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Abstract. We present a kinetic theory for swarming systems of interacting,

self-propelled discrete particles. Starting from the Liouville equation for the

many-body problem we derive a kinetic equation for the single particle prob-
ability distribution function and the related macroscopic hydrodynamic equa-

tions. General solutions include flocks of constant density and fixed velocity

and other non-trivial morphologies such as compactly supported rotating mills.
The kinetic theory approach leads us to the identification of macroscopic struc-

tures otherwise not recognized as solutions of the hydrodynamic equations, such

as double mills of two superimposed flows. We find the conditions allowing for
the existence of such solutions and compare to the case of single mills.

1. Introduction. Viewed as a collective, interacting individuals often flow into
spectacular coherent patterns [6]. Systems that self-organize can be observed in
nature across a wide variety of spatio-temporal scales: schools of fish, flocks of
birds and swarms of insects among animal species; morphogenetic and bacterial
growth at the cellular and subcellular levels. While each of these groups follows
specific physical laws, all are able to organize in the absence of a leader, allowing
order to arise even when starting from disordered configurations [27].

The ubiquity of the self-organizing phenomenon has lead to the development of
several minimal models to describe a collection of interacting agents, both as discrete
particles [35, 18, 10] or as a continuous density [32, 33, 34]. In particular, models
of individuals driven by self-propelling forces and pairwise attractive and repulsive
interactions have been shown to self-organize in various morphologies. Translation-
ally invariant flocks, rotating mills, rings and clumps have all been observed and
classified, so that specific interaction and propulsion values can be associated to
specific collective configurations [22, 24, 16]. Aggregation patterns have also been
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identified in discrete models where averaging in direction or velocity is performed
[11, 12] or where different zones of interaction and averaging are considered [1, 2].

However, as the number of particles grows, it becomes increasingly difficult to
follow the dynamics of each individual agent. Indeed, to find the time evolution of
a configuration of N individuals there are about N2 interactions to compute, which
in the limit of large N may yield to prohibitive calculations. A more compact,
continuum approach where particles are represented by a density field, becomes
thus desirable. While several continuum models based on heuristic derivations have
been presented in the literature, few attempts have been made at deriving such
models starting from principles of dynamics of individual agents [5, 9, 20, 13, 14].

Furthermore, even when parallels between microscopic and macroscopic descrip-
tions exist, there might be cases in which the fullness of a microscopic solution is
not immediately captured by the corresponding macroscopic one. For example, in
simulations of rotating mills, discrete particle systems show the possibility of two
compactly supported structures of roughly the same number of particles circulating
in opposite directions. The corresponding macroscopic solution would be a “bor-
ing” stationary density since the two mills average out their velocities to zero. Due
to the non-linearity of the problem, the trivial superposition of two rotating mills
which solve the macroscopic problem, is not necessarily a solution itself.

This paper aims to bridge general microscopic descriptions of self-propelled in-
teracting swarming systems to their macroscopic counterparts, using kinetic theory
[7, 23] as middle ground. Here, the exact location and velocity of particles are con-
sidered irrelevant, but not to the extent that average velocities can be computed
tout court at every position and every time step. Rather, several velocities may
be possible, so that the focus is on determining the probability density function
f(x,v, t) that at time t a particle is at position x with velocity v. Starting from
a set of discrete swarming equations we shall thus derive the kinetic equation for
f(x,v, t) and hence present the corresponding hydrodynamic description. Solutions
will be matched to the discrete case and most importantly, our kinetic model will
allow us to identify the presence of a new class of solutions, those of double mills,
which elude a strictly macroscopic derivation.

2. Discrete model. We consider N interacting, self-propelled particles with
Rayleigh friction in Rd, governed by the following equations of motion [22, 16, 8, 9]

ẋi = vi,

v̇i = (α− β |vi|2)vi −∇xi

∑
j 6=i

U(|xi − xj |).

Here U is a pairwise interaction potential and α, β > 0 are effective values for
propulsion and friction forces. A common choice for U is the Morse potential
composed of attractive and repulsive components

U(r) = −Cae
−r/`a + Cre

−r/`r , (1)

with Ca, Cr denoting attractive and repulsive strengths and `a, `r their respective
length scales. While the Morse potential is a common choice for interacting swarm-
ing systems, in this formulation we keep U general. To analyze the limit of large
number of particles N , we scale the amplitude of the potential through an effec-
tive mass normalization. For simplicity, we assume identical particles of mass m
with total mass fixed at M = Nm. The “weak coupling scaling” assumption for
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the mean-field limit, see [30, 31] and [17, Part I], assumes that the potential is
modulated by a factor M/N , i.e.,

