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ABSTRACT: Infection by many viruses begins with fusion of
viral and cellular lipid membranes, followed by entry of viral
contents into the target cell and ultimately, after many
biochemical steps, integration of viral DNA into that of the
host cell. The early steps of membrane fusion and viral capsid
entry are mediated by adsorption to the cell surface, and
receptor and coreceptor binding. HIV-1 specifically targets
CD4+ helper T-cells of the human immune system and binds
to the receptor CD4 and coreceptor CCR5 before fusion is
initiated. Previous experiments have been performed using a
cell line (293-Affinofile) in which the expressions of CD4 and
CCR5 concentration were independently controlled. After
exposure to HIV-1 of various strains, the resulting infectivity
was measured through the fraction of infected cells. To design and evaluate the effectiveness of drug therapies that target the
inhibition of the entry processes, an accurate functional relationship between the CD4/CCR5 concentrations and infectivity is
desired in order to more quantitatively analyze experimental data. We propose three kinetic models describing the possible
mechanistic processes involved in HIV entry and fit their predictions to infectivity measurements, contrasting and comparing
different outcomes. Our approach allows interpretation of the clustering of infectivity of different strains of HIV-1 in the space of
mechanistic kinetic parameters. Our model fitting also allows inference of nontrivial stoichiometries of receptor and coreceptor
binding and provides a framework through which to quantitatively investigate the effectiveness of fusion inhibitors and
neutralizing antibodies.

■ INTRODUCTION

Despite their great adaptability and capacity to survive in many
different environments, viruses are not equipped with the
necessary biochemical materials, structures, or metabolic
resources to self-replicate.1−8 In order for a virus strain to
survive, it must find and bind to a host cell membrane, inject its
virion contents (RNA, reverse transcriptase, proteins) into the
cytosol of the host cell through membrane fusion or endocytosis,
help facilitate the processing and transport of such contents to
the cell nucleus, and finally integrate its genome into the DNA of
the host cell. After these complex series of events, the “hijacked”
cell is instructed to produce the virion’s constituent parts that
later assemble into new viruses and escape the host cell.1,3,4,6,7,9

Therapies developed to combat viral infection involve
inhibiting one or several of the above-described processes
employed by the virus to infect the target cell.9−11 For example,
in the case of the human immunodeficiency virus (HIV),
enfuvirtide (T-20) inhibits fusion of the viral membrane with that
of the host cell12 while zidovudine, didanosine, and zalcitabine
inhibit reverse transcription of RNA into integration-ready

DNA.13 Elvitegravir, dolutegravir, and raltegravir inhibit DNA
integration in the nucleus, blocking the insertion of the viral
genome into the host DNA,14 while darunavir, saquinavir, and
fosamprenavir inhibit HIV-1 protease activity, which ensures the
proper cleavage of viral polypeptide chains.15 Fusion inhibitors,
the latest class of antiviral drugs to be developed, are now
integrated into overall therapy and have the advantage of
inhibiting the virus at the first step of the infection process. In
principle, the employment of fusion inhibitors can reduce the
need for intracellularly targeted therapies, which often result in
additional side-effects, require higher drug concentrations, and
involve more complicated pharmacokinetics.12

In order to design and assess the effectiveness of viral entry
inhibitor treatments, a quantitative description of the viral entry
process is necessary.16,17 Since a complete biological picture is
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still elusive, mathematical models that include relevant
mechanisms such as surface receptor binding, dissociation, viral
degradation, and viral fusion can allow us to explore several
aspects of the viral entry process, such as the influence of
multiplicity of infection and stoichiometry of receptor/
coreceptor binding. Once appropriate models are derived, a
statistical inference can be performed using data from
experimental measurements of viral entry to validate assump-
tions and to obtain constraints on the model rate parameters.
HIV-1 is an enveloped virus that follows a receptor−

coreceptor binding paradigm.1,3,7,18 It has evolved to target
helper T-cells of the human immune system. Helper T-cells
express the membrane surface receptor CD4, which normally
functions as a coreceptor to the T-cell receptor (TCR) complex.
Both the TCR and CD4 bind to the MHC class II protein
complex of antigen-presenting cells (APC) prior to the initiation
of cytokine release, activation of cytotoxic T-cells and antibody
producing B-cells, and other secondary immune response
processes.3

HIV-1 binds to CD4 with its glycoprotein spike, Env, upon
contact with the cell surface of the helper T-cell.1,4,7,18 Env is
formed by a trimer of a pair of glycoprotein subunits: gp120 and
gp41. The former subunit contains a CD4 binding domain and
five variable chain regions. The complex gp41 anchors gp120 to
the viral membrane via a noncovalent bond and is central to the
fusion process of infection.19,20 After binding to CD4, gp120
goes through a conformational change that exposes an occluded
binding domain that binds to a cell surface coreceptor. Though
many coreceptors have been identified and are used differentially
depending on the HIV-1 strain, the two that are by far the most
prevalent are CCR5 and CXCR4.1,21 HIV-1 strains that bind
CCR5 are called R5 strains, and are the most common variant
involved in transmission of the virus between individuals, while
the strains that bind CXCR4, R5X4, normally manifest later in
the disease, possibly due to the depletion of CCR5 expressing T-
cells.5 For the rest of this study we will focus only on the R5 strain
of HIV-1 and consider CCR5 as the main coreceptor. After the
Env complex has bound to CCR5, it undergoes a further
conformational change that exposes gp41, which extends and
penetrates the host cell membrane,1,20 bringing the cellular and
viral membranes to close proximity and allowing them to fuse.
After successful viral entry, the capsid coat dissolves, and HIV-1
RNA is reverse transcribed toDNA, transported into the nucleus,
and finally integrated into the host DNA. The cell will now
produce the constituent parts needed to assemble more HIV-1
virions.

