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a b s t r a c t

We study the well-known sociological phenomenon of gang aggregation and territory for-
mation through an interacting agent system defined on a lattice. We introduce a two-gang
Hamiltonian model where agents have red or blue affiliation but are otherwise indistin-
guishable. In this model, all interactions are indirect and occur only via graffiti markings,
on-site as well as on nearest neighbor locations. We also allow for gang proliferation and
graffiti suppression. Within the context of this model, we show that gang clustering and
territory formation may arise under specific parameter choices and that a phase transi-
tion may occur between well-mixed, possibly dilute configurations and well separated,
clustered ones. Using methods from statistical mechanics, we study the phase transition
between these two qualitatively different scenarios. In the mean-fields rendition of this
model, we identify parameter regimes where the transition is first or second order. In all
cases, we have found that the transitions are a consequence solely of the gang to graffiti
couplings, implying that direct gang to gang interactions are not strictly necessary for gang
territory formation; in particular, graffiti may be the sole driving force behind gang clus-
tering. We further discuss possible sociological—as well as ecological—ramifications of our
results.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Lattice models have been extensively used in the physical sciences over the past decades to describe a wide variety of
condensed matter equilibrium and non equilibrium phenomena, see e.g., the reviews in Ref. [1–3]. Magnetization was the
original application, but the list has grown to include structural transitions in DNA [4–6], polymer coiling [7,8], cellular
automata [9,10], and gene regulation [11–13] to name a few. The resulting models are certainly simplified, but what they
lack in detail is compensated by their amenability to analytical and computational treatment—and, occasionally, to exact
solution. Moreover, at least for the behavior in the vicinity of a continuous transition, the simplifications inherent in these
approximate models may be presumed to be inconsequential. In short, lattice models have proved extremely useful in the
context of the physical, biological and even chemical sciences. In more recent years, lattice models have also been applied to
study social phenomena [14–16], such as racial segregation [17,18], voter preferences [19–21], opinion formation in financial
markets [22–24], and language changes in society [25–27], offering insight into socioeconomic dynamics and equilibria.
In this paper we consider the problem of gang aggregation via graffiti in what is—to the best of our knowledge—the first
application of lattice model results to the emergence of gang territoriality.
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Scratching words or painting images on visible surfaces is certainly not a new phenomenon. Wall scribblings have
survived from ancient times and have been used to reconstruct historical events and to understand societal attitudes and
values. Today, graffiti (from the Italian graffiare, to scratch) is a pervasive characteristic of all metropolitan areas [28]. Several
types of graffiti exist. Some are political in nature, expressing activist views against the current establishment; others are
expressive or offensive manifestations on love, sex or race. At times, the graffiti is a mark of one’s passage through a certain
area,with prestige being attributed to themost prolific or creative tagger or to onewho is able to reach inaccessible locations.
Themark can be anything from a simple signature to a more elaborate decorative aerosol painting [29,30]. All of these types
of graffiti are usually scattered around the urban landscape and do not appear to follow any predetermined spatio-temporal
pattern of evolution. They affect the quality of life simply as random defacement of property, although sometimes they are
considered art [31].

On the other hand, gang graffiti represents a much more serious threat to the public, since it is usually a sign of the
presence of criminal gangs engaged in illegal or underground activities such as drug trafficking or extortion [32,33]. Street
gangs are extremely territorial, and aim to preserve economic interests and spheres of influence within the neighborhoods
they control. A gang’s ‘‘turf’’ is usually marked in a characteristic style, recognizable to members and antagonists [34,35]
with incursions by enemies often resulting in violent acts. The established boundaries between different gang factions are
sometimes respected peacefully, but more often become contested locations where it is not uncommon for murders and
assaults to occur [36]. It is here, on the boundaries between gang turfs, that the most intense graffiti activity is usually
concentrated.

Several criminological and geographical studies have been presented connecting gang graffiti and territoriality in
American cities [31,30,35]. In particular, it is now considered well-established that the spatial extent of a gang’s area of
influence is strongly correlated to the spatial extent of that particular gang’s graffiti style or language. Furthermore, it is
known that the incidence of gang graffiti may change in time, reflecting specific occurrences or neighborhood changes. For
example, rival gangs may alternate between periods of truce and hostility, the latter being triggered by arrests or shootings.
Similarly, boundaries may shift locations when the racial or socio-economic makeup of a neighborhood changes, creating
new tensions, or when gang members migrate to new communities [28]. In all these cases, periods of more intense gang
hostility are usually accompanied by intense graffiti marking and erasing by rival factions in contested or newly settled
boundary zones [35].

The purpose of this paper is to present a mathematical model that includes relevant sociological and geographical
information relating gang graffiti to gang activity. In particular, we study the segregation of individuals into well defined
gang clusters as driven by gang graffiti, and the creation of boundaries between rival gangs. We use a spin system akin to
a 2D lattice Ising model to formulate our problem through the language of statistical mechanics. In this context, the site
variables si have two constituents which represent ‘gang’ and ‘graffiti’ types, respectively, and phase separation is assumed
to be the proxy for gang clustering. For the purpose of simplicity, we consider only two gangs, hereafter referred to as the
red and blue gang, whose members we refer to as agents. Lattice sites may be occupied by agents of either color or be void.
Since gangmembers are assumed to tag their territory with graffiti of their same color, we also assign a graffiti index to each
site representing the preponderance of red or blue markings.

In particular, agents are attracted to sites with graffiti of their same color, and avoid locationsmarked by their opponents.
We deliberately avoid including direct interactions between gang members, so that ‘‘ferromagnetic’’ type gang–gang
attractions exist only insofar as they are mediated by the graffiti. On one hand this is mathematically interesting: in the
broader context of physical systems, interactions are often mediated but rarely are indirect interactions the subject of
mathematical analysis. On the other hand, by excluding direct gang interactions, we can specifically focus on the role of
graffiti in gang dynamics and segregation. Furthermore, as will be later discussed, under certain conditions, gang–gang
couplings may be unimportant, and one of the primary conclusions of this work is that they appear to be unnecessary to
account for the observed phenomena of gang segregation. In any case, we informally state without proof that all the results
of this work also hold if explicit agent–agent interactions are included.

We thuswrite si = (ηi, gi), representing the agents and graffiti configuration at site i, respectively. The former component
ηi is discrete allowing, for simplicity, at most one agent on each site. The latter gi is continuous and, in principle, unbounded.
We let s denote a spin configuration on the entire lattice, and in Section 2, propose a Hamiltonian, H (s), to embody all
relevant sociological information. OnceH (s) has been determined, the probability for the occurrence of a spin configuration
s on a finite connected lattice 3 ⊂ Z

2 is determined by the corresponding Gibbs distribution F(s). Note that due to the
choices made on the range of the ηi, gi values, F(s) is discrete in the η variables and continuous in the g ones. It is given by

F(s) = 1

Z
exp(−H (s)),

where Z is the partition function for the finite lattice 3 formally provided by the expression

Z =
∑

s∈S

exp(−H (s)).

Here, S denotes the set of all possible configurations on 3 and the summation symbol is understood to be a summation
over the discrete components and an integration over the continuous ones. As usual, we begin with a finite lattice and its
associated boundary conditions, and obtain infinite volume results by taking the appropriate limits. Using techniques from
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statistical mechanics, we prove that our system undergoes a phase transition as the coupling parameters are varied. In the
unconstrained ensemble, certain parameter choices lead to predominance of either the red or blue gang, indicating that for
configurations where the red to blue gang ratio is fixed at unity, a phase separation will occur. Conversely, in other regions
of parameter space, there is no dominance of either gang type, indicating that the two are well-mixed and/or dilute. In this
work we will investigate under which conditions to expect phase separation or gang dilution.

Our paper is organized as follows: in Section 2, we give details of the model and in Section 3, we prove that a phase
transition exists as a function of the relevant parameters. Since information on the location of all transition points is, by
necessity, incomplete we consider an approximation in the form of a simplified mean field version of our Hamiltonian and
derive the corresponding mean field equations in Section 4. Here, we show that the mean field Hamiltonian also exhibits a
phase transition andwe further prove that the latter is continuous in one specified region of parameter space and first order
in another. Finally, in Section 5 we end with a discussion of potential sociological and ecological implications of our results.