ẋi = vi,

v̇i = (α− β |vi|2)vi −
M

N
∇xi

∑
j 6=i

U(|xi − xj |),
(2)

The above scaling of the potential allows the total kinetic and potential energy
to bear the same N dependence since, in the unnormalized case, the total kinetic
energy is a sum of N terms and the total pairwise potential energy scales as N2.
The weak coupling limit assumption can be justified as representing a scenario
where a particle located at xj imparts an interaction potential on the position x,
proportional to its mass m = M/N , as in Coulomb or gravitational interactions.
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Figure 2.1. Area of unidirectional milling structures as a function
of particle number N . The upper curve represents the unnormal-
ized potentials, the lower one the potential normalized so that the
total mass is kept at M = Nm = 1000. Milling parameters are cho-
sen as Ca = 0.5, Cr = 1.0, `a = 3, `r = 0.5 while the self-propulsion
terms are set at α = 1.6, β = 0.5 and at α = 1.0, β = 0.5. The
normalized and unnormalized curves match at N = 1000, which
is the reference point for the unnormalized potential. Curves can
be fitted as A ∼ A0 + B/N ξ, where ξ = 1.2 or ξ = 1.0 for the
unnormalized and normalized potentials, respectively.

The mass normalization in (2) allows for the kinetic and potential energy to
be the sum of terms that scale as N . While interaction amplitudes are now N
dependent, the fundamental character of the resulting morphologies does not change
since we simply introduce a multiplicative factor for U . As an example, in the case
of the Morse potential, patterns of aggregation depend on the relative amplitudes
C = Cr/Ca and ` = `r/`a, so that N dependencies do not affect the qualitative
features of the observed patterns. The latter were classified in two dimensions in
terms of C and ` in [16] using the concept of H-stability of potentials.
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The most relevant set of parameters for biological applications concerns long-
range attraction and short-range repulsion leading to C > 1 and ` < 1. For these
potentials, there exists a unique minimum of the pairwise potential and a typical
distance minimizing the potential energy. However, the curve C`d = 1 divides this
parameter region into a catastrophic (C`d < 1) and an H-stable regime (C`d > 1).
In the H-stable regime and for unnormalized potentials, particle simulations in two
dimensions lead to crystalline-like patterns. Here, for sufficiently large N , agents
find an optimal spacing and maintain a fixed relative distance from each other even
as N is further increased. Conversely, in the catastrophic regime, particles settle at
a typical rotational speed of magnitude |v| =

√
α/β, and single and double mills

are observed. The area of these rotating structures decreases as a function of N .
We refer to [16] for full details.

Due to the fact that qualitative features depend solely on the ratios C and `, both
normalized and unnormalized potentials yield the same type of patterns, whether
they be mills or flocks, however the way these structures scale with N is very
different. In Figure 2.1 we show single mill areas of discrete particle systems in two
dimensions as a function of N in the so called catastrophic regime, where, in the
unnormalized case, rotating mills are expected to decrease in size, even to lose their
inner radius, as the number of agents increases. As it can be seen, mill areas scale
very differently in the unnormalized regime compared to the normalized case. We
observe the tendency of mills to equilibrate to a finite density in a fixed annular
region as the number of agents increases, as is typical of catastrophic potentials.
The asymptotic value of the area as N →∞ depends on the intrinsic particle speed
with higher values of

√
α/β yielding higher asymptotic limits. This is simply due

to higher fluctuations in particle positions in the collapsed state.
While coherent flocks and single mill states are the most common patterns ob-

served in biological swarms [27, 29], double-mill patterns are also reported in the
biological literature, for instance M. xanthus cells show distinct cell subpopulations
swarming in two opposite directions during part of their life cycle [21].

3. Collisionless kinetic model. In this section, we briefly present the derivation
of a mean-field kinetic model from the particle dynamics (2). This type of formal
derivation is classical, see e. g. [3, 23] and also [4, 15, 28, 25, 26, 30, 31, 17] for
applications to other physical systems and a rigorous analysis of related models.

