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Interplay of chemotaxis and chemokinesis mechanisms in bacterial dynamics
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Motivated by observations of the dynamics Mf/xococcus xanthusve present a self-interacting random
walk model that describes the competition between chemokinesis and chemotaxis. Cells are constrained to
move in one dimension, but release a chemical chemoattractant at a steady state. The bacteria sense the
chemical that they produce. The probability of direction reversals is modeled as a function of both the absolute
level of chemoattractant sensed directly under each cell as well as the gradient sensed across the length of the
cell. If the chemical does not degrade or diffuse rapidly, the one-dimensional trajectory depends on the entire
past history of the trajectory. We derive the corresponding Fokker-Planck equations, use an iterative mean-field
approach that we solve numerically for short times, and perform extensive Monte Carlo simulations of the
model. Cell positional distributions and the associated moments are computed in this feedback system. Average
drift and mean squared displacements are found. Crossover behaviors among different diffusion regimes are
found.
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[. INTRODUCTION Chemotaxis may occur in other nonacqueous systems,
such as in colonies of the bacteriuviyxococcus xanthusr
The dynamics and pattern formation of bacteria serve asf the eukaryoteDictyostelium discoideuntslime-mould,
paradigms in understanding many properties of multicellulawhich crawl on agar platg¥]. The exact regulatory mecha-
interacting systems, such as collective behavior, selfnism leading to the surface gliding of these rodlike and slow
organization, evolution, and developmémt2]. The charac- moving organisms is yet unknown, and responses to external
teristics of bacterial motility and aggregation depend on nustimuli appear to be more complex than in enteric bacteria
merous biological and chemical parameters, which includsuch a<E.coli[8]. The cells undergo chemotaxis, but lack, or
light exposure, temperature, concentration of food or of otheshow very modest, responses to specific nutrient stimuli
substances, and lead to the existence of many classes of cg9,10], suggesting that the chemotactic behavior is due
motion. Since a bacterium cannot utilize electromagnetic omainly to self-generated signaling chemicgld]. The fact
acoustic radiation to sense its environment, it must rely orthat cell density regulates typical reversal frequencies may be
physical contact, and its motility may depend on the produca consequence of one bacteria sensing the higher levels of
tion, diffusion, and degradation of a relevant set of sensedignaling chemical in the presence of othgkg]. In particu-
chemicals. These chemicals are called chemoattractants t&r, under starving conditions, the cells are driven by autore-
chemorepellants if they attract or repel bacteria, respectivelyeased fibril trails to aggregate and form multicellular com-
Examples of chemoattractants include food—sugars angounds called fruiting bodies. These compounds raise above
amino acids—whereas antiobiotics, fatty acids, or other noxthe agar plate and eventually sporulate into new and more

ious substances are chemorepellant. resistant organisms, which are then released to the environ-
A prototype and well-studied example of bacterial motil- ment in search of new sources of nutrients.
ity is the run and tumble mechanism used Bgcherichia One major difference between these systems and enteric

coli in liquid environments. The specialized structures allow-bacteria is that the chemoattractants embedded in or self-
ing for cellular motion are known as flagellae, spinning he-deposited on the agar plates are relatively immobile on the
lical tails that extend from the cellular membrane into thetime scale of bacterial motility, whereas chemoattractant sub-
surrounding environment: counterclockwise rotation of thestances in acqueous environments have a finite diffusion con-
flagellar motor leads to a one-directional run, whereas clockstant. LikeE. coli, the gliding cells can only sense what they
wise rotation causes tumbling in a random direction. Duringcome into immediate contact with, and since the chemosen-
its run, anE. coli cell periodically senses for chemosensitive sitive substance diffuses slowly, large fibril concentration
substances, and, by comparing concentration levels in nedifferences exist over the length of the cell. The gradient
and old environments, adjusts its motion and its likelihood todriving the chemotaxis mechanism is then determined be-
tumble in a new, randomly chosen, directi@4]. If the cell ~ tween positions within a cell body length, as opposed to the
is moving in the direction of increasing attractant, for in- large distances involved in enteric bacteria chemotaxis.
stance, the probability of tumbling is lowered, so that the run  Another possible mechanism driving cellular motility is
time and “mean free path” length in this direction are in- chemokinesisHere, changes in the direction of motion or in
creased. ArE. coli cell, thus, compares chemical concentra-the cell velocity are determined locally, without recourse to
tions at nearby points, so that its future motion is determinedhe determination of concentration gradients. Chemokinesis
by a chemical gradiert5,6] via the mechanism ofhemot- may be a function of temperature, substrate adhesion, salt
axis concentration, or substances affecting the internal metabo-
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lism of the cell, slowing or enhancing its motion or turning Il. CONSTANT REVERSAL RATES

frequency{13]. In this section we derive a general Fokker-Planck equa-

The observed patterns of movemenivfxanthusand of tion for the single one-dimensional random walker. As dis-

slime-mould suggest that the motility of these systems MaY,ssed in the Introduction, we assume that the “bacterium,”

be affected by self-induced chemokinesis as well as selfg, particle, travels with constant speeg, and is subject to

induced chemotaxisM. xanthusmove by shooting out and 51, 39 hoc directional reverse mechanism that incorporates
retracting pili from the ends of their prolate bodigis},15.  poth chemotaxis and chemokinesis. To start, we ignore the
In nutritionally abundant environments or under conditionseffect of both phenomena, and we simply investigate the role
of high population density, both cellular systems generatgf a constant reversal rate.