2. The Hamiltonian

Let us define a spin system on a finite lattice 3 ⊂ Z
2. Here, the spin at each site i ∈ 3 is denoted by si = (ηi, gi) and,

we reiterate, ηi denotes the agent spin and gi represents the graffiti field. We allow the agent spin to be in the set {0,±1};
ηi = −1 if the agent at site i belongs to the blue gang, ηi = 0 if there is no agent, and ηi = +1 if the agent is a red gang
member. The graffiti field is in the set of real numbers: gi > 0 indicates an excess of red graffiti, gi < 0 an excess of blue
graffiti, and, in either case, |gi| indicates the magnitude of the excess. We now introduce the formal Hamiltonian H (s)

−H (s) = J
∑

〈i,j〉
ηigj + K

∑

i

ηigi + α
∑

i

η2
i − λ

∑

i

g2
i , (1)

where s is a given configuration on the full 3 lattice, i and j index its sites and
∑

〈i,j〉 is the sum taken over every bond

between nearest neighbor sites belonging to 3. We discuss the role of spins on the lattice boundary 3c in Proposition 3.4
and the following sections. The expression in (1) will be referred to as the GI–Hamiltonian (graffiti interaction Hamiltonian)
and its corresponding partition function will be denoted by an unadorned Z. Note that since ηi is either 0 or±1, η2

i = |ηi|;
however,we choose to display the above form to leave open the possibility ofηi ∈ Z. As discussed earlier, there are no explicit
agent–agent interactions in this model; indeed, the structure of the Hamiltonian assumes that gang members interact with
each other only via the graffiti tagging. As a result, occupation at site i by a gang member is ‘‘energetically’’ favored only if
nearest-neighbor and on-site graffiti are predominantly of its same color. The two coupling constants, J for nearest-neighbor
interactions and K for on-site occupation, reflect this trend. The αη2

i term represents the proclivity of a given site to be
occupied by agents regardless of color, implying that gang members carry a strong tendency to occupy unclaimed turf if
α ≫ 1, while α ≪ −1 represents a natural paucity of gangs altogether. Finally, we assume graffiti imbalance of either color
to be energetically unfavorable via the−λg2

i term. This can be interpreted as natural decay of graffiti due to the elements, or
to police or community intervention. For purposes of stability, λ must be positive. Although the interactions J , K are tacitly
assumed to be positive, generalizations to negative valuesmay be possible, and a corresponding analysismay be undertaken
given the proper sociological interpretations.

3. Phase transition in the GI-system

3.1. Low temperature phase

The basic strategywe follow to demonstrate an ordered, ‘‘low temperature’’ phase is a contour argument, here illustrated:
Suppose that ηi, the agent spin at site i, differs from the agent spin ηj at a different site j. The two agent spins can differ either
by color, representing two different gang affiliations, or by occupation, where one site is occupied and the other is void. At
the scale of nearest neighbors, each edge in the lattice can be defined as either a coherent bond, where the adjoining lattice
sites are occupied and their agent spins are identical, or as an incoherent bond if this condition does not hold. Thus, explicitly,
(ηi, ηj) = (1, 1) or (−1,−1) are coherent, and all the other types are not.

Let us now consider any path on the lattice that joins sites i and j. Since i and j have agent spins which are not identical,
it must be the case that on any path between i and j, there is an incoherent bond. Furthermore, these incoherent bonds
must form a closed contour on the dual lattice that separates i from j. In the following subsections, we derive a bound
on the probability of any such incoherent bonds and their aggregation into contours. When these probabilities are small
enough—which happens in certain regions of the parameter space—we can establish a low temperature phase. For example,
the presence of a red agent at the origin will imply that, with significant probability, the majority of the other sites will also
be occupied by red agents, showing the existence of a red phase. Similarly, a blue phase can be shown to exist.

To achieve all of these ends, we will employ the methods of reflection positivity described in Ref. [37,38] which contain
a detailed account of useful techniques along with relevant classic references. In this paper, we will be working on the
L × L diagonal 2D torus—the SST—which we denote by TL. We will often refer to the Gibbsian probability measure on TL

associated with the Hamiltonian in Eq. (1) which we denote by PL(·).



Author's personal copy

A.B.T. Barbaro et al. / Physica A 392 (2013) 252–270 255

3.1.1. Reflection positivity

Bymeans of the reflection positivity of the Gibbs distributionwe can easily bound the expectation of an observablewhich
depends only on the spin at any two neighboring lattice points. This result will be used to build the contour argument that
will lead us to prove the existence of a low temperature phase.We thus briefly introduce the concept of reflection positivity,
referring the interested reader to Ref. [37] for a more detailed discussion of these topics.

Consider a plane of reflection pwhich intersects the torus in a path running through next nearest (diagonal) pairs of sites.
Let ϑp be the reflection operator through p. On the SST, this plane p divides the lattice into two halves, identified as T

+
L and

T
−
L , such that T

+
L ∩T

−
L = p. Let U

+
p denote the set of functions which depend only on the spin variables in T

+
L and similarly

for U
−
p . The reflection map, ϑp, which, in a natural fashion identifies sites in T

+
L with those in T

−
L via a reflection through p,

can also be used to define maps between U
+
p and U

−
p : Specifically, if f ∈ U

+
p , we define ϑpf ∈ U

−
p to be the function f

evaluated on the configuration reflected from T
−
L .

A measure µ is reflection positive with respect to ϑp if for every f , g ∈ U
+
p , or U

−
p , the following two properties hold

1. Eµ(fϑpf ) ≥ 0,
2. Eµ(fϑpg) = Eµ(gϑpf ).

It is known (e.g., see Ref. [37]) that PL is reflection positive with respect to ϑp for every p of the above described type. We
next use reflection positivity to find an upper bound on the expectation of observables defined on bonds. In doing so, we
use the following lemmas:

Lemma 3.1. Let 〈i, j〉 denote a bond of TL and let αi and γj denote site events at the respective endpoints of the bond. Let Z
(α,γ )
TL

denote the partition function (on TL) which has been constrained so that at each site with the parity of i, the translation of the

event αi occurs and similarly for γ . Then, for L = 2k for some integer k,

PL(αi ∩ γj) ≤
[

Z
(α,γ )
TL

ZTL

]
1
2V

,

where V = L2 is the volume of the torus.

Proof. The result from this lemma dates back to the original papers on the subject. In particular, the use of bond events on
the SST was highlighted in Ref. [38]. A modern and complete derivation is contained in Ref. [37], Section 5.3. �

For a slightlymore general scenario, let us consider the bond 〈i, j〉 and various eventsα1
i , γ

1
j , . . . , αn

i , γ
n
j and let us denote

by b1 = α1
i ∩ γ 1

j . . . bn = αn
i ∩ γ n

j the corresponding bond events as described. Letting b = ∪n
j=1 bj we find

PL(b) ≤
n
∑

j=1

[

Z
(αj,γj)

TL

ZTL

]

1
2V

:=
n
∑

j=1

[

Z
(bj)

TL

ZTL

]

1
2V

.

Finally, we have

Lemma 3.2. Let r1, . . . , rm denote translations of the bond 〈i, j〉 and brj the translation of the bond event(s) b described above.

Then

PL(∩m
j=1 brj) ≤







n
∑

j=1

[

Z
(bj)

TL

ZTL

]

1
2V







m

.

Proof. Again, we refer the reader to Ref. [37], Section 5.3. �

3.1.2. A bound on the incoherent bond probabilities

In order to prove a phase transition by a contour argument, we must place an upper bound on the probability for the
occurrence of any type of incoherent bond where agent spins of neighboring sites are different. There are four types of
incoherent bonds, namely (ηi, ηj) = (−1, 1), (−1, 0), and (1, 0), and (0, 0), regardless of order. Let us introduce the following
notation: consider undirected bonds between two particular neighboring lattice sites, 〈i, j〉 and let (·, ·) denote the event of
any of the nine coherent or incoherent bonds so that

(·, ·) ∈ {(+,+), (−,−), (+,−), (−,+), (+, 0), (0,+), (−, 0), (0,−), (0, 0)}.
Similarly, let Z

(·,·)
TL

denote the partition function restricted to configurations where all agent spins are frozen in accord with
the above described (chessboard) pattern and the rest of the statistical mechanics is provided by the graffiti field against
this background [37,39]. The following is readily obtained:
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Proposition 3.3. The above described (agent-constrained) partition functions are given by

Z
(0,0)
TL

=
[√

π√
λ

]V

,

Z
(−,−)
TL

= Z
(+,+)
TL

=
[

eα
√

π√
λ

e
1
4λ
[4J+K ]2

]V

,

Z
(+,−)
TL

= Z
(−,+)
TL

=
[

eα
√

π√
λ

e
1
4λ
[−4J+K ]2

]V

,

Z
(0,+)
TL

= · · · = Z
(−,0)
TL

=
[

e
1
2
α
√

π√
λ

e
1
8λ

K2

]V

.

Proof. Since the agent variables are frozen, the gi Gaussian variables are independent and the above amount to straightfor-
ward Gaussian integrations. �

Using Lemma 3.1 and the fact that the full partition function satisfies ZTL
≥ Z

(+,+)
TL

, we can write

PL(0, 0) ≤ e−
1
2
αe−

1
8λ
[4J+K ]2 ,

PL(+,−) = PL(−,+) ≤ e−
2JK
λ ,

PL(+, 0) = · · · = PL(0,−) ≤ e−
1
4
αe−

2J2+JK+ 1
16

K2

λ .

(2)

We denote by ε = ε(J, K , λ, α) the sum of the estimates for the probabilities provided by the right hand sides of the
preceding display. For fixed α and K > 0, note that as Jλ−1/2 → ∞ (or, better yet, Jλ−1/2 and Kλ−1/2 both tending to
infinity) the quantity ε tends to zero. This implies the suppression of all incoherent bonds so that the lattice must be almost
fully tiled with coherent ones. In particular, the lattice is nearly filled with agents, which, at least locally, are mostly of the
same type. As will be demonstrated below, this implies the existence of distinctive red and blue phases, i.e., in the language
of statistical mechanics, of a ‘‘low temperature’’ regime. We formalize this result in the next subsection.

3.1.3. The contour argument

We have now established all the tools we need to complete the contour argument. Accordingly, we now show that two
well-separated lattice sites must, with probability tending to one, have identical agent spins in the limit ε ≪ 1. This in turn
will imply the existence of a low temperature phase.