Let us denote by f (N)({xi}, {vi}, t) the N -particle probability density function,
so that the probability of finding each of the N particles at position xi and velocity
vi within a volume dxi dvi in phase space is f (N)({xi}, {vi}, t)

∏
i dxi dvi. For

simplicity and without restricting generality, we set in (2) the total mass M = 1.
Conservation of mass allows us to write the time evolution of f (N) according to the
following Liouville equation

∂f (N)

∂t
+

N∑
i=1

[
divxi

(ẋif
(N)) + divvi(v̇if

(N))
]

= 0, (3)

where ẋi and v̇i are expressed through (2). The one-particle distribution function
f (1)(x1,v1, t) is defined as

f (1)(x1,v1, t) =
∫
f (N) dx2 . . . dxNdv2 . . . dvN . (4)
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To obtain an evolution equation for f (1) we will use two main assumptions: the
propagation of chaos (5) and the particular 1/N scaling of the potential, as intro-
duced in (2). We integrate the Liouville equation (3) to find the corresponding
BBGKY hierarchy; restricting our analysis to the case of f (1) we find

∂f (1)

∂t
+

∫
divx1(v1f

(N)) dΩ1 +
∫

divv1(v̇1f
(N)) dΩ1 = 0,

where dΩ1 = dx2 . . . dxNdv2 . . . dvN is the volume element. The spatial divergence
term reduces to v1 ·∇x1f

(1), while for the momentum term we obtain the following
two contributions

divv1 [(α− β|v1|2)v1f
(1)] and divv1

∫
(∇x1

∑
j 6=1

U1,j) f (N) dΩ1,

where U1,j is a shorthand notation for U(|x1 − xj |). Since particles are indistin-
guishable the last term can be recast as

(N − 1)
∫
∇x1U1,2 f

(N) dΩ1 = (N − 1)
∫
∇x1U1,2 f

(2) dx2dv2,

where f (2) is the two-particle probability density function

f (2)(x1,x2,v1,v2) =
∫
f (N)dΩ2,

with the notation dΩ1 = dx2dv2 dΩ2. We furthermore assume the factorization

f (2)(x1,x2,v1,v2) = f (1)(x1,v1) f (1)(x2,v2) (5)

which neglects the two-particle correlations. To simplify the notation we set
f (1)(x1,v1) =: f(x,v). The integral of f in the velocity variable is the macro-
scopic density of the system

ρ(x, t) =
∫
f(x,v, t)dv.

Since the interaction term is independent of v we can also write∫
∇x1U1,2 f

(2) dx2dv2 = (∇xU ? ρ) f,

where the ? notation denotes the convolution in the x variable. Equation (4) now
reduces to

∂f

∂t
+ v · ∇xf + divv[(α− β|v|2)v f ]− N − 1

N
divv [(∇xU ? ρ)f ] = 0.

Taking the limit N →∞ yields the Vlasov equation
∂f

∂t
+ v · ∇xf + divv[(α− β|v|2)v f ]− divv [(∇xU ? ρ)f ] = 0. (6)

The mean-field limit N → ∞ introduced above can be proved rigorously in the
case of smooth potentials U by using the techniques in [25, 4, 15]. A review of these
results can be found in [17, Part I]. More precisely, let us consider the empirical
measure µN (t) associated with a solution (xi(t),vi(t)) of (2),

µN (t) =
1
N

N∑
i=1

δ(xi(t),vi(t)),

where δ(x0,v0) is the Dirac delta at (x0,v0) in the phase space of one particle.
Given an interaction potential U(x) that is sufficiently well-behaved (e. g. of
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class C2, bounded with bounded derivatives and satisfying ∇xU(0) = 0), then
the empirical measure is always a solution of the kinetic equation (6) in the sense
of distributions (see [17, Lemma I.2]). Moreover, a stability result for empirical
measures as distributional solutions of the kinetic equation should be expected,
although the proofs in the above references do not apply directly. More precisely,
assume the initial data of the particle system (2) is chosen in such a way that
µN (0) → f0 weakly-* as measures, then all limit points of the empirical measure in
the weak-* topology as measures should be distributional solutions of the kinetic
equation (6) with initial data f0. Such a result is in fact a proof of convergence of
the particle method based on (2) for the kinetic equation (6) and will be treated
elsewhere. A similar program has recently carried over in [19] for a kinetic model
of flocking introduced in [20] based on the particle velocity-averaging interaction
studied in [11, 12]. Let us remark that the typical Morse potential (1) is only
Lipschitz-continuous for which the previous theory does not apply.

Finally, let us point out that the following estimate holds for the total energy

E(t) =
1
2

∫
f |v|2 dx dv +

1
2

∫
U(|x− y|) ρ(x, t)ρ(y, t) dx dy. (7)

The function E(t) satisfies
dE
dt

=
∫
f(α− β|v|2) |v|2 dx dv (8)

≤ α

∫
f |v|2 dv − β

M

(∫
f |v|2 dv

)2

,

since by Cauchy’s inequality,(∫
f |v|2 dx dv

)2

≤
∫
f dx dv

∫
f |v|4 dx dv = M

∫
f |v|4 dx dv.

Hence, we deduce
dE
dt

≤ 0, if
∫
f |v|2 dx dv ≥ αM

β
.