repulsive fibril trails, leading to cell dispersion and the colo-  The probability that a bacterium is centered at position
nization of new regions of the agar plate. The mechanism igt timet with velocity v, will be denoted byP_ (x,t) and

hypothesized to be dictated by chemokingdis,17. ~ the probability of a directional switch in timdt is dt/r
Previous theoretical studies into the collective dynamics= ,qt. If y is independent ofx,t) we can write

of interacting motile bacteria, both &. coliandM. xanthus
types, include coarse-grained convective-diffusive transport
type models[18-22 and lattice-type simulationg23—25.
These studies have considered the effects of interactions with
concentration fields, modeling chemotaxis or chemokinesis
or, as in Ref.[26], both chemosensitive mechanisms. The P_(x,t)=P_(X+uvodt,t—dt)(1—y_dt)+ P, (x,t)y dt.
continuum theories take into account turning rates, and (2
change in speed or direction of motion; however, they gen-

erally ignore long time path history effects induced by the|n the above equations, we have included the possibility that
sensed chemicals. In these systems, the bias to the motigngepends on the type of reversal, since in general the rever-

arises _fro_m an e>_<terna| _fixed _stimulus, and not a dynamicagy| rates from one direction to the other are not the same.
one. Similar studies—with a fixed external trail—have beengpecifically,

presented in different contexts, such as the aggregation of

ants due to chemotaxi®7]. Other author428] have pre-

sented systems in which the fibril trail that dictates the mo-

tion of the cells is determined over an extended area and is

not sensed locally. Expanding Egs(1) and (2) and keeping only theD(dt)
The aim of this paper is to model and disentangle theerms, we find

effects ofself-generatedchemotaxis and chemokinesis, act-

ing individually or concurrently and under diverse attractrant

and repulsive conditions. In contrast to many of the previous

studies, the chemical trail of our systems will emerge from

the motion of the bacterial cells and evolve with the cellular

motion itself. Ob_servations of individua_l organism pa}hs may P_(x,t)—vedyP_(X,t)=—7y_P_(X,t)+ 7, P, (X1).

be more revealing of cellular dynamics than multicellular (5)

ensembles, and we restrict our attention to the behavior of a

s!ngle bacte_num. Even if |s_olated, the dyna_tm_lcs pf th'SThe initial conditions are chosen so thattatO the particle

single cell will be affected by its self-secreted fibril trail, and is localized ax=0 with amplitudesa,. satisfying the con-

the resulting pattern will be that of a self-interacting randomditiorl thata. +a —1- P = 9

walker. We shall try to understand cellular motion by devel- e

oping, and analytically solving, the equations of motion for

an isolatedM. xanthuscell under a mean-field approxima- P.(x,00=a,; d(x), P_(x,00=a_d(x). (6)

tion, and by means of simple Monte-Carlo simulations, in-

corporating chemotaxis and chemokinesis to various degreeW(3 obtain

The underlying assumption of this paper is that the

chemosensitive material acts as a regulator of cell motion

P (X,1)=P,(x—vodt,t—dt)(1— y,.dt)+ P_(x,t)y_dt,
(1)

’}/+:+Uo—>_l)0, ’y,:_Uo—>+Uo. (3)

I.D-%—(xlt)—’—UO‘;XP+(X!U: - 7+P+(X:t)+ y_P_(X,t),
(4)

affecting only the frequency of direction reversal, via (d-X—qvet) | as
i : c e Po(x)=exp————|) 5[ d(x—v,t)
chemokinesis or chemotaxis. The speed of the bacterium is 2v, 2
assumed constant in either direction and is controlled by in-
herent cellular bioenergetics. +8(x+vot) ]+ O[vot—[x[]
Experimental single cell trajectories show that an isolated a.0 r— 0
cell travels along its axis, occasionally veering off, and for x| =+ 9+ | [0 | d+ (o) 2= X2
. . . . . A . 4 t—x 1 20 0
the sake of simplicity, we will only consider one-dimensional Vo Vo 0
dynamics. In order to validate our models, cell particle track- a 0
ing. can_be gventually performed in one-dimensional etchings -V 0(q+_ /—(vot)z_xz) ] )
or imprints into the agar plates. 2v¢ 2v¢
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(4-X—q,vot) T
—exg —— 170/ 0 |
P_(x,t) exr{ 200 I e
\ . t —1—
a_ v P ——
X —=[8(x—vot)+ 8(X+vot) ]+ O[vot—|x|] —
2 X(1) '
a_Qaq, [Uot =X q+Q o3 FIG. 1. The trajectory of a single bacterium of width and
X 4v, vot+x 1 2v, (vot)"—x length€ crawling in one dimension and depositing chemoattractant

(or repellent on the surface. The density of shading of the footprint
} is proportional to the total attractant deposited and arises from the