Theorem 3.1. Consider the GI-system on Z
2 and let ε(J, K , λ, α) denote the quantity described in the last paragraph of the

previous subsection. Then, if the parameters are such that ε is sufficiently small, there are at least two distinct limiting Gibbs

states characterized, respectively, by the abundance of red agents and the abundance of blue agents. Moreover, this property holds

in any limiting shift invariant Gibbs state.

Proof. Let us start on TL with L = 2k. For i, j ∈ TL where i and j are well separated, let us consider the event vB := {ηi 6=
ηj}∪{ηi = 0}.Wewill show, under the stated conditions, that uniformly in L this probability vanishes as ε → 0. As discussed
previously, in order for this event to occur, the sites i and j must be separated by a closed contour consisting of bonds dual
to incoherent bonds. For ℓ = 4, 6, . . . let Nℓ = Nℓ(i− j, L) denote the number of such contours of length ℓ on TL. Then we
claim that uniformly in L and i− j,

Nℓ ≤ 2ℓ2λℓ
2

where λ2 (with λ2 ≈ 2.638 . . . < 3) is the connectivity constant for Z
2 [40]. A word of explanation may be in order. The

λℓ
2 generously accounts for walks of length ℓ in the vicinity of site i and the factor of two for walks in the vicinity of site j.

Finally, the factor of ℓ2 accounts for the origin of the walk. Note this is an over-counting, e.g., contours which wind the torus
but do not necessarily ‘‘enclose’’ i or j are counted twice. Using Lemma 3.2 we may now write

PL(vB) ≤
∑

ℓ

Nℓε
ℓ ≤ 2

∑

ℓ:Nℓ 6=0

ℓ2[λ2ε]ℓ.

The above obviously tends to zero as ε → 0 demonstrating that in finite volume, the lattice is either populated with mostly
red agents or mostly blue agents depending—with high probability—on what is seen at the origin. The implication of this
result is that, for ε sufficiently small, there are at least two infinite volume Gibbs states—which can be realized as the limits
of the appropriately conditioned TL’s. These states have one of the two mutually exclusive characteristics: a preponderance
of red agents or a preponderance of blue agents. The fact that the above must also hold in any shift-invariant Gibbs state is
the subject of Theorem 2.5 and its Corollary in Ref. [41] with a slight extension provided by Corollary 5.8 in Ref. [42]. �
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3.2. High temperature phase

As is sometimes (e.g., historically) the case in statistical mechanics, it can be an intricate job to establish a high
temperature phase—a region of parameters where the limiting Gibbs measure is unique and correlations decay rapidly.
Typically, one calls upon the Dobrushin uniqueness criterion [43]. However for us, this route is interdicted by the unbounded
nature of the gi graffiti field. The strategy here will be percolation based: First we establish the so-called FKG property for
all the associated Gibbs measures. Then what follows will be a relatively standard argument through which we show that
the necessary and sufficient condition for uniqueness is that the average of ηi—akin to a magnetization—vanishes in the
state designed to optimize this quantity. Then, finally, wewill develop a random cluster-type expansion demonstrating that
under the expected high-temperature conditions for the couplings, e.g., λ ≫ 1, the stated condition on this magnetization
is satisfied. In addition, high-temperature behavior should also be achieved under the condition that agents are sparse. This
requires an alternative percolation criterion used in conjunction with the above mentioned expansion. In both scenarios,
the rapid decay of correlations arises as an automatic byproduct.

3.2.1. FKG properties

In this paragraph we will demonstrate that the FKG Lattice Condition (see e.g., Ref. [44] Page 78) is satisfied by any finite
volume Gibbs measure associated with the GI–Hamiltonian. Let us start by noting that we can define a natural partial
ordering on the pair of states si and s′i via the notation

si � s′i, if ηi ≥ η′i and gi ≥ g ′i .

Further we introduce the notation s � s′ to signify that the above holds for all the si, s
′
i at each i ∈ 3. For individual

spins si and s′i , we also denote si ∨ s′i := (max{ηi, η
′
i},max{gi, g ′i }) and similarly for the ‘‘minimum’’ si ∧ s′i . Finally, for spin

configurations s and s′, the configurations s∨ s′ and s∧ s′ are defined as the sitewise maximum andminimum, respectively.
The FKG lattice condition—conveniently stated for finite volumemeasures—is that for all s, s′, the following inequality holds:

F3(s ∨ s′)F3(s ∧ s′) ≥ F3(s)F3(s′). (3)

The well known consequence of the above is that any pair of random variables that are both increasing with respect to the
partial order described above are positively correlated.

Proposition 3.4. The finite volume Gibbs measures associated with the GI–Hamiltonian satisfy the FKG lattice condition.

Proof. Weconsider an arbitrary graph and, aswill bemade evident, the proof automatically accounts for any fixed boundary
conditions. Now, as iswell known, it is sufficient to establish that the lattice condition Eq. (3) holdswhendifferences between
configurations are exhibited only on a pair of spin-variables. The fixed boundary spins thus may be regarded as part of the
background which is common to all four possible agent-graffiti spin configurations in question. Let us thus assume that
the differences between two configurations occur at sites a and b in the graph where certain specified variables have been
‘‘raised’’ above a base configuration level s. We denote the single raise configurations by sa and sb and the double raise by
sab. Thus, it is sufficient to show F(sab)F(s) ≥ F(sa)F(sb). All told, there are three possibilities to consider: graffiti–graffiti,
gang–graffiti and gang–gang raises on the a and b sites. For the mixed gang–graffiti case we must also consider the a = b

possibility where the gang and graffiti spins have been ‘‘raised’’ at the same site. We need not consider the normalization
constant in any of these cases, since it appears in identical roles on both sides of the purported inequality; consideration of
the Boltzmann factors is sufficient. Let us introduce, in the setting of our general graph, the interaction

−H (s) =
∑

〈i,j〉
Ji,jηigj −

∑

i

[αiη
2
i + λig

2
i ],

where the first sum now extends over all edges considered to be part of the graph and our only stipulation is that Ji,j > 0.
Also, we may formally include i = j in this sum. Let us denote the ‘‘raised’’ graffiti variables via the positive increments δga
and δgb so that, in the graffiti–graffiti case, at sites a and b ga → ga+ δga and gb → gb+ δgb. It is straightforward to see that
H (sab)+H (s) = H (sa)+H (sb) and the desired inequality holds as an identity. Similarly for the gang–gang case. We can
now consider the mixed case where, without loss of generality, ga → ga+ δga and ηb → ηb+ δηb, and for us, δηb ≡ 1. Here

−(H (sa)−H (s)) =
∑

i6=b

Ji,aηiδga + Ja,bηbδga − λδga
2,

while

−(H (sb)−H (s)) =
∑

j6=b

Jb,jgjδηb + Ja,bgaδηb + αδηb
2.

However

−(H (sab)−H (s)) =
[

∑

i6=b

Ji,aηiδga + Ja,bηbδga − λδga
2

]

+
[

∑

j6=b

Jb,jgjδηb + Ja,bgaδηb + αηb
2

]

+ Ja,bδgaδηb

≥ 2H (s)−H (sa)−H (sb).
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Combining the above results we find that indeed

H (sab)+H (s) ≤ H (sa)+H (sb).

The same inequality can be easily shown in the mixed gang–graffiti case for a = b, by assuming ga → ga + δga and
ηa → ηa + δηa and by following the same steps as above. This completes the proof. �

As an immediate consequence, we can identify boundary conditions on 3 which most favor the dominance of the red
gang. Indeed, it is now seen—as was anyway clear heuristically—that wemust make the boundary spins ‘‘as red as possible’’
in order for a predominance of3 sites to be occupied by red agents. This amounts, somewhat informally, to setting gi ≡ +∞
and ηi ≡ 1 (which is anyway automatic if K 6= 0) all along the boundary. This ‘‘specification’’ which seems a bit arduous
to work with is not nearly as drastic as it sounds. Let us start with some notation: For 3 a finite subset of Z

2, let us define
∂3 as those sites in 3c with a neighbor in 3 and d3 as those sites in 3 with a neighbor in 3c . Clearly the only immediate
consequence of the ‘‘drastic’’ boundary condition is to force ηi ≡ 1 for i ∈ d3 and to bias, by at most (3J + K)gi the a

priori Gaussian distribution of the g ’s. We shall do that—and a bit more—on ∂3 arguing that this, at most, is the result of
the ‘‘drastic’’ boundary condition on ∂(3 ∪ ∂3). Precisely, we define the red boundary condition on 3 as ηi ≡ 1 and gi
independently distributed as normal random variables with variance 1/2λ and mean (4J + K)/2λ for each i ∈ ∂3. By the
established monotonicity properties these are exactly the boundary conditions imposed on the slightly larger lattice that
will optimize the average of ηi and gi for any i ∈ 3.

3.2.2. A uniqueness criterion

It is not hard to show, bymonotonicity, that a limiting red measure exists along any thermodynamic sequence of volumes
and that the limit is independent of the sequence and therefore translation invariant. We shall denote this measure byµR(·)
and byER(·) the corresponding expectations. Similarly for the bluemeasurewe introduceµB(·) andEB(·). We can thus state

Proposition 3.5. The necessary and sufficient condition for uniqueness among the limiting Gibbs states for the GI-system is that

ER(η0) = 0, where η0 is the spin at the lattice origin.