Since the potential energy verifies
1
2

∫
U(|x− y|) ρ(x, t)ρ(y, t) dx dy ≤ CM2,

where C = 1
2 sup |U |, we obtain the following.

Proposition 3.1. The energy E(t) satisfies

E(t) ≤ max
{
E(0), CM2 + αM

β

}
.

Remark 1. The same estimate holds for the discrete total energy
1
2
M

N

∑
i

|vi|2 +
1
2

(M
N

)2 ∑
i 6=j

U(|xi − xj |),

defined on the solutions of the dynamical system (2).

Remark 2. We notice that the relation (8) implies the conservation of the energy
(7) for solutions supported on the set {β|v|2 = α}. For such solutions, since the self-
propulsion and friction terms balance each other, and the model does not include any
other dissipative mechanism, we cannot expect asymptotic equilibration of solutions
as t → ∞ towards a certain profile, however we might expect stability results for
certain particular stationary solutions.
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One of the objectives of the next sections is to show that all proposed continuum
models for our swarming system (2) can be derived from the kinetic equation (6)
and its variants. Moreover, all patterns observed in particle simulations can be
considered as particular solutions of the kinetic equation (6) as will be shown below.

3.1. Hydrodynamic equations. As usual in kinetic theory, we obtain continuum-
like equations by computing the evolution of macroscopic quantities starting from
(6). These macroscopic quantities are the velocity moments of f(x,v, t). Let us
consider the coarse grained velocity field u(x, t) defined through

ρu =
∫

vf(x,v) dv

and the energy-flux qK , the pressure tensor σ̂K and the temperature θ defined
through fluctuation terms as

qK =
1
2

∫
|v − u|2(v − u)f dv, σ̂K =

∫
(v − u)⊗ (v − u)f dv,

and

δK =
∫
|v − u|2f dv = d ρ θ.

Integrating (6) in v we obtain the continuity equation

∂ρ

∂t
+ divx(ρu) = 0. (9)

Moreover, integrating (6) against vdv and using integration by parts, we find the
momentum equation

∂(ρu)
∂t

+ divx(ρu⊗ u) = (α− β|u|2)ρu− (∇xU ? ρ) ρ− divx σ̂K

− 2β qK − 2β u σ̂K − β δK u. (10)

To close the moment system we assume that fluctuations are negligible and that
the velocity distribution is monokinetic: f(x,v, t) = ρ(x, t) δ(v − u(x, t)), where δ
stands for the Dirac delta. The macroscopic system then reduces to

∂ρ

∂t
+ divx(ρu) = 0,

ρ
∂u
∂t

+ ρ (u·∇x)u = ρ (α− β|u|2)u− ρ (∇xU ? ρ).

(11)

The system of equations (11) was already proposed in Ref. [9] based on computations
of the empirical measure associated to N particles. Here, the same description
is recovered from the monokinetic ansatz applied to the kinetic equation (6). In
Ref. [9] the authors discussed the validity of this approximation based on numerical
comparisons of the N -particle system and the hydrodynamic system (11). They
concluded that the hydrodynamic system is a good approximation close to the
steady state pattern situations and performed a linear stability analysis for the
simple flocking solution around ρ = ρ0 and |u| =

√
α/β. Double mills however

cannot be simply explained with this hydrodynamic approach due to the use of a
single macroscopic velocity.

Based on the kinetic equation (6), we can also write an equation for the energy
balance. The kinetic energy density εK and the potential energy density εU are
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defined, respectively, as

εK =
1
2

∫
f |v|2 dv = ρ

|u|2

2
+
δK
2

and εU =
1
2
(U ? ρ) ρ,

so that the total energy density is given by ε = εK + εU . Upon integrating (6)
against |v|2

2 dv, we obtain

∂εK

∂t
+ divx

∫
f v |v|

2

2 dv −
∫
f |v|2(α− β|v|2) dv + (∇xU ? ρ) ρu = 0.

We can rewrite the integral terms as∫
f v |v|

2

2 dv = εKu + qK + u · σ̂K ,

and ∫
f (α− β|v|2)|v|2 dv = 2α εK + β

∫
f |v|4 dv.

Using the chain rule and the continuity equation for ρ we find
∂εU

∂t
= −divx (εUu) +

1
2

[(∇xU ? ρu) + (∇xU ? ρ)u] ρ,

so that
∂ε

∂t
+ divx(εu) + divx(qK + u · σ̂K)

=
1
2

[(∇xU ? ρu)− (∇xU ? ρ)u] ρ+ 2α εK − β

∫
f |v|4 dv. (12)

Finally, the last term can be expressed as∫
f |v|4 dv = |u|2 (2εK + δK) + 8u · qK + τK + 4gK ,

where τK and gK are defined as

τK =
∫
f |v − u|4 dv and gK =

∫
f

(
u · (v − u)

)2
dv.