) hypothetical trajectory depicted by the arrows beneath. For the sake
of simplicity, we have neglected the cell lendtfin the depiction of

Here, the parameters, , q_, and Q are defined so that the trajectory.

g+ =(y++7), d-=(y-—v:) and @;Q)*=(q% —q?). . o . . .
The function ® is the Heaviside function®(x)=1 if x  Various choices will be discussed in the following subsec-

>0, and thel functions are the modified Bessel functions. tions. It is important to note that, since we are assuming that

The & function terms carry the probability of the random fibril sensing is the main factor in determining direction re-

walker cell having performed no reversals, and the Heavisid¥€rsals, we are also implicitly assuming that the sensing pro-
terms embody causality. cess, for example, via a biochemical network within the bac-

The total particle probability distribution function is t€rium, is much faster than the typical time for a cell to have
P(x,t) =P, (x,t)+P_(x,t). Under the symmetric condition moved appreciably. If we further take the molecular sensing
a,=a_ =1/2, andy,=y_ (or equivalentlyg_=0) the so- apparatus to be distributed uniformly at the cell substrate
lution reduces to that for the generalized Smoluchowski dif{COtPrint, the total chemoattractadt(X(t),t) sensed at time
fusion equation determined by Hemnf&8], which at large t is just the local contribution integrated over the cellular
times is a spreading Gaussian. The Fourier transform of thi€n9th:
distribution functions yields the moments of the random X(t)+ €12

walker cell from which the cumulants can be extracted. q)(x(t),t)zwf H(x,t)dx, (12)
X(t)—€/2

n aLys |0(q+Q ’—(UOI)Z—X2>

200 21)0

Ill. CHEMOKINESIS AND CHEMOTAXIS wherew is the width of the cell as depicted in Fig. 1.

We now consider the generation and sensing of chemoat-
tractant or chemorepellant, and its effect on the reversal rates A. Chemokinesis
7= - M. xanthuscells deposit attractant chemical matter con- Let us consider the case of chemokinesis first. Here, the

tained within a fibril slime under the area of cell contact. We . -
reversal rate depends only on the integrated fibril concentra-
assume that the release of the chemoattractant occurs al &1 We will assume no intrinsic drift and s 1)

constant rate and uniformly over the cell-substrate footprint. ™~ enx,

In general, for a cell of lengti, the fibril concentration =7+(x)=y_(x1). It is also reasonable to expect the
. . switching probability to saturate for large enough fibril con-
¢(x,t) obeys the following equation:

centration, when the cell cannot respond to further increase
in fibril levels. A plausible functional dependence fgron

the total sensed chemoattractahtis of the type found in
cooperative chemical binding, a Michaelis-Menten form with

where the chemical is generated at a constantrratr unit  Hill coefficient 8, so that for a cell at positioX(t) =x, the

area. The Heaviside functid in Eq. (9) limits the increase  "€versal rate is
in fibril concentration to the region strictly under the foot-

H(X,1)=DV2p(x,t) +rO[1/2— |x—X(t)|]—rqp(x,1),
9

| : : PA(x,1)
print qf thg bacterlgm centergd A(t), whereas degradatlon Y(X,1) = Yo+ K(X,1) = Yo+ p 5 . (12
and diffusion are included via the terms proportionalr o OF+DP(x,t)
andD. If the surface-deposited chemoattractant does not dif-
fuse appreciably anB®V?¢ is neglected, we find where ®, and B, the inflection parameter and transition

sharpnesdor Hill coefficieny, are peculiar to the system
_ b - , being considered. The effect of chemokinesis is measured by
b(x,1)=¢(x,0)e rd“rrfodt et TIO[E2—[x=X()[]- 50 With the unbiased choicer,=1/2, 3p is limited to
(10) —1/2<6p=<1/2.
We must now solve Eq$4) and(5) with the above spatial
Note that¢(x,t) depends on the entire history of the trajec- and temporal dependence fgfx,t), which, in turn, depends
tory X(t') up to timet’=t. To couple the fibril concentra- on the concentratio® (x,t) via Egs.(10) and(11). The lat-
tion with cell dynamics, we must now include a relation ter equations carry an explicit dependence on the past history
betweeny.. (x,t) and ¢(x,t). This relationship will depend of the walker. Our approach will be to consider thg con-
on the particular mechanism of cell direction reversal andribution of Eq.(12) as giving rise to Eqs(4) and (5) with
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constant reversal rates, and find its associated Green’s funplify the expression fob(x,t), we assume unit cell width
tion.The x(x,t) term in y(x,t) of Eq. (12) then generates and take the limit of cellular lengti—0. We also neglect
non-homogeneous differential equations, whose solutiorliffusion and decay of the fibril. Under these assumptions,
may be obtained via known Green’s function. We will then ¢ (x t)=r¢ s[x—X(t)] and ®(x,t)=wf ¢(x,t). The prob-

be able to construct an iterative process to obRiR.t) asa  |em is now a deterministic one, as exemplified by #hfeinc-
function of all preceeding probabilitie3(x’,t" <t). To build tion in the expression fors. In order to apply Eq(21),