Since binding of surface receptor CD4 and coreceptor CCR5
are fundamental steps in viral entry, we expect the infectivity of
most strains of HIV-1 to be particularly responsive to the cell
surface density of those receptors. This response has been
investigated using the 293-Affinofile cell line system.22,23

Affinofile cells are a CD4/CCR5 dual-inducible cell line capable
of expressing independent combinations of surface expression of
CD4 and CCR5.22 CD4 expression is induced with minocycline
or doxycycline, protein synthesis inhibitors used in antibiotics,
and CCR5 is induced with ponasterone A, an ecdysteroid activity
inducer. Once induced, Affinofile cells can be infected with
reporter-pseudotyped HIV-1 particles or live virus in a
spinoculation protocol where virions are exposed to a layer of
plated cells. Infection is then quantified through reported
expression or intracellular staining for expression of p24, the
capsid protein HIV-1 uses to form a protein coat.22,24,25 By
following this protocol, Johnston et al.22 measured the infectivity
of a number of HIV-1 strains on cells that expressed a matrix of
varying levels of CD4 and CCR5. Once the levels of p24 are
measured, viral infectivity can be directly related to the associated
CD4 and CCR5 concentrations used.
In their analysis, Johnston et al.23 argued that viral infectivity as

functions of CD4 and CCR5 concentrations, [CD4] and
[CCR5], respectively, could be qualitatively fit to a quadratic
polynomial function

= + + + + +F x y a bx cy dx ey fxy( , )quad
2 2
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representing the amount of viral particle entry measured through
the percentage of cells that are p24+. The independent variables
x and y are rescaled concentrations of CD4 and CCR5,
respectively, defined as
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In eqs 2, [CD4]min, [CD4]max and [CCR5]min, [CCR5]max are
the minimum and maximum expression levels of receptor and
coreceptor, respectively, used in a given measurement. The
rescaling in eqs 2 restricts x and y to be between 0 and 1 and is
used to compare results obtained from different experiments
and/or protocols that may have yielded different absolute ranges
of [CD4] and [CCR5]. The parameters a,b,c,d,e, and f are
estimated from fitting Fquad to data. Three metrics were derived
from Fquad(x,y): the mean relative infectivity M, and the

Figure 1.Quantitative analysis of infectivity measurements over a matrix of CD4 and CCR5 expression levels on Affinofile cells. The displayed data is a
measurement of the infectivity of strain NL43(RT).22 (a) Normalized data of relative HIV-1 infectivity, Fdata, as a function of rescaled concentration of
receptor CD4 and coreceptor CCR5. Fdata is measured as a percentage of cells expressing p24 protein; an indicator of successful HIV-1 infection. (b)
Fitted quadratic function, Fquad(x, y), of percentage of infected cells as a function of rescaled CD4 and CCR5 concentrations. The average infectivity
relative to the maximum observed is M = 52.5. (c) Gradient map of the quadratic fit, Fquad(x, y), displays how responsiveness differs for different
concentrations. The responsivity magnitude here is Δ = 68.2, and the responsivity angle is θ = 81.7°.
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amplitude Δ and angle θ of the average infectivity gradient, S ⃗ =
∫ 0
1∫ 0

1∇⃗Fquad(x,y) dx dy = Sx x ̂ + Sy y.̂ These were defined as
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M characterizes the overall relative infectivity of a strain of HIV-1,
while Δ and θ quantify how responsive a given strain is to
receptor and coreceptor concentrations. For example, a θ value
close to 0° implies Sx ≪ Sy and indicates infectivity that is very
responsive to CD4 expression levels, while a value close to 90°
implies Sx ≫ Sy and indicates a high responsiveness to CCR5
levels, as shown in Figure 1. Johnston et al.23 observed this latter
pattern in several virus strains that exhibited apparent
unresponsiveness to CD4, even at extremely low CD4
concentrations, leading to the possibility of an effectively
“CD4-independent” pathway for viral entry. A complete
mechanistic picture of the molecular processes involved,
however, is lacking and the current empirical evidence is
insufficient to conclusively argue for a completely CD4-
independent entry pathway. Although fitting data to Fquad(x,y)
provides a functional relationship between receptor and
coreceptor concentrations and viral infectivity, and descriptive
parameters characterizing that relationship, the fitted function
Fquad(x,y) offers no mechanistic insight into the relevant
biochemical processes or their rates. Essentially, the parameters
M, Δ, and θ are not directly related to mechanistic parameters
involved in viral entry, especially those that could be potentially
altered by fusion inhibitors or other therapeutics. Finally,
although in previous work different viral strains were tentatively
clustered as a function of their receptor and coreceptor usage
patterns,22,23 a mechanistic model, where kinetic rates carry a
biochemical significance, allows us to place greater confidence in
the validity of experimentally derived rates, especially if estimates
from different viral strains cluster in parameter space.
In this paper, we seek to quantitatively characterize HIV-1

infectivity as a function of cell surface concentrations of CD4
receptor, CCR5 coreceptor, and the associated kinetic rates. We
propose three alternative models for receptor/coreceptor
engagement and validate them against experimental data derived
from the Affinofile cell system and derive estimates for kinetic
parameters using maximum likelihood estimation (MLE).
Furthermore, we cluster the parameter estimates from experi-
ments derived from the same viral strains to demonstrate
confidence in our inference. Lastly, we consider model selection
criteria to compare the performance of our proposed models and
assess their utility in modeling HIV-1 infection.