Proof. For two measures µ1 and µ2 e.g., on {−1, 0, 1}Z2
, we use the notation µ1 ≥ µ2 to indicate that for any random

variable X which is increasing in all coordinates, the expected valuesE1(X), calculated via theµ1 measure are always greater
than the those obtained via µ2:

E1(X) ≥ E2(X).

This is known as stochastic dominance. Consider µR(·) which, by slight abuse of notation, we temporarily take to be the
restriction of µR to agent events. Suppose that ER(η0) = 0. Then, by translation invariance, we have ER(ηi) = 0 for all i.
Similar considerations apply to the corresponding µB(·). It is immediately clear—by symmetry or stochastic dominance—
that PR(η0 = 0) = PB(η0 = 0) and thus the single site distributions are identical. By the corollary to the Strassen
theorem [45,46] sinceµR ≥ µB and thesemeasures have identical single site distributions theymust be identical probability
measures. Similar considerations apply to the full measures since the distribution of the gi is determined by their conditional
distributions given the local configuration of the ηi’s. Uniqueness is established since, if µ⊙(·) denotes any other infinite
volumemeasure associated to the GI–Hamiltonian, we haveµR ≥ µ⊙ ≥ µB which implies equality in light ofµR = µB. �

3.2.3. Proof of a high-temperature phase

We shall develop a graphical representation for the GI-system akin to the FK representation for the Potts model [47]
that, for all intents and purposes, is the same as the one used in Ref. [48], where only the case of bounded fields is explicitly
analyzed. Let us then consider the GI–Hamiltonian in finite volume with all notation pertaining to boundary conditions
temporarily suppressed. For fixed s, we may decompose the graffiti fields and agents according to affiliation:

gi = qiϑi; ϑi = ±1, qi = |gi|,
ηi = riσi; σi = ±1, ri = |ηi|,

where the σ ’s and ϑ ’s have the definitive character of Ising variables. We can now write

eJi,jgiηj = e−Ji,jqirj(Ri,jδϑi,σj + 1),

where Ri,j = R(Ji,j, qi, rj) := e2Ji,jqirj − 1. In our case, we have Ji,j = J if i and j are neighboring pairs and Ji,i = K ; which we
will not yet distinguish notationally and consider a general Ji,j label. Thus

e−H (s) =
∏

(i,j)

e−Ji,jqirj(Ri,jδϑi,σj + 1).

Opening the product, we select one term for each ‘‘edge’’: If the Ri,j term is selected, we declare the edge to be occupied,
otherwise it is vacant. It is noted here that the edges should be interpreted as directed: all edges appear twice and we must
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regard 〈i, j〉 as distinctive from 〈j, i〉; moreover, for K 6= 0, the above is understood to include i = j. The configurations of
occupied edges will, generically, be denoted by ω. Summing over the Ising variables, we acquire the weights

W (ω) = 2C(ω)
∑

q,r

∏

(i,j)∈ω

Ri,j(Ji,jqi, rj),

where, as before the summation notation also indicates integration over the continuous variables. In the above, C(ω)denotes
the number of connected components of ω; here connectivity deduced according to the directed nature of the edges or via
a double covering of the lattice. Normalizing these weights by the partition function we obtain a probability measure on
the bond configurations ω. As will be made explicit below, this probability measure on bond configurations is well defined
in finite volume. Let us denote the probability measure on the bond configurations ω by P

⊙
3(·), where the ⊙ now denotes

boundary conditions accounted for in a routine fashion. Then, for each ω consisting of appropriate edges, P
⊙
3(ω) ∈ (0, 1).

We shall not discuss the problem of infinite volume limitswhichwould take us too far astray but be contentwith statements
that are uniform in volume. With regards to the latter, and of crucial importance for our purposes is the connection back
to the spin-measure inherent in this representation. For the Potts models, this was first elucidated in Ref. [49] with the
complete picture emerging in Ref. [50]. In particular, for any site, the contribution to the magnetization vanishes if the site
belongs to a cluster that is isolated from the boundary. The principal objective for this representation is the following claim:

Proposition 3.6. Let 3 ⊂ Z
2 be a finite connected set and consider the above described representation in 3 with boundary

condition⊙ on ∂3. Let 〈a, b〉 denote an edge with a 6= b and both a and b not belonging to ∂3. Let eab denote the event that this

edge is occupied and let ω denote a configuration on the compliment of 〈a, b〉. Then, for fixed α and K , there is an ε(J, λ) with

ε → 0 as J2/λ→ 0 such that uniformly in 3, ω and⊙—as well as K and α,

P
⊙
3(eab) <

ε

1+ ε
.

Proof. Let W⊙
3 (·) denote the configurational weights with associated boundary conditions as described above. Then it is

seen that

P
⊙
3(ω ∨ eab)

1− P
⊙
3(ω ∨ eab)

= W⊙
3 (ω ∨ eab)

W⊙
3 (ω)

.

Our goal is to estimate the right hand side of the above which thereby generates the quantity ε featured in the statement of
this proposition. Noting the positivity and product structure of the numerator and denominator, we may regard the object
on the right as the expectation with respect to a weighted measure of the quantity Rab and we shall denote this by Eω(Ra,b).
The latter will be estimated via conditional expectation: Let Qq̂a denote a specification of the q-fields and agent occupation
variables except for qa and let

ε := sup
ω,Qq̂a

Eω(Rab | Qq̂a).

Obviously, ε ≥ supω Eω(Rab). As for the complimentary fields, there is not a great deal of dependence: In particular, all that
is needed is that rc = 1 for all c such that 〈a, c〉 ∈ ω. Concerning the optimizing ω, non-local considerations dictate simply,
that ω be such that 〈a, b〉 does not reduce the number of components. Locally, as can be explicitly checked, or derived from
monotonicity principals, the optimal scenario is when all bonds emanating from a are present in the configuration. Thus we
have

ε =
∫

e−(4J+K)qR4(J)R(K)e−λq2dq
∫

e−(3J+K)qR3(J)R(K)e−λq2dq
= 2

∫

e−λq2 sinh4(Jq) sinh(Kq)dq
∫

e−λq2 sinh3(Jq) sinh(Kq)dq
,

where in the first line R(J) := R(J, q, 1). We claim that the final ratio is bounded by J/λ1/2 multiplied by a constant that may
be proportional to the ratio K/λ1/2. Indeed let us substitute ω = λ1/2q and κ := K/λ1/2. The above quantity can thus be
rewritten as

ε = 2

∫

e−ω2
sinh κω(sinhωJ/λ)4dω

∫

e−ω2
sinh κω(sinhωJ/λ)3dω

.

Our claim is obvious if κ → 0 but we may wish to consider cases where κ stays bounded away from zero. In general, the
integrands are not dominated by large ω and we may expand the factors sinhωJ/λ with the result

ε → 2J

λ1/2

∫

e−ω2
sinh κω · ω4dω

∫

e−ω2
sinh κω · ω3dω

.
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We finally claim that the right side is bounded by a linear function of κ:

1

1+ κ

∫

e−ω2
sinh κω · ω4dω

∫

e−ω2
sinh κω · ω3dω

< B,

for some B <∞. This is indeed true as κ → 0. We only need to show that the inequality holds in the case κ →∞. But here

the factor e−ω2
sinh κω is, essentially, a Gaussian in the variable ω − κ and the desired result follows. �

Theorem 3.2. Consider the GI-system and let ε denote the quantity described in Proposition 3.6. Then for ε < ε0, given by

ε0 +
1

2
ε2
0 =

1

2

there is a unique limiting Gibbs state featuring rapid decay of correlations.

Proof. Using the result of Proposition 3.6, we shall compare the described graphical representation with independent bond
percolation on Z

2. We start with a well known—and readily derivable—result: Let Y1, . . . , YN denote an array of Bernoulli
randomvariableswith collective behavior described by themeasureµY and letYŶj

denote a configuration on the compliment

of Yj. Let us now introduce

pj = max
Y
Ŷj

PY(Yj = 1 | YŶj
)

to denote the maximal conditional probability of observing {Yj = 1}. Finally, let X1, . . . , XN denote a collection of
independent Bernoulli random variables with parameters p1, . . . , pN . Then, denoting the independent measure by µX, we
have

µX ≥ µY.

Thuswemay bound the probabilities of increasing events in the graphical representation by the corresponding probabilities
from independent percolation onZ

2 with bond occupation probabilities determined by the ε from Proposition 3.6. However,
we must note that the relevant percolation problem has multiple types of edges. The ε0 in the statement of this proposition
bounds the probability of the event eab ∪ eba by 1

2
. If the clusters of the featured representation fail to percolate, then,

as 3 ր Z
2, the origin is disconnected from the boundary with a probability tending to one. As discussed just prior to

Proposition 3.6, this implies ER(η0) = 0 and by Proposition 3.5, uniqueness is established. Under the condition ε < ε0,
exponential decay of correlations can also be established. We will be content with the decay of the two point function. The
problemof general correlations under these conditions has been treated elsewhere [51,52]. In particular, for i, j ∈ Z

2,E(ηiηj)
in the unique infinite volume measure is bounded, in finite volume approximations by the probability that i and j reside in
the same cluster. For ε < ε0, this decays exponentially in |i− j| uniformly in 3 for |3| sufficiently large. �

We now turn our attention to an alternative criterion for high temperature behavior which may also be of relevance
in a sociological context: Sparsity of agents. Mathematically, this pertains to the situation where α is large and negative
(−α ≫ 1) which a priori suppresses the fraction of agent occupied sites. Our arguments will initially be based on more
primitive notions of percolation and, following themethods of Ref. [53] (see also [54,55]) could, perhaps, be completed along
these lines. However, it turns out to be far simpler to appeal to the graphical representation just employed for the final stage
of the argument. We start with the relevant notion of percolation and connection. In the context of site percolation on Z

2,
wemay define various notions of connectivity [56]. Here we define ⋄-connectivity to indicate connection between sites that
are no more than two lattice sites away. This is not to be confused with ∗-connectivity which does not consider a pair of
sites to be connected if they are separated by two units in the vertical or horizontal direction.We denote by p⋄c the threshold

for ⋄-percolation on Z
2. Standard arguments dating to the beginning of the subject show that p⋄c ∈ (0, 1); in particular, p⋄c

is less than the threshold for ordinary, or even ∗-connected, percolation and mean-field type bounds readily demonstrate
that p⋄c > 1

12
.