GSreen’sbmatrpt(t functiorG(x,t), we note that Eqs(4) and which gives the statistical probability for one bacterium to lie
(5) can be written as at (x,t), we need to know itexactlocation atX(t") for all
previous times. In other words, the complete history of the

POXLH=M)P(X1), (13 cell is needed to determine future motion and solutions can-
whereP(x,t) =[P (x,t),P_(x,t)]" and hot be found. _
Nevertheless, we can approxima®e. (x,t) by an aver-
—vodx— Y+ v aged densityp.., utilizing a mean-field theory approach.
M(x)= y voda—y_ |’ (14 Here, we average the probabiliti€s, for a single walker
+ X -

over many distinct independent realizations, so that the self-
For the case of generiy. , independent of X,t), the interaction is to be expressed on theerageof all replicas of

solution to this equation, with the initial conditions expressecthe system, and does not depend on the history of individual

by Egs. (6) is given by Egs.7) and (8). In the casey,  Walkers. We can now rewrite the equation for the fibril con-

=y_=1v, we refer to these solutions aB®(x,t) and centration as

PO(x,t). Green’s function for this problem stems from the -

modified matrix equation d(x,1)=rLp(x,1), (22)

where we indicate the total bacterial density dk,t). The

GC(x=x",t=0)=M(x) G(x=x",1) +15(x=x") &(1), above relationship signifies that, on average, fibril growth is

(15 proportional to the total density of bacteria att(). Integrat-
G(x—x',t<0)=0. (16) ing Eq. (22 and taking the initial conditiorp(x,0)=0, we
obtain
The fact that t
pO a, ¢(X,t)=r€f0dt’p(x,t’), (23
PO(x,t)= ( P(O)) (x,t)=G(x,t)( a_> 17)

from which, using Eq.(21) and the definitionAp(x,t)
leads to the conclusion that Green’s matrix function is given=p . (X,t) —p_(X,t), we can write
by

t o0

POX,1), —o P(_O)(x,t)al)' 18

G(x,t)z(

XAP(X’,t’)cﬁB(X’,t’)
This result can also be verified by direct evaluation of g+ P(X' t") '
G(k,w) in the Fourier space. From Eqgl) and (5) it fol- _ o _
lows that reversal rates of the type. (x,t)=yo+ k. (x,t)  Here g(x,t) is a combination of the matrix elements of

(24)

yield a new matrix equation Green'’s functiong= —g41+ 912+t go1— g2 and is even irx.
_ An equation similar to Eq(24) can be obtained for the total
P(x,t)=M(x)P(x,t)+K(x,t)P(x,t). (29 densityp(x,t), which depends o p(X,t):

where

t =]
p(x,t)=p<°>(x,t)+5pf dt’f dx'h(x—x',t—t")
0 —

K (_K+(X!t) K*(th) ) 20
X,t)= .
1) ke (X1)  —k_(Xt) (20 ><Ap(x’,t’)<1>ﬁ(X’,t’> (25
The resulting equation fdP(x,t) can be solved iteratively: ¢§+ PF(X' 1)
t % Here,h=—g;1+ 915~ 09211t 05, and is odd inx, as required
P(X.t)=P(0)(X.t)+f dt'f dx’ G(x=x',t—t") by the normalization of botlp(x,t) andp®(x,t). It is useful
0 o to note that the above recursive equations may be used to
XK(x',t")P(x',t"). (21 evaluate the number densityx,t) for a system olN inter-

acting bacteria as well. In this case, the distribution function
In the case of chemokinesis, the nonhomogeneous term.(x,t)=Np.(X,t) and the evolution equations are the
K4 (X,t)=Kk_(X,t) is contained in Eq(12). In order to sim- same as Eqgs(24) and (25), provided we redefineg,
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=Nny. Equations(23)—(25) can now be solved numerically. and Eq. (21) still holds. Note that sinceu _(X,t)
Once Ap(x,t) and p(x,t) are determinedg(x,t) can be =,u;1(x,t), then «,(X,t)+x_(x,t)=0. Repeating the
evaluated and used to calculate the quantities of interest game type of calculations as for the chemokinesis case, for

subsequent times. Ap under chemotaxis we find
. 1t *
B. Chemotaxis Ap(x,t)=Ap(°)(x,t)+§J dt’f dx'g(x—x',t—t")
The incorporation of chemotaxis into the determination of 0 -
the reversal rate follows closely that of chemokinesis. Let us Xp(X' 1)k (x',t)). (30

consider chemotaxis as the sole reversal mechanism for a

cell of length ¢ traveling atv, speed in the positive direc- Here the previous history of the cell is contained in
tion, and situated at positioX(t) =x. The chemical gradient «.(x’,t") through the derivatives of the fibril concentration

over the cellular length will drive the reversal rate. To ¢(x’',t"). Thegfunction is the same as defined in the case of
specify the relation between gradient and reversal probabiliehemokinesis. Similarly, the densip(x,t) is

ties, we first introduce the probability terms. (x,t):

1(t (=
0121 — d(x— x,1)=pO(x,t)+= | dt’ [ dx'h(x—x',t—t")
M+(x,t)=exp{1a¢(x+ gtz g p(xD=p > [ [”

Xp(X,,t,)K+(X,,t,) (31)

whereo is a constant that measures the strength of chemote-lnd p(x.1) is properly normalized by the fact thai(x,t)

axis. For positives, the above expression translates into a, , . . C .
low reversal probability wheneverg(x+ £/21)> d(x (defined in the preceding subsectigsmodd with respect ta.