■ THEORY
Sequential Model. The simplest model of HIV-1 viral entry

is based on the assumption that binding of the viral Env protein
complex to cell surface receptor CD4 is a necessary precursor
step for viral entry.1,4,18 This binding causes Env to undergo a
conformational change that allows further binding to the CCR5
coreceptor, initiating the fusion event. We display this
“sequential” binding assumption with rate parameters and
pathways in Figure 2. We denote the concentration [V] (number
per host cell area) of membrane-associated HIV-1 virion particles
which are not bound to any receptors by c0(t), the concentration
[V-CD4] of CD4 receptor-bound HIV-1 by c1(t), and the
concentration [V-CD4-CCR5] of HIV-1 bound to both CD4
and CCR5 by c2(t), at a given time t. In addition, we include a

potential fusion inhibitor and denote by c2*(t) the concentration
[V-CD4-CCR5*] of HIV-1 that is bound to CD4 and CCR5 and
to an external peptide that impedes fusion, effectively
sequestering the cell from further progressing toward infection.
Although there are many intermediate steps during membrane

fusion and inside the cytoplasm that ultimately result in viral
DNA integration, we subsume these processes into a single step
that follows the assembly of the V-CD4-CCR5 complex in the
rate parameter kint. We also assume the adsorption rate, kon(t), of
free virus onto the cellular surface is time dependent since cell
adhesion is high during spinoculation when the HIV-1 viruses are
driven close to the cell membrane.8 After spinoculation, the
culture medium is replaced to wash away free virus particles.
Therefore, for times t > 0 adsorption of new HIV-1 to the
membrane is precluded, and we set kon(t > 0) = 0. Finally, while
koff describes the rate of HIV-1 desorption from the cell
membrane, μ1 and μ2 describe the rate of CD4 or CCR5-bound
virus elimination via capsid protein coat degradation, endocy-
tosis, or other abortive events. Using these assumptions, we can
mathematically describe the sequence of events leading to
infection for t > 0 as follows:
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The above equations represent the concentration flow in and out
of the four states the virus can inhabit, V, V-CD4, V-CD4-CCR5,
and V-CD4-CCR5*, respectively, as detailed in Figure 2. For
example, the three terms in the first equation, from left to right,
describe HIV-1 binding to CD4, HIV-1 desorbing from the cell
membrane, and CD4-bound HIV-1 dissociating from CD4 while
maintaining cell adhesion. We adopt the simplest assumption
that the overall receptor and coreceptor binding rates k+1 and k+2
are increasing functions of the surface expression of CD4 and
CCR5, respectively, and define

= =β β
+ + + +k k k k[CD4] and [CCR5]1 1

0
2 2

01 2 (5)

Figure 2. Sequential kinetic model of viral entry. HIV-1 viruses that are
associated with the host membrane, V, are adsorbed with rate kon and
dissociate with rate koff. They can then bind to CD4 receptors to become
V-CD4 with rate k+1, from which they can unbind with rate k−1 or
degrade with rate μ1. The V-CD4 complex can bind to coreceptor CCR5
to become V-CD4-CCR5 with rate k+2, reverse the process with rate k−2,
degrade with rate μ2, or carry on to full cell membrane fusion and
integration with rate kint. We include the peptide-bound state V-CD4-
CCR5* to factor in fusion inhibition, which would sequester the CD4
and CCR5 bound viruses with rate kp and degrade with rate μp.
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where k+1
0 and k+2

0 are the intrinsic binding rates between Env and
the respective receptors CD4 and CCR5. The stoichiometry, β1
and β2, represent, in the infinitely cooperative binding limit, the
number of receptors and coreceptors that must bind before
fusion can be triggered.26,27 For example, Env is known to form a
trimer of gp120/gp41 complexes, with each subunit containing a
CD4 binding domain.1,18,28 If typically two or more of these
binding domains are required to be bound to CD4 receptors
before the appropriate conformational changes occur, we expect
the associated Hill coefficient β1 > 1.
Within our mathematical model, we represent HIV-1

infectivity by

∫ τ τ=Q t k c( ) ( ) d
t

0
int 2 (6)

the fraction of initially adsorbed virus particles that that have
undergone fusion by time t. Q(t) represents the cumulative
number of successful fusion events from state V-CD4-CCR5.
Once the relevant rates are determined, given an initial
concentration of adsorbed virus, c0(0) ≡ V0, and assuming no
other bound complexes so that c1(0) = c2(0) = c3(0) = 0, we can
derive Q(t) from eqs 4 and compare analytical results with the
experimental measurements of viral infection on Affinofile
cells.23,25 The qualitative behavior of Q(t) for various β1 is
shown in Figure 3a assuming a hypothetical case where all rates

are set to 1 s−1. The plot shows an initial steep increase of viral
infectivity immediately after t = 0 as viruses progress toward
receptor and coreceptor binding and fusion. Eventually the initial
concentration of HIV-1, V0, is depleted, at which point Q(t)
flattens out. We expect larger values of β1 to yield larger values of
Q(t) since they allow for stronger binding, while the β1-
independent dissociation and degradation rates stay the same.
Since viral infectivity is measured after a sufficiently long

exposure time we focus on the long time valueQ∞≡ limt→∞Q(t).
Upon solving eqs 4 and eq 6, we find
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The quantityω can be interpreted as the total flow of virus out of
the state V-CD4-CCR5 as the individual terms describe, from left
to right, the dissociation of CCR5, viral membrane fusion, fusion
inhibiting peptide binding, and V-CD4-CCR5 complex degra-
dation. Note that, through the rate parameters k+1 and k+2 (eqs
5), Q∞ is a function of the concentrations [CD4] and [CCR5].
As evident from eq 7, the total infectivity depends on rates of