The next proposition concerns the relative abundance of, e.g., red sites under the condition −α ≫ 1 with the other
parameters fixed.

Proposition 3.7. Consider the GI-system with parameters λ, K and J fixed. Then there is a δα = δα(J, K , λ) with δα → 0 as

α →−∞ such that uniformly in volume and boundary conditions, for any site i that is away from the boundary

P
⊙
3(ηi = 1) < δα.

Proof. Here we employ the preliminary (red� blue) FKG properties that were established earlier, in 3.2.1. We start with a
γ > 0 (and somewhat ‘‘large’’) and, for j ∈ 3 not too near the boundary, we consider P

⊙
3(gj > γ ). By the FKG property, this
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probability is less than the corresponding conditional one given that ηj = 1 and that ηk = 1 for all k that are neighbors of j.
This conditional probability is given by a definitive expression:

P
⊙
3(gj > γ ) ≤

∫

g>γ
e+(4J+K)ge−λg2dg

∫

g
e+(4J+K)ge−λg2dg

:= δγ .

The above can be expressed directly via the error function but in any case, as is not hard to show,

δγ ≤
1

2
e−λ[γ− 4J+K

2λ
]2 ,

as long as γ ≥ (4J + K)/2λ, which also quantifies how large γ must be. Provided i is a few spaces away from the boundary,
we note that 1− 5δγ is a valid estimate of the probability that both gi and the g-values at the neighbors of i do not exceed
γ . Let us denote this (good) non-high field event by Gi. Then we may write

P
⊙
3(ηi = 1) = P

⊙
3(Gi)P

⊙
3(ηi = 1 | Gi)+ P

⊙
3(Gc

i )P
⊙
3(ηi = 1 | Gc

i )

≤ 5δγ +
e(4J+K)γ eα

1+ e(4J+K)γ eα + e−(4J+K)γ eα
:= δα, (4)

where, in various stages we have employed worst case scenarios. Clearly, for fixed (J, K , λ) we may choose γ large so that
δγ is small, and α negative and large in magnitude, so that δα is small. �

Theorem 3.3. Consider the GI-System and suppose that −α is large enough so that δα < p⋄c as described just prior to the state-

ment of Proposition 3.7. Then there is a unique limiting Gibbs state featuring rapid decay of correlations.

Proof. By the dominance principle stated at the beginning of the proof of Theorem 3.2 if δα < p⋄c , the red agents fail to
exhibit ⋄-percolation regardless of boundary conditions. Now consider, in the context of the bond–representation, the event
that the origin is connected to ∂3 in the red boundary conditions, which represents the sole non-vanishing contribution
to E

R
3(η0 = +1). The bonds of any path connecting the origin to ∂3 within this cluster may be envisioned as alternating

connections between agents and fields; the connection to the red boundary ensures that both types of entities take on the
red color. In particular, all the agents in the cluster are red so that these agents must (at least) form a ⋄-connected cluster.
Hence, in finite volume, we may bound

E
R
3(η0 = +1) ≤ P

R
3(0 ;

⋄,R
∂3)

where {0 ;

⋄,R
∂3} is the event of a red ⋄-connection between the origin and the boundary.

When the red agent occupation probabilities are dominated by independent sites with parameter δα < p⋄c , such
probabilities decay exponentially. Evidently, in the limiting state, the ‘‘magnetization’’ vanishes which by Proposition 3.5
implies a unique state. Similarly, exponential decay of correlations is implied by exponential decay of ⋄-connectivities. �

4. The mean field rendition

In the previous section, we showed that a phase transition between well-mixed and clustering configurations exists for
the general Hamiltonian in Eq. (1). However, finding the exact or even approximate values of the J, K , α, λ parameters for
which the well-mixed to clustering transition occurs is in general a difficult task. Moreover, the nature of the transition is
not elucidated by the techniques of the preceding section. On the basis of informal simulations described in the Appendix
and certain other considerations it appears that the transition may be discontinuous or second order depending on where
the phase boundary is crossed. This cannot be proved in the context of the present model. We thus introduce a mean-field

Hamiltonian, where instead of nearest-neighbor interactions we consider an all-to-all (interaction) coupling that is rescaled
by the number of sites. Models of this sort are often referred to as complete-graph systems. The mean-field Hamiltonian
allows us to define, in the thermodynamic limit, a simple mean field free energy per particle. This free energy can be
subjected to exact mathematical analysis which provides a quantification of the phase transition. In particular, we have
found that the phase boundary between the diffuse states and the gang-symmetry broken phase can indeed be of either
type.

Let us thus consider a lattice of N sites—where the detailed geometry is no longer of relevance. At each site i, there is the
same si = (ηi, gi) featured in the previous section. However now, the Hamiltonian reads

−H
MF

N (s) = 1

N

∑

i,j

Jηigj +
∑

i

(αη2
i − λg2

i ). (5)

It is observed that the couplings J and K need no longer be distinguished. Indeed, for large N , the giηi interaction, and any
other particular interaction is not of pertinence. We now introduce the relevant collective quantities, n G, and b, obtained
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via ηi and gi, which will allow for a more convenient analysis. In particular, if N+ and N− designate the number of red and
blue lattice agents, respectively, we define

b := N+ + N−

N
and n := N+ − N−

N
,

as the fraction of the lattice covered by agents of any type and the excess—positive or negative—of this fraction that is of
the red type. Moreover, we introduce G = 1

N

∑

i gi to be the average graffiti imbalance. In this context, n and G are akin to
magnetizations in a standard one-component spinmodel, with n corresponding tomagnetization in the agent variables and
G in the graffiti field. For occasional use, we also define n± = N±/N ≤ 1. We remark that in these definitions there is an
implicit N dependence which is notationally suppressed.

4.1. The partition function

In the forthcoming, we will evaluate, asymptotically, the mean field partition function Z
MF defined in accordance with

the previous section as the partition sumZ
MF
N =

∑

s e
−H

MF
N

(s).Here, for reasons which will soon become clear, wewill treat
the graffiti field variables slightly differently. We define

dµgi :=
√

λ

π
e−λg2

i ,

as the normalized Gaussian measure for the individual field variables. Letting g denote the array of these random variables
we may write

Z
MF
N := Eg

(

∑

η

e
J
∑

i,j

giηj+α
∑

i

η2
i

)

,

where Eg(·) denotes expectation with respect to the free (independent) ensemble of Gaussian random variables and
∑

η

denotes the rest of the partition sum i.e., over the agent configurations. It is acknowledged that this differs from the prior
definitions by a multiplicative factor of [λ/π ]N/2 which, of course, is inconsequential.

It is at this point, with the current formulation, that the advantage of the all-to-all coupling ismanifest: For any s (and any
N) the quantity in the exponent depends only on n, b and G: ZMF

N = Eg(
∑

η
eN(JnG+αb)). Concerning the agent configurations,

to perform the summation, we must multiply the integrand by the number of ways of arranging N+ red sites and N− blue
sites among N possible positions. We denote this object byWN(b, n) which is given, explicitly, by the trinomial factor

WN(b, n) =
(

N

N+,N−

)

=
(

N
1
2
N(b+ n), 1

2
N(b− n)

)

.

As for the graffiti field configurations, it is noted that since G is proportional to a sum of Gaussian random variables, it is
itself a Gaussian. Indeed the mean of NG is zero and the variance is N[2λ]−1. Thus the expectation over g can be replaced
with the expectation over NG leading to

Z
MF
N =

∑

n,b

ENG[WN(b, n)eN[JbG+αb]] ∝
∑

n,b

WN(n, b)eN[JnG+αb−λG2]dG

with the constant of proportionality independent of N . Now, on the basis of the Stirling approximation,

WN(b, n) ≈
[

(

b+ n

2

)
b+n
2
(

b− n

2

)
b−n
2

(1− b)1−b

]−N

.