This defines the evolution of the energy, where as usual the equations involve higher-
order moments. In the limit of small fluctuations θ ' 0, the above reduces to
2εK = ρ |u|2 + δK ' ρ|u|2, and the energy density balance equation with this
closure assumption can be written as

∂ε

∂t
+ divx(εu) = (α− β|u|2)ρ|u|2 +

1
2

[(∇xU ? ρu)− (∇xU ? ρ)u] ρ.

We remark that the above form can be derived directly from (9) and (10).

3.2. Single-milling and flocking patterns: Monokinetic solutions. We now
try to find weak solutions to the kinetic equation (6) of the monokinetic form

f(x,v, t) = ρ(x, t) δ(v − u(x, t)), (13)

where the constraints on ρ and u will be imposed by the weak formulation analysis.
In this ansatz all fluctuating terms are strictly zero, since all microscopic velocities
are identically set to u, and we can find explicit weak solutions.

Proposition 3.2. Let ρ(x, t) be a smooth function such that U ?ρ is globally defined
and smooth, and let u(x, t) be a smooth vector field. Then f(x,v, t) given by (13) is
a distributional solution of the kinetic equation (6) if and only if (ρ,u) is a solution
of (11).
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Proof. Imposing that (13) is a distributional solution of (6), then for any ψ ∈ C∞0 ,
ψ(x,v, t), ∫

f (− ∂

∂t
− v · ∇x − F · ∇v)ψ dx dv dt

=
∫
ρ

[
(− ∂

∂t
− v · ∇x − F · ∇v)ψ

]
v=u(x,t)

dx dt = 0,

where F(x,v, t) = (α−β|v|2)|v|2−∇xU ?ρ. Taking ψ in the form ψ = ϕ(x, t) and
ψ = ϕ(x, t)vi, i = 1, . . . , d, where ϕ ∈ C∞0 we find that equations (11) hold in the
sense of distributions, and hence, due to the smoothness of ρ and u, in the classical
sense.

Conversely, if (ρ,u) is a solution of (11), take ψ ∈ C∞0 , ψ = ψ(x,v, t) and define
ϕ(x, t) = ψ(x,u(x, t), t). Then[∂ψ

∂t

]
v=u(x,t)

=
∂ϕ

∂t
− ∂u
∂t

· [∇vψ]v=u(x,t),[
∇xψ

]
v=u(x,t)

= ∇xϕ−Dxu [∇vψ]v=u(x,t),

where Dxu is the Jacobi matrix of u, and we obtain∫
ρ

[
(− ∂

∂t
− v · ∇x − F · ∇v)ψ

]
v=u(x,t)

dx dt

=
∫
ρ

(
− ∂ϕ

∂t
− u · ∇xϕ) dx dt

+
∫
ρ

(∂u
∂t

+ (u · ∇x)u− [F]v=u(x,t)) · [∇vψ]v=u(x,t) dx dt.

Noticing that both integrals on the right-hand side are zero due to the mass con-
servation and the momentum balance, we obtain that f is a solution of (6) in the
sense of distributions.

We can now consider several types of particular solutions at the fluid level which
are of either stationary or traveling wave type, and which, in the light of the pre-
vious result, correspond to monokinetic solutions of the Vlasov equation (6). If we
impose that β|u(x, t)|2 = α, so that the self-propelling and frictional terms bal-
ance each other, then in the stationary case u = u(x), ρ = ρ(x) the hydrodynamic
equations (11) reduce to 

∇x· (ρu) = 0,

ρ (u · ∇x)u = −ρ (∇xU ? ρ),

β|u(x)|2 = α,

(14)

and in the traveling wave case, u = const, ρ(x, t) = ρ̃(x− ut), we obtain simply{
ρ̃ (∇xU ? ρ̃) = 0,

β|u|2 = α.
(15)

Obviously, ρ = const, u = const, with |u|2 = α
β is a solution of either of these cases,

which can be thought of as a flocking solution of infinite extent. Other traveling wave
solutions with compact support may be obtained by solving the integral equation

U ? ρ̃ = C, ρ̃ 6= 0,

where C is a constant of integration, as verified numerically in [22].
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Similarly, if we set u in a rotatory state,

u = ±
√
α

β

x⊥

|x|
,

where x = (x1, x2), x⊥ = (−x2, x1), and look for ρ = ρ(|x|) radial, then we see that
∇x · u = 0, u · ∇x ρ = 0, which implies the continuity equation, and furthermore,

∇xu1 = ±
√
α

β

(
− 1
|x|

j +
x2

|x|3
x

)
, ∇xu2 = ±

√
α

β

( 1
|x|

i− x1

|x|3
x
)
,

so that

(u · ∇x)u = −α
β

x
|x|2

.