known kinetic processes and initial viral concentrations.
Measuring the effects of each of these parameters on Q∞ is
particularly useful in the study and development of drug
therapies. For example, if we make the reasonable assumption
that the fusion inhibitor peptide binding rate kp is proportional to
the concentration of the peptide in the extracellular environment,
we may vary kp while keeping all other parameters fixed and
observe how infectivity changes, as depicted by the dose−
response curves in Figure 3b. Here, increasing kp leads to a more
pronounced decrease in infectivity Q∞ at low kp, while for high
values of kp, changes inQ∞ are less significant. Thus, our analyses
of the model can be used to guide, based on mechanistic
principles, the development and administration of entry inhibitor
therapeutics.

■ RESULTS AND DISCUSSION

In order to compare experiments from a number of differ-
ent HIV-1 strains, cell lines, and laboratory conditions,
rescaled expression levels of CD4 and CCR5, x and y,
respectively, are used. Upon using eqs 2 to express
[CD4] and [CCR5] in eqs 5 in terms of x and y, we find

k+1 = k+1
0 [CD4]β1 = k+1

0 [CD4]min
β1

β

( )
x[CD4]

[CD4]
max

min

1
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β

( )
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min

2
. Furthermore, as

V0 in eq 7 has units of concentration, so does Q∞. To
nondimensionalize the expression in eq 7 and allow for direct
comparisons of results across different experiments, we can
normalize Q∞ by a reference virus concentration. Experimen-
talists commonly use the raw infectivity value corresponding to
the highest concentrations of CD4 and CCR5 as the reference
concentration.22,29 If we define Qmax as the experimental
infectivity at [CD4]max and [CCR5]max, the normalized
infectivity becomes

ξ| ≡ =
+ + +β β β β∞

∞F x y
Q

Q
D

AX BY ABCX Y
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1 x y x y
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where =X [CD4]
[CD4]

min

max
and =Y [CCR5]

[CCR5]
min

max
are experiment-dependent

constants and ξ ≡ (A, B, C, D, β1, β2) is a six-dimensional vector
of parameters. The dimensionless combination of parameters A,
B, C and D are defined by

Figure 3. (a) Infectivity Q(t) calculated from eq 6 using different values
of β1 and setting all other rates to 1 s

−1. Since the Env trimer has three
possible binding domains for CD4, infectivity will increase if the
complex exhibits infinite binding cooperativity across two or three of the
subunits. (b) Effectiveness of fusion inhibitor on total viral infectivity
Q∞ defined in eq 7 as a function of varying peptide binding rate kp. We
plot the resulting curves for different values of Kp = μp/k−p while setting
all other rate parameters to 1 s−1 and β1 = β2 = 1. Since kp scales with the
concentration of fusion inhibitor peptide, increasing the latter inhibits
HIV-1 infectivity more effectively at lower peptide concentrations than
at higher ones.
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For illustration, in Figure 4 we plot F∞(x,y|ξ) for three
different sets of ξ. In Figure 4a, we assume a small value of the
dimensionless parameter B, while in Figure 4b we assume a small
dimensionless parameter A. In Figure 4c, we set A = B, but we
assume different stoichiometries β1 = 5 and β2 = 1. All values of
the chosen parameters ξ are presented in the figure caption. The
different sets of parameters yield model infectivity functions
F∞(x,y|ξ) with gradients along various directions in the (x,y)
plane, indicating greater sensitivity to [CD4] or [CCR5].
Furthermore, higher values of stoichiometry β1, β2 amplify the
sensitivity over a range of concentration values. Therefore,
F∞(x,y|ξ) may effectively represent different viral strains with
different CD4/CCR5 usage patterns distinguished by values of ξ.
Before fitting to data to find the MLE of ξ, we note that even

though Qmax is a known constant from the raw infectivity data,
some previous data sets do not report its value.22,29 Therefore,
this normalization factor is subsumed into the inference ofD, but
still can be inferred provided the other parameters formingD can
be independently determined.
If we wish to fit raw unnormalized infectivities, we can also use

the form for F∞(x,y|ξ) directly, but redefine the prefactor

=
ω − −

D k V
k( )

int 0

2
as having the same units as the experimental output

(such as number of cells, fluorescence, etc.). In this case, the
parameter D must be rescaled by an experimental factor with
units of the experimental output multiplied by an area. In either
case, we consider the amplitude D as a free parameter to be
inferred from data fitting. This parameter incorporates, and is
confounded by, the initial intensity of exposure, as well as many
of the sample-to-sample experimental variability arising from
instrument error, host cell number, and area within each sample
well. Therefore, we do not expect the effective values of D to
systematically represent intrinsic kinetic rates. However, we do
expect the remaining parameters A, B, C, β1, and β2 to influence
the shape of F∞(x,y|ξ) and the receptor/coreceptor usage

patterns. Note that in addition to the intrinsic rate parameters, A
and B also depend on [CD4]min and [CCR5]min which can vary
from one measurement to the next. Therefore, direct
comparisons of A and B can be made only across measurements
that use the same [CD4]min and [CCR5]min.
We now fit F∞(x,y|ξ) to previously obtained normalized

infectivity by finding the maximum likelihood values for ξ=̂ (Â, B̂,
Ĉ, D̂, β̂1, β̂2). The appropriate likelihood function is based on the
assumption that chemical kinetic rates are typically products of
positive random variables representing chemical concentrations
and other rates. This, and the need to restrict the infectivity signal
to strictly positive values implies that a log-normal distribution
for values of F∞ is reasonable. The maximum likelihood
estimation for ξ is then equivalent to minimizing the objective
function