Thus, modulo lower order terms, we have Z
MF
N ≈

∑

n,b,G e−NΦ(b,n,G) where Φ , the free energy function, is given by

e−Φ(b,n,G) := e(JnG+αb−λG2)

[

(

b+ n

2

)
b+n
2
(

b− n

2

)
b−n
2

(1− b)1−b

]−1

. (6)

In accordance with standard asymptotic analysis

lim
N→∞

− 1

N
logZ

MF
N = min

b,n,G
Φ(b, n,G) := FMF

where FMF = FMF(J, α, λ) is the (actual) limiting free energy per site.While various aspects of the above scenario for all-to-all
couplingmodels have been long known and certain cases explicitly proven [57], there is a general theorem to this effect that
is sufficient for our purposes, presented in Section 5 of [58]. Thus the efforts of a mean-field analysis may be summarized
as follows: we are to minimize Φ(b, n,G) and the values of b, n and G at the minima—as a function of the couplings—will
determine the various phases of the system. Even in this simplified context, as will be seen, the phase transitions can be
dramatic.
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4.2. The mean-field equations

The free energy function is obviously well behaved except at the extreme values of the variables. In particular, we would
like to assume that 0 < b < 1 and −b < n < +b where the strict inequalities imply that the function is smooth. Now a
direct calculation of the asymptotics makes it clear that no minimum could possibly occur near the b = 0, 1 and b = ±n

boundaries. Thus, we can confine attention to the interior of the above b and n intervals and proceed by differentiation of
Φ(b, n,G) as defined in Eq. (6). Thus we arrive at themean-field equations:

−∂Φ

∂G
= Jn− 2λG = 0, (7)

−∂Φ

∂b
= α + log(1− b)− 1

2
log

(

b2 − n2

4

)

= 0, (8)

−∂Φ

∂n
= JG− 1

2
log

(

b+ n

b− n

)

= 0. (9)

Free energy minimization only occurs for values of (n, b,G) that satisfy the above system. However, other stationary points
for Φ can—and, e.g., in the case of discontinuous transitions generically will – occur so wemust proceed with some caution.

It is noted that Eq. (7) allows us to eliminate G altogether. Defining µ = J2

2λ
, we rewrite Eqs. (8) and (9) as

4e2α = b2 − n2

(1− b)2
, (10)

µn = 1

2
log

(

b+ n

b− n

)

. (11)

The analysis of this system, along with the minimization it is supposed to imply will constitute the bulk of the remainder
of this work. Foremost, it is noted that the presentation in Eqs. (10) and (11) are, for all intents and purposes, the same as
would have been obtained from themean-field version of the so-called BEGmodel [59]. As such, some aspects of the current
problem have been treated in Ref. [60]. However, the specifics in Ref. [60] are not readily translated into that of the current
work and, moreover, our conclusions are achieved by straightforward methods of analysis.

Our investigation will proceed as follows: it is evident from physical considerations, and the subject of an elementary
mathematical theorem proved at the end of this subsection, that as the parameters sweep through their allowed values, a
phase transition occurs from the circumstances where Φ is minimized by n = 0 to those where n 6= 0 is required. First,
we will follow the consequences of the assumption that this happens continuously: i.e., that the minimizing n goes to zero
continuously through small values. In the leading order, this provides a purported phase boundary which we denote by
the LSP-curve. Considerations of higher order terms in the vicinity of the LSP-curve yield that for certain portions of the
curve, the stipulation is self-consistent and for the rest, it is not. Detailed analysis will show that the former is completely
consistent. In particular these calculations correspond to the true minima of the free energy function. By contrast, the latter
(non-self-consistent) portion is a consequence of a discontinuous transition which has ‘‘already’’ occurred at prior values of
the parameters. In particular, the perturbative analysis is highlighting a local extremum and not the true minimum.

We conclude this subsectionwith the derivation of the LSP-curve—aswell as the introduction of notation thatwill be used
throughout the reminder of the analysis. Assuming n = 0, Eq. (11) is trivially satisfied and Eq. (10) defines the ‘‘ambient’’
value of bwhich we denote by bR:

bR :=
2eα

1+ 2eα
.

Note that (b = bR, n = G = 0) is always a solution to the mean-field system. For simplicity we consider bR and µ as the
relevant parameters for our system for the remainder of this paper. Let us now consider slight perturbations of b about
bR and of n about zero. We thus write b = bR(1 + ∆) with ∆ ≪ bR and |n| > 0 with n ≪ 1 and obtain the following
approximations by expanding Eq. (10) to lowest order

n2 ≈ 2∆
b2R

1− bR
, (12)

while Eq. (11), written to a higher approximation than will be immediately necessary, gives us

µn ≈ n

bR
− n∆

bR
+ n3

3bR
3
. (13)

We pause to observe that Eq. (13) and, in general, Eq. (11), have the symmetry property that with all other quantities fixed,
if n is a solution then so is −n. Thus, we might as well assume that n ≥ 0. Indeed, we shall adhere to this convention
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throughout. Assuming now that µ is variable while bR is fixed, the n → 0 limit of Eqs. (12) and (13) yields the tentative
phase boundary

µS(bR) =
1

bR
. (14)

This defines the LSP-curve; the correspondingly tentative conclusion is that n > 0 and b > bR occurs for µ > µS while for
µ ≤ µS , n = b− bR = 0. However, the viability of these tentative conclusions depends, in a definitive fashion, on the value
of bR. In particular an analysis of the higher order terms in Eq. (13) testifies that this picture cannot possibly be correct for
bR < 1

3
; this is the subject of our next subsection. However, amore difficult analysis shows that this picture is indeed correct

for bR ≥ 1
3
which is the subject matter of the final subsection. First, we must attend to some necessary details.

4.2.1. Preliminary analysis

In this subsectionwewill establish somebasic properties of themodel such as the existence of high- and low-temperature
phases alongwith variousmonotonicity properties. In particularwe show that at fixed bR, the quantity n, assumed to be non-
negative, is non-decreasing withµ and strictly increasing whenever it is non-zero. For the benefit of our physics readership,
such contentions might typically be assumed and consequently, the entire subsection could be skipped on a preliminary
reading. However, it is remarked that in the normal (physics) course of events, such questions aremost often settled by direct
perturbative calculation. Even for continuous transitions, on some occasions, additional justification is actually required.
Sometimes, as in the present work, when the transition is discontinuous, the relevant calculations simply cannot be done
analytically and then, indeed, one must rely more heavily on abstract methods.

In what follows, we shall work with the free energy function given by Eq. (6) with G eliminated in favor of n according
to Eq. (7) and working with the parameters µ and bR. For simplicity, this will be denoted by ΦbR,µ(b, n) but with subscripts
omitted unless absolutely necessary. Thus Φ(b, n) is now notation for the function

ΦbR,µ(b, n) := −1

2
µn2 − α(bR)b+

(

b+ n

2

)

log

(

b+ n

2

)

+
(

b− n

2

)

log

(

b− n

2

)

+ (1− b) log(1− b). (15)

It is clear that the minimum of Φ(b, n) corresponds to the minimum of the original three variable free energy function
Φ(n, b,G). In the following, will use the notation n(µ) (with n(µ) ≥ 0) as though this defines an unambiguous function.
Of course in the case of phase coexistence, this will not be true. In general, then, n(µ) will stand for a representative from
the set of minimizers at parameter value µ and all of the results in this subsection hold. We start with some elementary
properties of the phase diagram generated by the corresponding minimization problem.

Proposition 4.1. Consider Φ(b, n) with bR fixed and µ ranging in [0,∞). Then for all µ sufficiently large, Φ(b, n) is minimized

by a non-zero n and for all µ sufficiently small, Φ is minimized by (bR, 0).

Proof. We begin with the assertion, gleaned from Eq. (8), that along the curves n = 0, Φ is minimized by b = bR. Thus
we may pick any fixed, nontrivial n0, with 0 < n0 < bR, and it is sufficient to establish that Φ(n0, bR) < Φ(0, bR) once
µ is sufficiently large. However, the desired inequality is manifest for large µ since the only µ dependence in Φ is in the
term − 1

2
µn2

0 which is, eventually, in excess of the differences between the µ independent term and Φ(0, bR). The second
statement is proved as follows: since b = 0—which necessarily implies n = 0—does not minimize the free energy function,
we may use the variable θ := n/b so that Eq. (10) now reads

bµθ = 1

2
log

(

1+ θ

1− θ

)

.

As is well known from the analysis of mean-field Ising systems (and can be established, e.g., by further differentiation) the
above equation has only the trivial solution if bµ ≤ 1. Since b cannot be greater than one, the second statement has been
proved—in fact whenever µ ≤ 1. �

The above result establishes, in a limited sense, the existence of a phase transition. Here we will sharpen this result by
proving that along the lines of fixed bR, there is a single transition from n ≡ 0 to n > 0. This is an immediate corollary to
the following lemma which we state separately for future purposes.

Lemma 4.2. Let Φµ(b, n) denote the free energy function with bR fixed and µ (displayed) in [0,∞). Then the minimizing n(µ),
if unique, is a non-decreasing function of µ. More generally, if at various values of µ, Φµ has a minimizing set of n’s then, if

µ′ > µ, the minimum of the minimizers at µ′ is greater than or equal to the maximum of the minimizers at µ. Thus, in general

any possible ‘‘choice’’ of n(µ) is non-decreasing.
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Proof. Let µ, µ′ ∈ [0,∞) with µ′ > µ and let us denote by (b′, n′) a minimizing pair for Φµ′ and similarly for (b, n) at µ.