—+{/2}1), so that the cell is likely to keep moving at speed
+vg. This means we are modeling an attractant fibril trail.
On the other hand, negative values @fwill represent a If the two mechanisms of chemokinesis and chemotaxis
chemorepellant system. The same argument can be presenta@ active, bothSp and o are nonzero, and..(x,t) must

for a bacterium traveling at-vy speed. In this case, the include both contributions. Foy. (x,t), we write
direction of motion tends to persist for negative gradients,

hence the expression far_(x,t), where positives values (x.t)= 1 14 Pe(X, [ (X, 1) +1]—1
signify chemoattractant systems. In the limit of cellular YA 2 P [ (X, t)—1]+1)"
length€—0, the above expressions are written as

C. Combined chemokinesis and chemotaxis

(32)

Here, pi(X,t) is the contribution from chemokinesis in the
s =exg Fod(x.b)] 27) form expressed by Eq(l?) vyith vo=1/2, i.e.,. pk(x,t)
= y(x,t) from the chemokinesis case. The contribution from
chemotaxis isu-(x,t) as defined by Eq27).

The choicec=0 setsy.(X,t)=pk(x,t), that is, the rate
is dictated only by the chemokinesis mechanism. Conversely,
op=0 setsp,=1/2 and y.(x,t) reduces to the purely
chemotactic expressions of E@8). For botho= 6p=0 the
reversal rate is 1/2. The corresponding(x,t) and«_(X,t)
are contained in Eq32) and yield the following recursive
relationship forAp(x,t):

where ¢, = d ¢/ Ix. We use this exponential function to cap-
ture the sensitive chemical signalling such as that fourtgl in
coli [30]. Another alternative for the functiop.. is to in-
clude a saturation in the form ef, / ¢ in the exponent of Eq.
(27).

We assume the reversal probabilitigs(x,t) at position
(x,t) to depend onu-(x,t) through the following:

(x t)—E 1+w (29 Ap(x,t)=Ap0(x t)+Jtdt’J’w dx'g(x—x’",t—t")
[ PRI} PROHTEPTRODT [T J LS9
so that forc=0, in the absence of chemotaxis, the reversal XE[Z/{(X',t')p(X’,t’)+V(X',t')Ap(X',t')].
probabilities arey. = y,=3. 2

We are now able to use the same formulation derived for (33

the chemokinesis mechanism and apply it to the chemotacti-

cally driven case. Again, we must resort to the mean-fieldlhe corresponding equation fpx,t) is
calculation of the densities(x,t) andAp(x,t) by means of
Green’s matrix function. The matrix appearing in the non-
homogeneous term of EGL9) now has components.. (X,t)
given by

t 0
p(X,t)=p(0)(X,t)+J dt’f dx h(x—x",t—t")
0 — oo

1
e (x,t)—1 XS LUK E)p(x )+ V(X E)Ap(x' )],

BRPRCTESY

(29 (34)
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Here, thel{(x,t) andV(x,t) functions depend on chemo- chemokinesis
taxis and chemokinesis via 0,=0.2 PB=3
0.06 T ‘ ‘
- P(1—p(1—p?) 39 . — e 3p=048
[pk(ps =D+ 1L+ (p—1) —pid =02
>, b 8p=00
i (1—2py) 0.04 | — 8p=-02
V= . 36
e D+l (p-D-pd | — =048

plx, ¢ = 30)

We have usequ,u_=1 and suppressed the,() depen-
dence. Note that in the absence of chemotaxisgfel0 and 0.02 ¢
ue=1,U=0 andV=2p,—1, leading to the pure chemoki-
nesis case. In the absence of chemokinesispfer1/2, U
=k, , as defined in the preceding subsection, ®xd. We N
shall discuss the numerical solution to the equations for 0.00 10 %
p(x,t) and Ap(x,t) in the various cases of chemokinesis, x

chemotaxis, or both, in the following section.

FIG. 2. Distribution functions in the case of chemokinesis for
$o=0.02 andB=3. Note thatsp>0 increases the reversal rate,
localizing the cell at the initial position anép<0 values have the

In this section, by means of numerical integration, weopposite effect. The time scale fis=600 time steps in units akt
solve Eqs(24), (25), (30), (31), (33), and(34) for p(x,t) and ~ ~0-05.