∑ξ ξΦ = | −∞F x y F x y( ) (log ( , ) log ( , ))
i j

i j i j
,

data
2

(11)

where Fdata(xi, yj) are measured values of normalized infectivity at
rescaled concentrations xi and yj of CD4 and CCR5 used in the
experiments. As a first approximation, we assume β1 = β2 = 1 and
C ≈ 1. This last approximation is valid when the CD4
dissociation rate k−1 is much smaller than the CD4-bound
degradation rate μ1, a chemically reasonable assumption. In our
subsequent fits using all parameters (Â, B̂, Ĉ, D̂, β̂1, β̂2), the best-
fit value of Ĉ is indeed near one. Therefore, by henceforth setting
β1 = β2 = 1 and C = 1, we reduce the number of parameters to be
estimated from six to three. The results obtained by fitting the
data from several experimental measurements of HIV-1 strains
can be found in Table 1.
In Figure 5 we plot the fitted curve of F∞(x,y|ξ)̂ using the

estimated parameters from viral strain B5(YA) shown in the

Figure 4. F∞(x,y|ξ) for different sets of ξ. (a) For (A, B,C,D, β1, β2) = (20, 2, 1, 1, 2, 2), the infectivity is most sensitive to x, or [CD4]. (b) For (A, B,C,D,
β1, β2) = (2, 20, 1, 1, 2, 2), the function F∞ varies more along the y direction and infectivity is more sensitive to [CCR5]. (c) (A, B,C,D, β1, β2) = (20, 20,
1, 1, 10, 2). Note that A and B predominately control the direction (CD4 or CCR5) of sensitivity, and β1, β2 control the steepness of the infectivity
surface.

Table 1. Fitted Parameters of the Sequential Kinetic Model
Assuming C = 1 and β1 = β2 = 1 for Six Different Experiments
Representing Triplicate Measurements of Two HIV-1
Strainsa

Strain-Expt. Â B̂ D̂ R2

B5(YA)-Rep1 6.39 1.56 1.09 0.64
B5(YA)-Rep2 6.03 1.53 1.27 0.64
B5(YA)-Rep3 5.91 1.34 1.49 0.66
B5(RT)-Rep1 3.77 3.80 1.1 0.60
B5(RT)-Rep2 4.18 4.25 1.17 0.68
B5(RT)-Rep3 4.58 3.87 1.13 0.64

aThe parameters are in close agreement within each viral strain. R2

values are shown with low values implying the β1 = β2 = 1 assumption
is overly constraining.
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fourth line of Table 1, which qualitatively shows good agreement
with the corresponding experimental data. Upon repeating the
same analysis on 32 experimental data sets selected from
previous publications,22,23 we can associate each set of
infectivities with fitted Â−B̂−D̂ values. As expected, infectivities
of the same strain of HIV-1 cluster together in A−B parameter
space as shown in Figure 6. To indicate the goodness of fit to our
model, we also calculate and display in Table 1 the coefficient of
determination

ξ
≡ −

∑ | ̂ −

∑ ̅ −
∞

R
F x y F x y

F F x y
1

(log ( , ) log ( , ))

(log log ( , ))
i j i j i j

i j i j

2 , data
2

, data data
2

(12)

where F̅data is the measured normalized infectivity averaged over
all [CD4] and [CCR5] concentration combinations. The low R2

values suggest that our initial assumption of β1 = β2 = 1 should be
relaxed to obtain better fits.
We thus consider the role of stoichiometry of receptor and

coreceptor binding by reintroducing β1 and β2 as free parameters
and perform maximum likelihood fitting using five parameters ξ
= (A, B, D, β1, β2), again using the approximation C = 1. The
fitted function is shown in Figure 7, which is qualitatively
different from Figure 5.
The new estimated parameters using the same data as before

are displayed in Table 2. Here, the residual values R2 are higher,
indicating a much better fit of the data when β1, β2 are adjustable.
The kinetic model F∞(x,y|ξ) in eq 7 consistently outperforms the
quadratic model Fquad(x,y) introduced earlier.
The value of β̂2 is consistently close to 1, which indicates that

coreceptor binding only involves a single CCR5 for fusion to be
initiated. The value of β̂1, on the other hand, is much larger. If
interpreted as a binding stoichiometry, this would indicate that
multiple gp120/gp41 complexes of the Env trimer must bind to
separate CD4 receptors before conformational changes can take
place. Our results, however, show β1 > 3, which indicates that
each individual gp120/gp41 complex binds to multiple CD4
receptors. Alternatively, the large exponent β1 can describe high
allosteric cooperativity of Env or the dynamics of multiple Env
each binding to CD4, increasing the effective rate of CCR5
binding. To quantify our confidence in this result, we take a
closer look at the objective functionΦ(ξ) in eq 11 and evaluate it
for ξ values close to ξ,̂ the optimal value of ξ that minimizesΦ(ξ)
constrained by the data. By varying one of the parameters at this

Figure 5. HIV-1 infectivity as a function of CD4 and CCR5 concentrations. The data displayed is from strain B5(YA).22 (a) Normalized unscaled
infectivity data measured after a sufficiently long exposure time. (b) Normalized and rescaled infectivity data in terms of (x,y). (c) Fitted plot of scaled
normalized infectivity F∞(x,y|ξ)̂ from eq 7 assuming C = 1 and β1 = β2 = 1. The MLE of the remaining parameters are Â = 6.39, B̂ = 1.56, and D̂ = 1.09.