The key observation is the meager µ–dependence of the function Φµ. Indeed, Φµ′(x, y) = Φµ(x, y)− 1
2
(µ′ − µ)y2. We do

this twice:

Φµ′(b
′, n′) = Φµ(b′, n′)− 1

2
(µ′ − µ)[n′]2

≥ Φµ(b, n)− 1

2
(µ′ − µ)[n′]2

= Φµ′(b, n)−
1

2
(µ− µ′)n2 − 1

2
(µ′ − µ)[n′]2 (16)

leading to Φµ′(b
′, n′) ≥ Φµ′(b, n) + 1

2
(µ′ − µ)(n2 − [n′]2). This necessarily implies that [n′]2 ≥ n2 since otherwise, the

previous inequality would be strict implying that (b, n) would have been a ‘‘better minimizer’’ for Φµ′ than (b′, n′). �

Using this result we may now show the following

Corollary 4.3. Consider the mean-field model defined by the free energy function given in Eq. (6). Then for each fixed bR ∈ (0, 1],
there is a transitional value of µ, denoted by µT (bR), such that n ≡ 0 for µ < µT and n > 0 for µ > µT .

Proof. This follows immediately from Proposition 4.1 and Lemma 4.2 above. �

Also of interest is the following:

Corollary 4.4. Consider the mean-field model defined by the free energy function given in Eq. (6). Let n(µ) denote any non-

negative function corresponding to a minimizing n at parameter value µ (usually uniquely determined). Then for µ ≥ µT , the

function n(µ) is strictly increasing.

Proof. It is seen that if n(µT ) = 0 then the statement of this corollary is self-evident at µ = µT . For the rest of this
proof, we may simply assume that µ is such that n(µ) > 0. Suppose then that µ′ > µ and that n = n(µ) is part of the
minimizing pair (b(µ), n(µ)) at parameter value µ. Suppose further that at µ′ the same n is also part of a minimizing pair.
Thenwe claim that the b(µ) is not the partner atµ′ since given n′—purportedly equal to n—then b′ is uniquely determined by
Eq. (11). Upon performing some algebraic manipulations the latter reads b′ = n′/ tanhµ′n′. Thus, the equality n = n′ would
lead to

b′ = n′

tanhµ′n′
= n

tanhµ′n
6= n

tanhµn
= b

so that explicitly (b, n) cannot be a minimizer at parameter value µ′. Using the appropriate b′ 6= b, we would have

FMF(µ
′) = Φµ′(n, b

′) = Φµ(n, b′)− 1

2
(µ′ − µ)n2 ≥ Φµ(n, b)− 1

2
(µ′ − µ)n2 = Φµ′(n, b)

in contradiction with the fact that (b, n) is not minimized for the parameter value µ′. �

4.3. A discontinuous transition for bR < 1
3

The dividing point of bR = 1
3
along the LSP-curve µ = 1/bR is apparent from the higher order terms in Eq. (13). Indeed,

supposing µ = 1/bR + ε we obtain, with the additional aid of Eq. (12),

εn = n3

2b3R

(

bR −
1

3

)

+ · · · . (17)

For bR ≥ 1
3
, Eq. (17) is consistent (and, as it turns out correct) but in the case of bR < 1

3
this equation alone precludes

the possibility of a continuous transition. Indeed since we cannot have n2 < 0, the only logical consequence of Eq. (17) is
n ≡ 0 for µ & µS(bR), i.e., the transition occurs later. But the lower order term insisted that µ = µS(bR) was the only viable
candidate for a continuous transition. Thus: the transition cannot be continuous and, at least for bR < 1

3
, the preliminary

assumption that n goes to zero continuously can no longer be sustained. In particular, for bR < 1
3
, perturbative analysis will

never be valid because the relevant quantities will never be small.
This leaves open the possibility of a transition at some µT (bR) that is different than µS . We shall show that µT < µS as

a direct consequence of the following:

Proposition 4.5. Consider the mean-field model defined via the free energy function given by Eq. (6). Then, if bR < 1
3
at

µ = µS(bR) the quantity n is strictly positive.
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Proof. We expand the free energy functionΦ(n, b)—with G eliminated via Eq. (7)—about b = bR, n = 0 and along the curve
µ = µS(bR). The convenient variables are now chosen as b = bR(1 + ∆) and n = bRm. We first note that all odd terms in
mmust vanish. In addition, the term linear in ∆ vanishes due to the stationarity of Φ along the curve µ = µS(bR) and, as it
turns out, so does the term which is quadratic inm. This leaves us with

Φ(b, n) = Φ(bR, 0)+
1

2
bR

[

1

6
m4 + 1

1− bR
∆2 −m2∆

]

+ · · · .

Examining the quadratic form in the variablesm2 and ∆, the condition for a local minimum is that

1

6

1

1− bR
>

1

4
,

i.e., bR > 1
3
. We return to bR ≥ 1

3
in the next subsection. Of current relevance is the fact that for bR < 1

3
, the curve µ = b−1

R

is of a saddle point nature. This implies that there is a direction of decrease which, as is easily seen, is optimized, in the
physical direction, when m2 = 3∆. It is concluded that under the stated conditions, we can produce a pair (b, n) with
n2 > 0 (and b > bR) such that the free energy for the non-trivial pair is lower; we just make the corresponding objects small
enough to withstand the higher order corrections. Thus the actual minimum also must occur for non-trivial values of the n

observable. �

We now have

Theorem 4.1. Consider the mean-field system defined by the free energy function as given in Eq. (6). Then for bR < 1
3
, there is a

discontinuous transition at some positive µT (bR) < µS(bR).

Proof. That a transition occurs at some µT > 0 is the statement of Corollary 4.3. Moreover, Lemma 4.2 and the above
analysis implies µT ≤ µS . The discussion prior to Proposition 4.5 demonstrates that at µ = µT , the quantity n is already
positive. It only remains to show that the inequality relatingµS andµT is strict. To this end, let us reimplement the heretofore
unnecessary notation for the full dependence of the free energies on parameters. We have learned that for bR < 1

3
, there is

an n⋆ > 0 and a b⋆ (with b⋆ > bR) such that

FMF(bR, µS) = ΦbR,µS
(b⋆, n⋆) < ΦbR,µS

(bR, 0).

Invoking Lemma 4.2, it is now sufficient to show that there is a δµ > 0 such that for some nonzero ñ, and some b̃, the

inequality ΦbR,µS−δµ(b̃, ñ) < ΦbR,µS−δµ(bR, 0) can be shown to hold. Once again, the key is the simple dependence of the
free energy functions on the parameter µ. Indeed, using n⋆ and b⋆ as trials, we obtain

ΦbR,µS−δµ(n⋆, b⋆) = FMF
bR,µS

+ 1

2
[δµ]n2

⋆

while ΦbR,µS−δµ(bR, 0) ≡ ΦbR,µS
(bR, 0) < FMF

bR,µS
. Thus, the desired inequality will indeed hold for all δµ sufficiently

small. �

4.4. A continuous transition for bR ≥ 1
3

The starting point in our analysis is to show that at the purported critical curve, the quantity n actually vanishes.

Proposition 4.6. For bR > 1
3
and µ = b−1

R =: µS , the unique solution to the mean-field equations is n = 0 with b = bR. In

particular, ΦbR,µS
(bR, 0) < ΦbR,µS

(b, n) for any (b, n) 6= (bR, 0).

Proof. Assuming n > 0 the agent fraction b can be eliminated in favor of the ratio

θ := n

b
.

Note that while this is the same substitution as before, here it is b rather than n that is being eliminated. Notwithstanding,
θ still satisfies 0 < θ ≤ 1. In these variables, the mean-field equations, Eqs. (10) and (11) respectively become

n = Rθ

R+
√
1− θ2

(18)

n = bRArctanh θ (19)

where in the above, R := bR/(1− bR). Let us now define ℓ(θ) as

ℓ(θ) := 1

bR

Rθ

R+
√
1− θ2

= (1+ R)θ

R+
√
1− θ2

= (1+ R)θ

R+ Q
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where Q = Q (θ) :=
√
1− θ2. To prove the current proposition we need to show that for all θ > 0,

Arctanh θ > ℓ(θ)

demonstrating that there cannot be a non-trivial solution to themean-field equations under the conditions stated. Note that
for 0 < θ ≪ 1 the desired inequality can be explicitly demonstrated. In general, it is sufficient to show, for 0 < θ ≤ 1, that
ℓ′(θ) < 1/(1− θ2), i.e., in the Q variable that

1

Q 2
>

(1+ R)(R+ Q + (1− Q 2)/Q )

(R+ Q )2
.

Although both sides diverge as Q → 0 the divergence on the left hand side is clearly stronger so we actually only need
consider Q > 0 limiting us to Q ∈ (0, 1). After some manipulation, the inequality we need to prove is equivalent to

(R+ Q )2 > (1+ R)(RQ 2 + Q ) = (1+ R)(RQ 2 + Q 2)+ (1+ R)(Q − Q 2).

That is, we now wish to show

R(R+ 2Q + RQ )(1− Q ) > (1+ R)Q (1− Q ).

Since Q 6= 1, the above is equivalent to

R2 + QR+ R2Q > Q .

Finally, since also Q < 1 it is enough to show that 2R2Q 2 + RQ ≥ Q i.e., that 2R2 + R ≥ 1 which occurs for R ≥ 1
2
. This

corresponds to bR ≥ 1
3
. �

We can finally show

Theorem 4.2. Consider the mean-field GI-system defined by the free energy function given in Eq. (6). Then, for bR ≥ 1
3
, as a

function of µ with bR fixed, there is a continuous transition at µ = µS = 1/bR, i.e., n(µ) ≡ 0 for µ < µS and n(µ) > 0 for the

n-component of any minimizing pair (n(µ), b(µ)) while, if µ ↓ µS , it is found that n(µ) ↓ 0.