Ap(x,t). Under chemokinesis, Eq&24) and (25) are \olt-

erra equations of the second kind in theariable, for which  the plateau is due to the fact that for large negative values of
standard methods can be appli@d]. In particular, we dis- 8p=—1/2 the reversal rate at saturation is almost zero, lead-
cretize both the temporal and spatial axis according to a uning to ballistic motion of the cell in the region where the
form mesh, of spacingt andAx, and solve the two coupled fibril has been deposited. Once the cell reaches the edge of
equations iteratively. the plateau region of fibril concentration, the reversal rate

Let us assume thatp(x’,t’<t) and p(x’,t'<t) are increases dramatically and the cell tends to reverse its motion
known, wheret’ represent time steps up te-At. At the  and travel backwards, until the opposite side of the plateau
subsequent time step Ap(x,t) is evaluated by calculating region is reached. This behavior accounts for the uniformity
Ap©(x,t) and by adding to it the sum over all previous time of the distribution function in the central region. Time evo-
stepst’ <t of the integrand. Of these terms, the last one, afution also tends to broaden—and consequently lower—the
t=t’, contains the kernel functiorg(x—x",0)=—248(x plateau region, since the bacteria tend to build up fibril at the
—x"), which, when integrated over space, extracts a tern€dges, thus increasing the range of motion.
proportional to the quantity of intereshp(x,t). The other For the case of chemotaxip(x,t) is easier to evaluate,
contributions of the sum, fot#t’, are spatial integrals, Since it can be calculated without recoursedp(x,t), as
which are evaluated as sums after the discretization over thadicated by Eq.(31). The procedure is the same as that
x' variable. These sums contain the known values oputlined for the case of chemokinesis. We take the gradient
Ap(x' t'<t), as well ask(x’,t"), which depends on the appearing in the expressions far. to be evaluated over a
fibril concentrationg(x’,t'). The latter is just the integrated distancef=2, so that forx=x; andt=t; of the mesh we
p(x',t'), as follows from Eq.(23). In order to evaluate have:
¢(x',t'), a time discretized summation over thgx’,t’
<t) values is carried out. The assumption here is that the o
bacterium senses the environment before laying down new  u. (X ,tj)=ex;{1§[¢(xi+l,tj)—¢(xi_1,tj)] . (37
fibril, so that the concentratiogp(x’,t") is evaluated not by
the trapeziodal rule, in which the extrema of the integration
region are weighed each as 1/2, but by weighia® with 1~ Results are plotted in Fig. 3. As discussed in the preceding
and ignoringt=t’. In the case of chemokinesis, once section, positivénegative values ofo indicate chemoattrac-
Ap(x,t) is determined, p(x,t), which depends on tion (chemorepulsion It is interesting to note that for large
Ap(x',t"), can be calculated in the same way. negative values ofr two peaks develogonly one is seen

In Fig. 2 we plot the results fgs(x,t) for a system under from Fig. 3, the other is its symmetrical image in thaxis),
chemokinesis. The meshes are sehAat=At=0.05 and the with the bacteria traveling towards unexplored regions of
maximum time step, in these unitstis 600. Cell velocity is  space, void of fibril.
fixed atvy=1 and the parametef,=0.2. For chemoattrac- When both mechanisms are present, chemotaxis and
tant fibril, or §p>0, the distribution is narrower than the chemokinesis may enforce or compete against each other in
bare Sp=0 case, also plotted in the graph. Negative valuegheir localizing or spreading effects. Chemoattractant values
of 8p represent chemorepulsion and broaden the distributiorgf >0, for instance, contrast the ballistic tendencyspf
eventually leading to a plateaulike region. The existence o0&k 0, and vice versa, chemorepulsive valuesrefO0 oppose

IV. DISTRIBUTION FUNCTIONS
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chemotaxis 6=-05
0,=0.2
‘ 0.06 ‘
— =2 - Gaussian
g1 e - 8p=048
0.10 —e5=00 1 s «8p=02
—o 5 =20 _ooa [T o 8p=0.0
8 < g=-40 8 — 3p=-0.2
0 [} e
: 3 e o 3p=-048
a 0.05 <
0.02
0.00 ‘ e e 0.00 ‘
0 10 20 30 0 10 20 %
x X

FIG. 3. Distribution functions in the case of chemotaxis for  FIG. 5. Distribution functions under chemotaxis, setoat
differento values. Note that>0 values represent chemoattraction — 0.5, and chemokinesis set at varia¥s values. The time scale is
and the cells are localized at the initial positian<0 values in-  n=600 time steps in units akt=0.05.
stead represent chemorepulsion and two repelling opposite peaks
develop. The time scale in=600 time steps in units o\t  the regime ofc>0 andsp<0, the localizing tendency due
=0.05. to chemoattraction is offset by the chemokinesis-plateau ten-

o ) ) dency. Unusual distribution function patterns may arise as in
the localizing effect of5p>0. In Figs. 4—6, we examine the the case ofr=0.5 oro=1 andsp=—0.4 or Sp=—0.48 in

interplay of the two mechanisms for several valuesraind  Fig. 4.
op.
For botha, §p>0 the distribution functions are localized
about the central position, whereas for 5p<0 two peaks V. MONTE CARLO SIMULATIONS

traveling in opposite directions develop. The sharpness of Tg analyze the statistics of the one-dimensional dynamics
these peaks increases with increagin as can be seen by of cell motion under chemotaxis and chemokinesis, we also
comparing Figs. 5 and 6, and the localization position in-implemented a stochastic simulation on a 1D lattice. We dis-
creases with increasiri@p| as each figure also shows. Com- cretize space and time and assume the random walker cell to
peting effects arise whesp ando are of opposite signs. For have finite length¢. At time t=0, the single cell is posi-
large negative values of, the effect of positiveSp valuesis  tioned at the origin of a one-dimensional track and there is
simply to shift the mean of the spreading peak towards theo fibril substance present. Fibril is constantly secreted by