Figure 6.MLE points in A−B−D parameter space in the context of the
sequential kinetic model assuming C = 1. (a) Fixed β1 = β2 = 1. Each
point represents an experiment for which parameters were estimated.
Measurements were derived from published data,22,29,30 and points
corresponding to replicate measurements on the same viral strain are
shown in the same color. There is large variation in the inferred
parameters between viral strains, but parameters inferred from replicate
measurements on the same strain cluster relatively closely in (A,B)
parameter space. As expected, there is highmeasurement variability inD.
(b) Allowing β1 and β2 to be free parameters to be estimated from fitting.
Here variability in the A, B, and D parameters increase as they become
less sensitive to the functional form presented in eq 9 to compensate for
the high sensitivity of the stoichiometric parameters β1 and β2. Here, we
include only representative data points that clustered, confirming the
large variability in parameter estimates.

Figure 7.Normalized HIV-1 infectivity as a function of CD4 and CCR5 levels. The data displayed is from strain B5(YA).22 (a) and (b) are identical to
the first two panels in Figure 5. (c) Fitted plot of scaled normalized infectivity F∞(x,y|ξ)̂ withC = 1 but free β1 and β2. TheMLE of the parameters are Â =
17, B̂ = 1.84, D̂ = 0.96, β̂1 = 11.7, and β̂2 = 0.8.
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minimum while keeping all others fixed, we can measure the rate
of change in Φ(ξ) with respect to that parameter. In particular,
we can determine the sensitivity of the model with respect to a
given parameter by evaluating the curvature of Φ(ξ), a measure
of fit error, along the direction in which that parameter changes,
as shown in Figure 8.

To compare the performance of the quadratic model described
by Fquad(x,y) with that of our kinetic model described by
F∞(x,y|ξ)̂ both with β1 = β2 = 1 and as free parameters, we
calculate the Akaike Information Criterion (AIC) score (Table
3)

∑ ∑π ξ= + + | ̂

−

∞n F x y F x y

F x y

AIC 2 log(2 ( , )) (log ( , )

log ( , ))

i j
i j

i j
i j

i j

,
data
2

,

data
2

(13)

a standard statistical measure for model comparison and
selection. In eq 13, n is the number of inferred parameters in
the model, and the last two terms are derived from the log-
likelihood function of the infectivity distribution. The AIC score
penalizes models with large errors in the prediction of each data

point and with too many fitted parameters, so a low AIC score is
ideal. We observe that the kinetic model with β1 and β2 as free
parameters once again outperforms both the model with fixed β1
= β2 = 1 and the quadratic model, further validating our
mechanistically derived model. This implies that the data
provides some confidence in a higher stoichiometry β1 > 1.
Once accurate estimates of the model parameters A, B, D, β1,

and β2 are obtained from minimizing Φ(x,y|ξ), we can derive
constraints on the physical rate parameters through eqs 10.
Although there are more kinetic parameters to solve for than
available estimates, we can use known rate values obtained from
past ligand binding assays.31,32 For example, Chang et al.33 set the
Env-CD4-CCR5 dissociation rate at k−2 ≈ 1.7 s−1. Furthermore,
if we assume all degradation rates are equal, we can follow
Seisenburger et al.32 and use μ1 = μ2 ≈ 15 s−1 as general viral
degradation rates. Finally, through GFP genetic marking and
flow cytometry, assays can be designed to potentially measure the
nonspecifically absorbed virus dissociation rate koff.

34

The data shown in Figure 1 reveals that the entry of the
associated viral strain is very insensitive to CD4 levels for the
values explored. Using the previous metrics defined in eqs 3, the
sensitivity vector S ⃗ points almost entirely in the y (CCR5)
direction. Previous work has also suggested the existence of
“CD4-independent” strains that infect at extremely low levels of
CD4.35,36 However, our sequential model requires binding of
CD4 before fusion can occur. In the next section, we explore an
alternative and more general “parallel” pathway model that may
better fit observed data such as that illustrated in Figure 1.

Parallel Model. The quantitative analysis done by Johnston
et al.22,23 showed that HIV-1 infectivity of some viral strains had
remarkably low responsiveness to the induced surface concen-

Table 2. Fitted Parameters of the Sequential Kinetic Model AssumingC = 1 for Six Sets ofMeasurements, Three Replicates of Each
of Two Different Strains of HIV-1a

Strain-Expt. Â B̂ D̂ β̂1 β̂2 R2:Fquad R2:F∞

B5(YA)-Rep1 17.04 1.84 0.96 11.7 0.79 0.95 0.96
B5(YA)-Rep2 16.40 2.62 1.49 11.6 0.57 0.94 0.98
B5(YA)-Rep3 14.85 2.30 1.73 10.8 0.55 0.80 0.97
B5(RT)-Rep1 10.67 3.15 0.79 13.9 1.29 0.79 0.90
B5(RT)-Rep2 9.90 9.42 2.01 10.7 0.68 0.77 0.92
B5(RT)-Rep3 12.32 3.30 0.81 12.1 1.23 0.81 0.92

aThe MLE parameter values are in close agreement within each viral strain. R2 values are calculated for both the arbitrary quadratic model introduced
earlier and the sequential kinetic model (Figure 2). The mechanism-based kinetic model consistently outperforms the quadratic model.

Figure 8. Projections ofΦ(ξ) about the minimum at (Â, B̂, Ĉ, D̂, β̂1, β̂2)
= (17, 1.84, 1, 0.96, 11.7, 0.8). (a) Projection on (A, β1) space. (b)
Projection on (B, β2) space.