Proof. Wewill marshal the facts at our disposal and then proceed in amore abstract vein than has been the case in themore
recent of our arguments. In what is to follow, n(µ) and the corresponding b(µ) is, once again, notation for a minimizing pair
without any claims to uniqueness. By the preceding proposition, we know that atµ = µS , the quantity n(µ) is unambiguous
and vanishes for µ < µS by Lemma 4.2. Conversely, for µ > µS we may write, adhering to the notation in the proof of
Theorem 4.1, our usual expression:

ΦbR,µ(b, n) = ΦbR,µS
(b, n)− 1

2
(µ− µS)n

2.

For n2 ∝ b − bR ≪ 1 from Proposition 4.5, we know that the quantity ΦbR,µS
(b, n) agrees with ΦbR,µS

(bR, 0) up to quartic

order in n. Thus allowing n2 ≪ 1 with n2(µ − µs) ≫ n4, (b − bR)
2 we find a non-zero n corresponding to a free energy

lower than that of ΦbR,µS
(bR, 0). Therefore, again by Lemma 4.2, we have n(µ) > 0 for all µ > µS . It remains to establish

that n ↓ 0 as µ ↓ µS . Note, that along any decreasing sequence of µ’s the corresponding possible n’s must be monotone by
Corollary 4.4—or even Lemma 4.2—and hence n ↓ 0 as µ ↓ µS . Now let us suppose otherwise: that for some sequence of
µ’s decreasing to µS there is an associated sequence of minimizers, (b(µ), n(µ)) that has n(µ) ↓ n⋆ > 0. Let b⋆ denote the
associated limit for the b(µ) along a further subsequence if necessary. Since

ΦbR,µ(b(µ), n(µ)) < ΦbR,µ(bR, 0) ≡ ΦbR,µS
(bR, 0)

we would have, by continuity, ΦbR,µS
(b⋆, n⋆) ≤ ΦbR,µS

(bR, 0) indicating that at µ = µS , there is a minimizer with positive

magnetization in contradiction with Proposition 4.6 above. It follows that, under the stated condition bR ≥ 1
3
, the limit of

n(µ) is zero as µ→ µS while it vanishes below and is positive above. By this (and any other) criterion, the transition at µS

is continuous. This completes the proof. �

5. Discussion

In this work, we have formulated a lattice model for gang territoriality where red and blue gang agents interact solely
through graffiti markings. Using a contour argument, we showed that a phase transition occurs between a well mixed,
‘‘high-temperature’’ phase and an ordered, ‘‘low-temperature’’ one as the coupling parameter J between gangmembers and
graffiti becomes stronger while the graffiti evaporation parameter λ decreases. In the mean field limit of all-to-all lattice
site couplings, we can also identify the tricritical point in phase space that distinguishes the occurrence of a continuous
phase transition from a first order one. We find this point to be located at bR = 1/3 which corresponds, in terms of the
original variables of the problem, to the gang proclivity term α = −2 log 2. In particular, for bR ≥ 1/3 the phase transition
is continuous and occurs at µ = 1/bR. Thus, in the mean-field limit, for fixed α ≥ −2 log 2 the ordered ‘‘low temperature’’
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phase arises for J2 > λ/(e−α + 2), and the ‘‘high temperature’’ one is attained on the other side of this inequality. The
transition between the two occurs in a continuous manner across the J2 = λ/(e−α + 2) locus. In the opposite case of
bR < 1/3 (or α < −2 log 2) the phase transition is discontinuous. Here, we also are able to prove that the transition
between high and low temperature phases occurs not at µ = 1/bR, but rather along the µ = µT < 1/bR curve, so that the
phase change occurs earlier in J and along a separatrix J2 = J2c < λ/(e−α + 2).

In the context of gang–graffiti interactions, we may identify the low temperature, clustered phase as pertaining to a
high level of antagonism between between rival gangs, where segregation leads to conflict along boundaries. Vice versa, the
high temperature, well mixed configuration can be interpreted as a peaceful state, where despite different affiliations, gang
members share the same turf. Our mean field results indicate that the confrontational state is surely attained, whether in
a continuous or first order manner, for J2 > λ/(e−α + 2), which represents high gang–graffiti territoriality J , low external
intervention in graffiti removal λ and high proclivity α for individuals to become gang members. Gang clustering can be
avoided by intervening in all three directions: by externally eliminating graffiti (λ), but also, from a deeper sociological point
of view, by decreasing the lure of graffiti tags or of joining gangs in the first place (J, α). The emergence of a (continuous or
discontinuous) phase transition shows that it is possible to obtain segregation in a lattice model without invoking direct
agent-to-agent coupling; it is certain that adding such coupling terms to the Hamiltonian would allow for even more
favorable segregation conditions.

Although our work was conceived within the context of gang interactions, the proposed model Hamiltonian and the
tools used are general enough that our fundamental results may be applicable to several other contexts where territoriality
is played out through markings and not through direct contact between players. Many animals, among which wolves, foxes
and coyotes, are known to scent-mark their territories as a way of warning intruders of their presence and to exchange
internal communication [61]. At times, buffer zones can originate between distinct animal clusters where prey species, such
as deer or moose, may thrive [62]. Insects, such as beetles and bees, are also known to avoid previously marked locations
as a way to optimize foraging patterns. Similarly to the role of gang graffiti markings, foreign scents lead ‘‘others’’ to retreat
from already occupied turf or visited patches. Our work also applies to these contexts. Although some stochastic treatments
have been recently presented [63], classical ecological studies of territoriality are usually carried out via reaction–diffusion
equations where focal points such as dens, burrows or nests are often included [64–66], leading to segregation. Within this
work on the other hand—whether first order or continuous—agent clustering is a natural consequence of a probabilistic
treatment without the need to include any anchoring sites. Finally, we are able to connect local microscopic parameters—
J, K , λ, α—to the emergence of large scale territorial patterns, be they gang clusters or animal groupings.
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Appendix

Here we present a brief description of the informal simulations mentioned in Section 4. We consider a 100× 100 square
lattice with periodic boundary conditions initialized at t = 0 so that each site is populated with either red or blue agents,
or a mixture of both. We assume a random distribution of 105 blue and 105 red agents and do not impose any restriction
on the number of individuals on each site, so that multiple agents can occupy the same location at any given time. Initial
conditions are completed by assuming that at t = 0 there is no graffiti present. At each time step of the simulation agents
leave their graffiti on-site with a probability pm that depends on the current graffiti level. In particular, pm = 0.1 if the site
is not marked by the opposite gang, and pm = 1 otherwise. The agent then moves to any of its nearest neighbor sites jwith
probability e−gj/

∑

j e
gj , where gj is the amount of the opposite gang’s graffiti at location j. Agents will thus preferentially

relocate to nearest neighbor sites tagged by the least amount of the opposite gang’s graffiti. Finally, at each site, graffiti is
removed according to a probability pg . Similarly to the number of agents, we impose no restriction on the amount of graffiti
at each site.

While the simulation rules described here are similar in spirit to the model we analyze in this work, they do not directly
lead to the Hamiltonian in Eq. (1). These informal simulations however provided us with a playing ground to investigate
any phase transitions that may take place upon varying relevant parameters, such as the graffiti removal probability pg . For
example, in Table A.1, we track the dynamic progression of two sets of parameters. In the top row we set pg = 0.25 so that
75% of the graffiti is retained at each iteration, while in the lower onewe set pg = 0.75 so that only 25% of the graffiti is kept.
In Table A.1 the left and right hand side plots show agent and graffiti distributions, respectively. Red and blue pixels indicate
site occupied by respective gang agents, black pixels represents no agents, andmagenta shades indicate coexistence of both
red and blue agents. Just as in themain body of this paper, we do not include any direct coupling between red and blue agents
who interact only via the graffiti field. Similarly to what we later found in the main analysis, the degree of persistence of the
graffiti field—which can be related to λ in the Hamiltonian in Eq. (1)—yields different qualitative behaviors and, if sufficiently
large, may lead to aggregation patterns with distinct red and blue phases. The emergence of separate clusters from these
simulations motivated the more extensive study presented in this work.
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Table A.1

Snapshots of a Monte Carlo simulation of gang dynamics on a 100× 100 square lattice with periodic boundary conditions. For each image in the sequence,

the upper left panel represents gang agent populations while the upper right panel is the corresponding graffiti distribution. Iteration time is measured in

arbitrary units. At t = 0, 105 red and 105 blue gang members are placed at random on the lattice with possible overlaps. Magenta indicates a mixture and

black indicates a void in gang agents or graffiti. Agents tag their sites with probability pm = 0.1 if the site is not marked by the opposite gang’s graffiti and

with probability pm = 1 otherwise. In the upper panels of the table entries, pg = 0.25 so that at each time step, graffiti will persist with a 75% possibility.

The lower panels, where pg = 0.75,mirror the upper ones butwith amuch lower graffiti persistence, of 25%. Note the different outcomes of the simulations

at long times: when graffiti is allowed to persist longer, segregation occurs with the formation of islands of red and blue gangs. In this work, just as in our

currentmodel, there is no direct interaction between gangmembers, underlying the importance of the graffiti field as an indirect coupling between agents.
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