set ats5
24.0, and chemokinesis set at variousdp values. The time scale is
n5600 time steps in units ofDt50.05.
02192
t

e

m
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m t,c5exp@2s~Xt2Xt21!¹f t#, ~43!

where ¹f t5f t(Xt1,/2)2f t(Xt2,/2) and dp and s are
weight parameters subject to the constraints

2 1
2 <dp< 1

2 , 2`,s,`. ~44!

The parameters scales the effect size of chemotaxis, with n
chemotaxis corresponding tos50; while dp scales the
strength of chemokinesis, with no chemokinesis correspo
ing to dp50. At each step of the Monte Carlo iteration, th
total reversal probability is calculated as

g t5
1

2 F11
pt,k~m t,c11!21

pt,k~m t,c21!11G . ~45!

FIG. 7. Comparison of mean-field theory results with the Mon
Carlo simulations for short times. The mean-field curves are ev
ated aftern5600 time steps ofDt50.05 and the Monte Carlo
curves are determined aftert530 time steps. In the chemokines
Monte Carlo curveF054, whereas in the chemokinesis mean-fie
curvef050.2. The factor of 0.05 is needed to take into account
discretization of the numerical Volterra-type evaluation.
n
al of the
FIG. 8. ~Left! Gaussian and suppressed and enhanced PDFs.~Right! s-dp phase diagram att5105 for b51,4. The crossover betwee
suppressed and enhanced diffusion was found by the Monte Carlo simulations and determining the point at which the integr
reference Gaussian between the curvature inflexion points is equal to that of the distribution functions.
5-8
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In Fig. 7 we compare the results from the Monte Carlo sim
lations and the mean-field approximation of the preced
section, for small times, for a typical case of chemokine
and chemotaxis.

We can now analyze results of the Monte Carlo simu
tions for longer times than in the analytic case:tmax5105. At
these time scales, the general trends found in the ana
case persist for most combinations of (s,dp). The simula-
tion results are summarized in a phase diagram. Positive
ues ofdp ands both cause attractiveness in the system a
we expect suppressed spreading of the distribution funct
Negative values ofdp ands on the other hand cause repu
sion and enhanced spreading. To quantify these effects
compared the distribution functionP(x,tmax) with a normal-
ized Gaussian, corresponding to the parameterss5dp50.
More specifically, we compare the integral of the referen
Gaussian at the curvature inflexion points to the integra
the probability distribution function between the same limi
If the integral of the pair distribution function~PDF! is less
than that of the corresponding Gaussian, the dynamic
classified as being suppressed. This definition is shown
Fig. 8 ~left!. We explore the entire phase spacedp ands and
find the crossover from one regime to the other. The
hanced or suppressed diffusive character of the PDF cu
may evolve from that of the early time regime, but it is fou
that after t5103 simulation time steps the classification
stable. The phase diagram is shown in Fig. 8~right!. For
s,dp.0, both kinesis and chemotaxis effects suppress
diffusivity of the trajectories. Only fors,0, the spreading
dynamics can be enhanced. Due to our choice of the fu
tional forms of the effects@Eqs.~12! and~26!#, the dynamics
are much more sensitive tos than todp; nonetheless, the
effects of kinesis induces an asymmetry indp in the phase
diagram. The curve approaches the limitsdp560.5 asymp-
totically.

FIG. 9. Fibril concentrationf(x,t) in the case of either chemo
taxis or chemokinesis for differents anddp values. The time scale
is n5600 time steps in units ofDt50.05. In the chemokinesis
curves f050.2, close to the saturation limit of the Michaeli
Menten form of Eq.~12!.
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VI. CONCLUSION

In this paper we presented a mean-field model and Mo
Carlo simulations for bacterial dynamics under the mec
nisms of chemokinesis and chemotaxis acting concurren
The bacterial motion is that of a one-dimensional se
interacting random walker. The fibril trail that governs th
dynamics of the system is itself a dynamical quantity th
depends on the past motion of the cells. We model the
mechanisms in terms of two characterizing parameterss
anddp, which represent, respectively, the degree of chem
taxis and chemokinesis. The mean-field results agree w
the Monte Carlo simulations in the limit of short times. F
long times we find a phase diagram in (s-dp) space that
separates enhanced or suppressed diffusion regimes. In
trast to the short-time numerics displayed in Figs. 2–6, an
which show PDFs indicative of enhanced diffusion fordp
,0, the long-time phase diagram exhibits suppressed d
sion provideds is negative andudpu is not too large. There-
fore, in the long-time limit, kinesis modeled by logistic sat
ration, Eq. ~12!, results in suppressed diffusion in th
absence of chemorepellent effects (s,0). We have investi-
gated the effects of increased cooperativity in the bioche
cal signaling through theb parameter. As can be seen fro
Fig. 8 increasedb values do not significantly affect th
phase-diagram curve.

The model exhibits variations in shapes of the parti
PDF. The characteristic PDF shapes depend on whether l
or short-time dynamics are considered.

One of the possible applications of this work is for is
latedA-motility ~adventurous! myxobacteria cells whose dy
namics is driven by self-secreted slime and does not req
the presence of neighboring cells in direct contact@32,33#.
Our analysis is restricted to a one dimensional system. F
single cell constrained to move along a 1D agar track,
relevant parameters (s, dp and b) of our model can be
tuned to identify the correct mechanism of motion. Mor
over, the motion of freely moving A-type myxobacteria ce
is locally one-dimensional. Our model does not account
contact interactions between cells, rather, cells interact in
rectly via trails of self-secreted slime. This simplification e
ables us to study the details of the effects of the histo
dependent fibril concentration. Direct cell-cell signallin
interactions on a 2D aggregating colony are known to lead
the formation of complex structures such as propagating
pling waves and spiraling fruiting bodies@10,32#. Although
the investigation of contact interactions between cells is
yond the scope of this paper, our approach does not prec
the formation of propagating waves and associated ripp
patterns in systems where fibril-mediated cell-cell inter
tions are included.
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