Table 3. AIC Scores, Defined in eq 13, for the Arbitrary
Quadratic Model, Our Sequential Kinetic Model Assuming C
= 1 and β1 = β2 = 1, and the SameModel with β1 and β2 as Free
Parameters to Be Estimateda

Strain-Expt. AIC:Fquad AIC:F∞ (β1=β2=1) AIC:F∞ (free β1,β2)

B5(YA)-Rep1 −19.9 −7.30 −22.4
B5(YA)-Rep2 −1.80 9.20 −6.0
B5(YA)-Rep3 26.0 28.2 15.6
B5(RT)-Rep1 −31.4 −25.7 −39.4
B5(RT)-Rep2 −35.5 −36.0 −45.2
B5(RT)-Rep3 −38.0 −32.9 −46.1

aThe latter model has been shown to consistently outperform both the
fixed β1, β2 model and the quadratic model introduced earlier.

Figure 9. Parallel kinetic model of viral entry. In this coarse-grained
model, V-CD4-CCR5 effectively represents a virus that binds to CD4
first and is then bound to CCR5. The top pathway effectively subsumes
the standard sequential entry pathway into a single step. Alternatively,
we suppose that the virus can interact with CCR5 directly and also infect
the cell with rate pint. This is the simplest model that provides a “CD4-
independent” entry pathway.
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trations of CD4, while still having a relatively monotonic
dependence on CCR5 concentrations, as previously shown in
Figure 1. Furthermore, some strains of simian immunodeficiency
virus (SIV) are known to infect via “CD4-independent”
pathways, requiring only CCR5 coreceptor for viral entry.37

Motivated by these observations, we propose a “parallel”
pathway model wherein HIV-1 can either enter through the
standard pathway described in the sequential model presented in
the last section, or can either completely bypass CD4 binding.
Within this “parallel”model, we propose that HIV-1 can interact
with CCR5 directly with rate p+1 and form the complex V-CCR5
whose concentration, [V-CCR5], we denote as c2(t). As shown in
Figure 9, this state can then directly enter the cell through fusion
or endocytosis leading to infection with rate pint.

38 For
mathematical simplicity, we describe the standard sequential
model discussed in the previous subsection via a “lumped”model
where the sequential binding of CD4 and CCR5 is described by
one effective rate.
The corresponding rate equations are

μ

μ

= − − − + +

= − − −

= − − −

+ + − −

+ −

+ −

c t
t

k t k c p c k c k c p c
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t

p c p c c p c
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d

( )

d ( )
d

d ( )
d

0
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1
1 0 1 1 1 1 int 1

2
1 0 1 2 2 2 int 2

(14)

Similar to the sequential model, we expect the binding rates to be
functions of the concentrations of CD4 and CCR5: k+1 =
k+1
0 [CD4]β1[CCR5]β2, p+1 = p+1

0 [CCR5]γ1, where k+1
0 and p+1

0 are
the intrinsic binding rates between the virus and the respective
receptors, and β1, β2, and γ1 are effective stoichiometries. The
total infectivity is now given by

∫ τ τ τ= +Q t k c p c( ) [ ( ) ( )]d
t

0
int 1 int 2 (15)

To further simplify matters, we set all degradation rates equal so
that μ1≈ μ2 = μ. Upon solving eqs 14 and 15, and normalizing by
the reference concentration Qmax from the infectivity data
associated with [CD4]max and [CCR5]max, we find the
normalized infectivity to be

≡ =
+

+ +

γ β β

β β γ γ β β∞
∞F

Q
Q

A Y A X Y
X Y Y B Y B X Y

y x y

x y y y x y
max

1 2

1 2

1 1 2

1 2 1 1 1 2 (16)
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Note that our simplified parallel model has an additional
parameter compared to that of the sequential model.We can now
performmaximum likelihood statistical analysis using our parallel
pathway model. In Figure 10 we show the data of the NL43(RT)
strain from Johnston et al.22 The fitted surface F∞(x,y|ξ)̂ shows a
qualitatively good fit to the data. Not surprisingly, β̂1 ≈ 0,
indicating the independence of CD4 attachment on [CD4].
In this case, the AIC score yields AIC(parallel) = 3.62 and

AIC(sequential) = −1.3, suggesting that the parallel pathway
model is not statistically warranted even for a highly “CD4-
independent” strain. Although there are only seven parallel
pathway parameters versus six for the sequential model, the
parallel model lumps CD4 and CCR5 binding into a single
process, which may be too coarse a description. We test this
possibility by exploring this lumped version of the sequential
model.

Lumped Model. The sequential model explored above
assumes that gp120 binding of CCR5 is contingent on first
binding to the CD4 receptor. Separating the two viral states V-
CD4 and V-CD4-CCR5, which correspond to virus bound to
CD4 and virus bound to both CD4 and CCR5, resolves the

Figure 10. Fitting of the parallel model to the data presented in Figure 1, which appears “CD4-independent.” (a) Raw normalized infectivity data Fdata as
in Figure 1a. (b) Scaled normalized data. (c) Best-fit plot using maximum likelihood on the parallel model. The maximum likelihood parameters are (Â1,
Â2, B̂1, B̂2, β̂1, β̂2, γ1̂) = (0.23, 0.26, 1.5, 0, 0, 1.5, 2) and captures the insensitivity to x ([CD4]).