Thus, (14) implies

U ? ρ = D +
α

β
ln |x|, whenever ρ 6= 0, (16)

where D is a constant of integration, which gives a linear integral equation that can
be solved for ρ. As observed in [22] this equation has, possibly multiple, solutions
ρ(r) with compact support in (0,∞). Such solutions represent circular swarms in
which all particles move with the same linear speed

√
α/β. A special family of

singular solutions to (16) are given by ρ(r) = c δ(r − r0). They may be viewed as
a swarm in which the thickness of the ring has collapsed to zero. Such behavior
is indeed observed in the system for N large in the “catastrophic” regime, cf. [9].
Solutions with support filling an interval [R0, R1] with 0 < R0 < R1 were found
numerically in Ref. [22] and matched to single mill patterns in Ref. [9].

Let us point out that solutions to (14) have to satisfy that the velocity field u
is orthogonal to the force in the momentum balance equation since the speed is
constant. Milling solutions do satisfy this constraint, since the convolution of the
radial potential U(x) with a radial density ρ is a radial function. A more complete
description of the possible steady states of this type can be achieved through a
spectral analysis of the resulting integral equations and will be presented elsewhere.
The stability of these particular steady solutions of the kinetic equation (6) or the
hydrodynamic system (11) is certainly a challenging problem.

3.3. Double milling patterns: Hydrodynamic superpositions at kinetic
level. In the previous section, we showed that particular solutions to the kinetic
equation (6) are found by imposing the monokinetic ansatz. Here, we look for
the conditions that must be met for a linear superposition of such monokinetic
distributions to be a distributional solution of Eq. (6). For concreteness, we consider
the case of two populations with densities ρ1 and ρ2 and with velocities u1 and u2,
respectively, so that

f = ρ1(x, t)δ(v − u1(x, t)) + ρ2(x, t)δ(v − u2(x, t)). (17)

With this definition we find

ρ = ρ1 + ρ2, (18)
ρu = ρ1u1 + ρ2u2. (19)
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We thus insert (17) into the weak form of the kinetic equation (6) with the test
function ψ ∈ C∞0 , ψ(x, v, t), to obtain∫

f (− ∂

∂t
− v · ∇x − F · ∇v)ψ dx dv dt

=
2∑

i=1

∫
ρi

[
(− ∂

∂t
− v · ∇x − F · ∇v)ψ

]
v=ui(x,t)

dx dt

=
2∑

i=1

∫
ρi

(∂ui

∂t
+ (ui · ∇x)ui − [F]v=ui(x,t)

)
· [∇vψ]v=ui(x,t) dx dt

+
2∑

i=1

∫ (∂ρi

∂t
+ divx(ρiui)

)
[ψ]v=ui(x,t) dx dt = 0. (20)

where as above, F(x,v, t) = (α − β|v|2)v − ∇xU ? ρ. As in the proof of Proposi-
tion 3.2, choosing ψ to be a function of t and x only leads to the continuity equation

∂(ρ1 + ρ2)
∂t

+ divx(ρ1u1 + ρ2u2) = 0. (21)

We can also choose ψ = ϕ(x, t)vj , j = 1, . . . , d, so that (20) gives
2∑

i=1

ρi

[
∂ui

∂t
+ (ui · ∇x)ui − (α− β|ui|2)ui

]
= −(∇xU ? ρ) ρ. (22)

Conversely, if (21) and (22) hold, then it follows from (20) that the two-mode
superposition (17) is a solution of (6) in the sense of distributions. Summarizing,
we obtain the following

Proposition 3.3. Given ρi(x, t) and ui(x, t), i = 1, 2, smooth functions, such
that U ? ρi, i = 1, 2 are globally defined and smooth. Then f given by (17) is a
distributional solution of the kinetic equation (6) if and only if (ρi,ui) satisfy (21)
and (22).

We remark that the above result may be extended in a straightforward way to
the case of arbitrary number of monokinetic modes using the ansatz

f(x,v, t) =
n∑

i=1

ρi(x, t) δ(v − ui(x, t)).