origin (Fig. 6). For smaller negative values of increasing the cell and the dynamics of the particle position obey
Sp tends to localize the distribution functions at the origin,

until the traveling peak is washed out and a plateau region, Xt 1= X+ 7 X=X 1), (39)
typical of large positivedSp values formgqFig. 5). Finally, in

where X, ; is the position of the center of the cell at time

=+1.0 L . . . .
G¢ :;2 t+1 and X;— X;_; indicates the direction it was traveling
0.10 - : prior to timet. The stochastic random variabig is defined
- Gaussian as
008 | =048 1 . .
%, o §p = 0.0 —1 with probability 7y, 39
= ~— 3p=-0.48 = : o _
S 006 | P ] +1 with probability 1— 1y,
]
" wherevy, is the probability for the cell to reverse its direction,
& 0041 before the time step at- 1. The initial direction of motion is
chosen so thaX_; is =1 with equal probability. We simul-
0.02 t taneously model chemotaxis and chemokinesis through the
dependence ofy; on the self-secreted fibril concentration
¢(x,t), as in the continuum case. Discretizing E(®. and
0.00 ,
30 (11) we obtain
X
FIG. 4. Distribution functions under chemotaxis, setoat t
+1.0, ar}d chemok!ne5|§ set at variafys values. The time scale is d(x)= 2 O(L/2— |X_ Xs|): (40)
n=600 time steps in units akt=0.05. s=0
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c=-40 mean-field vs. Monte-Carlo
¢, =0.2
0.06 ‘
- Gaussian
~— MF chemotaxis ©=2.0
— 3p=0.48 .
0.10 * MC chemotaxis 6=2.0
* =00 adl —— MF chemokinesis 8p=0.2
= 004 \ o dp=-048 S o
2 X ] R * MC chemokinesis 3p=0.2
] ‘Il
- 3
N =%
[=%
0.02 t
0.00 . =St - 0.0 10.0 20.0 30.0
0 10 20 30 x
FIG. 6. Distribution function x nder chemotaxi o FIG. 7. Comparison of mean-field theory results with the Monte
—40 (',md' chesmokLiInZSis Léei a?[ vsariu evafuees '?’hae t?r,nzescale is Carlo simulations for short times. The mean-field curves are evalu-
n—édo time steps in units oit—oogm ' ated aftern=600 time steps ofAt=0.05 and the Monte Carlo
B : ps In uni T curves are determined after 30 time steps. In the chemokinesis
o2 Monte Carlo curveb,=4, whereas in the chemokinesis mean-field
curve ¢o=0.2. The factor of 0.05 is needed to take into account the
D)= D (X+X), (41 Grvedo— . .
x=—"0/2 iscretization of the numerical Volterra-type evaluation.

where ¢,(x) is the amount of chemoattractant that has built e o=exXf — a(Xi— Xe—1) Vil (43)
up at locatiorx and®; is the total amount of chemoattractant '

sensed by the cell. Botkh(x) and @, naturally depend on whereV ¢= ¢ (X;+€/2)— ¢ (X;—£/2) and ép and o are

the past trajectory of the cell, which we keep track of as thewveight parameters subject to the constraints

simulation proceeds. We Ig , represent the probability of L N

direction reversal based on chemokinesis alone derived from —zsopsz, —@<o<®. (44)

Eq. (12). This probability is then stretched towards 0 or 1 . L

depending on the local normalized chemical gradient in-r::e patrametedr scales g.'e eftfec:t 8'_26 c;]f_lche5motaX|ls, Wg? no

chemotaxis, through the quantify, .. Analogous to Egs. chemotaxis corresponcing lo=Uu, while op scales the

(12) and (26) in the continuum theory, the kinesis and _strength c_)f chemokinesis, with no chemok|ne3|_s cor_respond—

chemotaxis effects are represented by ing to 6p=0. At each _ste_p of the Monte Carlo iteration, the
total reversal probability is calculated as

1 7 1 (et 1)—1
pt’k:§+5p B B’ (42) V=% pt’kL (45)
Db+ Py 2 Pe(m,c—1)+1
phase diagram
0.5 T
«— Enhanced diffusion — B=1
0.30 r — Suppressed diffusion] p=4
— Gaussian
— enhanced suppressed
ii & 0.0 — diffusion diffusion
-1200.0 0.0 1200.0 -1.20 -0.60 0.00 0.60 1.20
x c