Based on the established result, we can look for steady state solutions satisfying
β|ui(x)|2 = α, i = 1, 2 which leads to

∇x · (ρ1u1 + ρ2u2) = 0,

2∑
i=1

ρi (ui · ∇x)ui = −ρ(∇xU ? ρ).
(23)

Due to the nonlinear coupling term on the right-hand side, a simple linear super-
position of monokinetic solutions is generally no longer a solution of (6). We can
nonetheless combine monokinetic solutions in a slightly different way, by assuming
2ρ1 = 2ρ2 = ρ and u1 = −u2 = u. In that case the second of the equations (23)
becomes

ρ (u · ∇x)u = −ρ (∇xU ? ρ),
and the system (23) then reduces to (14).
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Figure 3.2. Single and double milling solutions from numerical
simulations of (2) in the unnormalized case where M = N and
parameters are chosen as N = 100, Ca = 0.5 Cr = 1.0, `a = 3,
`r = 0.5, α = 1.0, β = 0.5. Random initial conditions were chosen
for particles in the left panel, whereas N/2 particles were initiated
rotating clockwise and N/2 counterclockwise in the right panel.
General random initial conditions typically yield single rotational
structures.

Summarizing, we conclude that the combination of two delta functions,

f(x,v) = 1
2 ρ(x) δ(v − u(x)) + 1

2 ρ(x) δ(v + u(x))

with β|u(x)|2 = α is a stationary solution to the kinetic equation (6) whenever
ρ(x) δ(v−u(x)) is a solution. Thus, double milling solutions, where half the particles
travel at the speed u and the rest at its opposite −u, exist provided equations (14)
are satisfied, and any single mill configuration thereby produces the corresponding
double mill solution. The question of stability of the single and double-mill solutions
depending on the parameters of the model then arises naturally, but its discussion
is beyond the scope of the present work.

Note that in the case of double mills the average macroscopic velocity is zero and
therefore, such solutions cannot be explained by a hydrodynamic model with a single
macroscopic velocity. The kinetic theory approach provides a natural framework in
which this type of solutions may be studied.

4. Kinetic model for interacting particles with random noise. Finally, let
us study the case of the interacting particle system with random noise and with a
linear Stokes friction term in addition to the self-propulsion and the Rayleigh type
friction,

ẋi = vi,

dvi =
[
(α− β |vi|2)vi −

M

N
∇xi

∑
j 6=i

U(|xi − xj |)
]
dt+

√
2σ dΓi(t),

where Γi(t) are N independent copies of standard Wiener processes with values in
Rd and σ > 0 is the noise strength. Here, α ∈ R is the effective friction constant
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coming from α = α1 − α0 with α0, α1 > 0, and α0 is the Stokes friction component
and α1 is the self-propulsion generated by the organisms.

Using Ito’s formula to obtain a Fokker-Planck equation for the N -particle dis-
tribution and following the same procedure as in section 2, it is easy to derive the
following kinetic Fokker-Planck equation:

∂f

∂t
+ v · ∇xf + divv

[
(α− β|v|2)v f ]− divv [(∇xU ? ρ)f ] = σ∆vf. (24)

In order to derive some asymptotic limit equations starting from the kinetic equation
(24), we introduce a dimensionless formulation of the equation. Let us rewrite the
kinetic equation as

∂f

∂t
+ v · ∇xf + divv[(α1 − β|v|2)v f ]

− divv [(∇xU ? ρ)f ] = divv[α0vf + σ∇v f ]. (25)

Let us first remark that TFP = 1
α0

is the natural relaxation time for the Fokker-
Planck operator divv[α0vf + σ∇v f ]. As usual, let us consider Vth =

√
σ/α0, the

typical value of fluctuations in particle velocity, called the thermal speed. Let us
introduce the time and length units T and L = `a which are determined by the units
of observation, and the typical speed U = L/T. Then we can define dimensionless
variables, denoted by primed quantities, as

t = T t′, x = Lx′, v = Vthv′,

f ′(t′,x′,v′) = Ld Vd
th f(Tt′,Lx′,Vthv′), and U ′(x′) = Ca U(Lx′).

With this change of scales, we finally find the following dimensionless kinetic equa-
tion

∂f

∂t
+ ηv · ∇xf + γ1divv[v f ] − γ2divv[|v|2v f ]

− χdivv [(∇xU ? ρ)f ] =
1
ε
Lf. (26)

where primes have been eliminated for notational simplicity and the operator L is
defined as Lf ≡ divv[vf+∇v f ]. Here, η, γ1, γ2 and χ are dimensionless parameters
given by

η =
Vth

U
, γ1 = Tα1, γ2 = TβV2

th,

χ =
Ca

UVth
and ε =

TFP

T
=

1
Tα0

.

With this dimensionless formulation, the potential becomes U(r) = −e−r +Ce−r/`

and we can find two different regimes in which the kinetic equation may be approx-
imated by distinct macroscopic equations.

4.1. Weak-interaction/Strong-noise regime. We choose the following relation
between the dimensionless parameters: η ' γ1 ' γ2 ' χ ' ε−1/2. In this regime,
the dominant mechanisms are the noise and the linear Stokes friction. In order
to obtain macroscopic equations, we use the standard Hilbert expansion method.
Inserting the following Hilbert expansion

fε = f (0) +
√
εf (1) + εf (2) + . . . and ρε = ρ+

√
ερ(1) + . . . (27)

into (26) and identifying terms with equal power of
√
ε, we get:
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• ε−1 terms: Lf (0) = 0 which implies that f (0)(t,x,v) = ρ(t,x) M(v), where
M(v) is the Maxwellian distribution with unit temperature.

• ε−1/2 terms:

Lf (1) = v · ∇xf
(0) + divv[(1− |v|2)v f (0)]− divv

[
(∇xU ? ρ)f (0)

]
= v · [∇xρ+ (∇xU ? ρ)ρ] M(v) + ρ

[
d− (d+ 3)|v|2 + |v|4

]
M(v).

This equation can be readily inverted using that L(vM(v)) = −vM(v) and

L

[
(
1
2
|v|2 − 1

4
|v|4)M(v)

]
=

[
d− (d+ 3)|v|2 + |v|4

]
M(v)

to obtain

f (1)(t, x,v) = −v · [∇xρ+ (∇xU ? ρ)ρ] M(v) + ρ

[
1
2
|v|2 − 1

4
|v|4

]
M(v)

• ε0 terms:

Lf (2) = ∂tf
(1) + v · ∇xf

(1) + divv[(1− |v|2)v f (1)]

− divv

[
(∇xU ? ρ)f (1)

]
− divv

[
(∇xU ? ρ(1))f (0)

]
,

with ρ(1) =
∫
f (1) dv. However, since

∫
h dξ = 0 is a necessary condition for

the equation L(f) = h to admit a solution, we conclude

∂t

( ∫
Rd

f (0) dv
)
+divx

( ∫
Rd

vf (1) dv
)

= ∂tρ−∇x ·
(
∇xρ+ (∇xU ? ρ)ρ

)
= 0.

Therefore, in the ε → 0 limit regime we expect the macroscopic density to be well
approximated by the solution to the equation

∂tρ = ∇x ·
(
(∇xU ? ρ)ρ

)
+ ∆xρ. (28)

4.2. Strong-interaction/Strong-noise regime. We choose the following rela-
tion between the dimensionless parameters: η ' γ1 ' γ2 ' 1 and χ ' ε−1. In this
regime, the dominant mechanisms are the noise, the linear Stokes friction and the
interaction term. We use again the Hilbert expansion

fε = f (0) + εf (1) + . . . and ρε = ρ+ ερ(1) + . . .

in (26) and collect terms with equal powers of ε:
• ε−1 terms:

Lf (0) = −divv

[
(∇xU ? ρ)f (0)

]
which implies that f (0)(t,x,v) = ρ(t,x) M(v − (∇xU ? ρ)).

• ε0 terms:

L(f (1)) + divv

[
(∇xU ? ρ)f (1)

]
= ∂tf

(0) + v · ∇xf
(0) + divv[(1− |v|2)v f (0)],

and integration with respect to v yields the mass conservation
∂tρ = ∇x ·

(
(∇xU ? ρ)ρ

)
. (29)

Let us point out again that both equations (28) and (29) were proposed in
Refs. [33, 34] as continuum models for swarming and are here recovered through
the presented kinetic theory.
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5. Conclusions. We have developed a kinetic theory approach aimed at describing
self-propelling swarming systems driven by general pairwise interactions. Our anal-
ysis leads to a new class of macroscopic solutions to swarming systems consisting
of double, superimposed rotating mills. These are indeed observed in discrete sim-
ulations but they cannot be identified from hydrodynamic equations with a single
macroscopic velocity since the inherent dual velocity distributions yield a macro-
scopic average of zero. We find the conditions under which double mills can coexist.
Due to the nonlinearity of the problem these solutions are not trivial since in general
the superposition of two existing solutions does not necessarily satisfy the governing
equations of motion. We have also extended the kinetic theory to the interacting
particle system with random noise effects. The resulting kinetic Fokker-Planck
equations yield, under suitable scalings, macroscopic equations for the density of
organisms already proposed in the literature. We have demonstrated that the ki-
netic theory approach leads to a unified hierarchy of swarming models bridging the
particle description to all the hydrodynamic and continuum descriptions available in
the literature. Future development includes a full numerical solution of the kinetic
equations, both in one and two dimensions.
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