FIG. 8. (Left) Gaussian and suppressed and enhanced RRBIght) o-p phase diagram at=10° for 8=1,4. The crossover between
suppressed and enhanced diffusion was found by the Monte Carlo simulations and determining the point at which the integral of the
reference Gaussian between the curvature inflexion points is equal to that of the distribution functions.
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fibril concentration VI. CONCLUSION
4.0 , , In this paper we presented a mean-field model and Monte
. taxis, o=-40 Carlo simulations for bacterial dynamics under the mecha-

nisms of chemokinesis and chemotaxis acting concurrently.
The bacterial motion is that of a one-dimensional self-
interacting random walker. The fibril trail that governs the
dynamics of the system is itself a dynamical quantity that
depends on the past motion of the cells. We model the two
mechanisms in terms of two characterizing parameters,
and &p, which represent, respectively, the degree of chemo-
taxis and chemokinesis. The mean-field results agree with
the Monte Carlo simulations in the limit of short times. For
long times we find a phase diagram ir-gp) space that
. separates enhanced or suppressed diffusion regimes. In con-
0.0, 1o 0 30 trast to the short-time numerics displayed in Figs. 2—6, and 9
x which show PDFs indicative of enhanced diffusion #&p
<0, the long-time phase diagram exhibits suppressed diffu-
sion providedo is negative anddp| is not too large. There-
fore, in the long-time limit, kinesis modeled by logistic satu-
ration, Eq. (12), results in suppressed diffusion in the
absence of chemorepellent effects<{0). We have investi-
gated the effects of increased cooperativity in the biochemi-
cal signaling through th@ parameter. As can be seen from
In Fig. 7 we compare the results from the Monte Carlo simuFig. 8 increased3 values do not significantly affect the
lations and the mean-field approximation of the precedingphase-diagram curve.
section, for small times, for a typical case of chemokinesis The model exhibits variations in shapes of the particle

— taxis, c= 1.0
~-- kinesis, dp =-0.48, ¢,=0.2
+— kinesis, dp = +0.48, ¢,=0.2

FIG. 9. Fibril concentrationrb(x,t) in the case of either chemo-
taxis or chemokinesis for differet and 5p values. The time scale
is n=600 time steps in units oAt=0.05. In the chemokinesis
curves ¢,=0.2, close to the saturation limit of the Michaelis-
Menten form of Eq(12).

and chemotaxis. PDF. The characteristic PDF shapes depend on whether long-
We can now analyze results of the Monte Carlo simula-or short-time dynamics are considered.
tions for longer times than in the analytic cakg;,= 10°. At One of the possible applications of this work is for iso-

these time scales, the general trends found in the analytigted A-motility (adventurousmyxobacteria cells whose dy-
case persist for most combinations ef,fp). The simula- Nnamics is driven by self-secreted slime and does not require
tion results are summarized in a phase diagram. Positive vail® presence of neighboring cells in direct conf82,33.

ues ofdp and o both cause attractiveness in the system an(p_ur analysis is res_tncted to a one dimensional system. For a
we expect suppressed spreading of the distribution functions.'rl‘gle cell constrained t5° mmée alor}g a 1D iigallr traclg, the
Negative values ofp ando on the other hand cause repul- '€/evant parametersot dp and ) of our model can be

sion and enhanced spreading. To quantify these effects, V\égvr;erdtéz :ggtr;g;ygpse(;?rrri%vme?-?nIsemmoi(;rtl)ztclz?gr.iaw(lz(()arlles-
compared the distribution functid®(x,t,a,) with a normal- ' Y g A-ype my

ed G . ding to th Sp=0 is locally one-dimensional. Our model does not account for
1zed Laussian, corresponding fo the param P=5-  contact interactions between cells, rather, cells interact indi-
More specifically, we compare the integral of the referenc

G o at th rvature inflexion boints to the intearal ectly via trails of self-secreted slime. This simplification en-
aussian at the curvature nfiexion points o the Integral Ol a5 5 1o study the details of the effects of the history-
the probability distribution function between the same limits.

) S . X dependent fibril concentration. Direct cell-cell signalling
If the integral of the pair d'StF'b“t'O” fun_ctlofPDF) IS Ies; interactions on a 2D aggregating colony are known to lead to
than that of the corresponding Gaussian, the dynamics

Ithe formation of complex structures such as propagating rip-

) : Bling waves and spiraling fruiting bodi¢40,32. Although
F'g‘ 8 (left). We explore the entire phase spaeando and the investigation of contact interactions between cells is be-
find the crossover from one regime to the other. The en

e yond the scope of this paper, our approach does not preclude
hanced c|>r S;Jppr?ﬁsfdf?;]ﬁus'vf c;haracte_r of tgeti[')Ff Cur\é‘%/ﬁe formation of propagating waves and associated rippling
May evolve from that of the early ime regime, but It IS foun patterns in systems where fibril-mediated cell-cell interac-
that aftert=10° simulation time steps the classification is

stable. The phase diagram is shown in Fig(right). For tions are included.
o,6p>0, both kinesis and chemotaxis effects suppress the
diffusivity of the trajectories. Only foir<0, the spreading
dynamics can be enhanced. Due to our choice of the func-
tional forms of the effectfEqgs.(12) and(26)], the dynamics The authors are grateful for the assistance of G. Lakatos
are much more sensitive @ than to 6p; nonetheless, the in improving the implementation of our simulations and nu-
effects of kinesis induces an asymmetrydp in the phase merical computations. M.D. and T.C. were supported by the
diagram. The curve approaches the limifs= = 0.5 asymp- National Science Foundation through Grant No. DMS-
totically. 0206733.
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