Figure 11. Lumped kinetic model of viral entry. The model simplifies
the sequential model in Figure 2 by subsuming the intermediate step of
HIV-1 binding to CD4 into rate k+1 so that the virus binds to both CD4
and CCR5 simultaneously.
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binding and dissociation dynamics between these states into the
expression for infectivity F∞ derived above. If the rate of
transitioning between these two states is sufficiently fast, it is
possible to further simplify the model by eliminating the
intermediate state V-CD4 by assuming that CD4 and CCR5
binding occur simultaneously, as shown in Figure 11. Upon
simplifying the model in this manner, we reduce the parameter
space for which we perform statistical inference. In order to
explore whether this simplification leads to a better model fit and
estimation of physical rate parameters, we start with the rate
equations:

μ

μ

= − − +

= − − − − + *
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+ −
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Within the lumped model, we expect the rate of simultaneous
CD4 and CCR5 binding to be a function of both the
concentrations of CD4 and CCR5: k+1 = k+1

0 [CD4]β1[CCR5]β2,
where β1 and β2 are the appropriate stoichiometry parameters,
similar to those defined in the sequential model. In this model,

the raw infectivity is Q(t) = kint ∫
t

0
c1(τ)dτ, while the normalized

rescaled infectivity takes the form
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As in the sequential model, the quantity
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can be considered the bulk flow of virus out of the V-CD4-CCR5
viral state.

Upon comparing AIC scores of AIC(sequential) = 15.6 and
AIC(lumped) = 17.6 from the viral strain B5 (YA) data presented
in Johnston et al.,22 we find the sequential model yields a better fit
to the data, despite the reduction of the number of parameters in
the lumped model. Fits are shown in Figure 12. As in the
sequential model, β1 dictates the sharpness of the descent of F∞
for very low values of [CD4], but the terms that define the tilt of
the broader region of the function are lost in the lumped model,
preventing an adequate fit of the average slope of the data. This
signifies that the intermediate process of CD4 binding prior to
CCR5 binding is a necessary inclusion into the model.

■ CONCLUSIONS

In order to distinguish different strains of HIV-1 via their entry
kinetics, heuristic metrics have been derived to classify different
sensitivities of infection to CD4 and CCR5 expression in the host
cell.22 The metrics M, Δ, and θ in eqs 3 are good discriminators
and cluster well the experimental replicates of identical strains of
HIV-1 since they are purely based on the shape of the data and
not on any mechanistic processes involved in viral entry. Here,
we analyzed a sequential kinetic binding model of HIV-1 viral
entry that yields a functional relationship between the infectivity
of a strain of virus and the levels of CD4 and CCR5 based on
known chemical processes. Our model provides a framework in
which to analyze different strains of HIV-1 based on
combinations of parameters in the kinetic model and physical
insight into how these parameters facilitate or inhibit HIV-1 viral
entry. One can now distinguish different strains of HIV-1
according to the inferred values of kinetic parameters and display
the infectivity of each strain as points in parameter space with
physical meaning.
In addition to kinetic rates, stoichiometries of CD4 and CCR5

are incorporated in our model. In fact, the dependencies of the
infectivity to CD4 and CCR5 levels are most sensitive to their
respective stoichiometries at the expense of the sensitivity of the
other estimated parameters. We show that overall infectivity data
is sufficient to provide some confidence in assigning nonunit
stoichiometries, suggesting that, on average, either multiple
CD4s bind to a gp spike, or multiple gp spikes are engaged in a
typical entry event. In fact, due to the high sensitivity of the
characteristic shape of the infectivity function to stoichiometry,
we suggest that experiments be designed to increase the number
of data points in regions of high gradients of Fdata(x,y), where the
stoichiometric parameters β1,2 exhibit the most influence. In this
same regard, choosing the minimum andmaximum values for the
CD4 and CCR5 experimental inputs dictates the relative sizes of
the constants X and Y, thus altering the relative sensitivity
between the two stoichiometric parameters. These properties of

Figure 12. A comparison between the lumped model and the sequential model. (a) Scaled normalized data Fdata. (b) Best fitted plot using maximum
likelihood of the sequential model from Figure 2. (c) Best fitted plot using maximum likelihood of the lumpedmodel with estimated parameters (Ĉ1, Ĉ2,
β̂1, β̂2) = (22.0, 0.73, 10.6, 0.37). The lumped model’s functional form, compared to that of the sequential model, prevents a qualitatively accurate
representation of the data, especially in the y-dependence of Fdata.
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F∞(x,y) provide guidance to the experimentalist in designing the
most informative measurements.
Finally, in order to address the existence of strains that are

highly insensitive to CD4 expression, and that infect cells with
extremely low levels of CD4, we proposed a parallel pathway
model that allows slow entry, even in the absence of CD4,
through, perhaps, an endocytotic mechanism.38 Here, binding to
CCR5 is sufficient to allow for viral entry through an alternate
pathway. We performed parameter inference on this parallel
model and compared our results with those from the original
sequential model. We also explored a simplification of the
sequential model by subsuming the intermediate CD4 binding
process into one combined process of simultaneous CD4 and
CCR5 binding. We compared the performance of this last
lumped model with the sequential model to determine what
effects such simplifying assumptions might have on the inference
capabilities of our models.
The modeling and data analysis framework we developed in

this work may also be used to quantify the effectiveness of fusion
inhibitors. For example, though fusion inhibitors can arrest the
fusion process at an intermediate step,39 the bond between
gp120 and gp41 is noncovalent and weak enough so there is a
high probability of this bond breaking, resulting in the virus
dissociating from the cell.19 Though the Env spike used in that
failed infection attempt is now nonfunctional, the virus can
theoretically return to the cell and make another attempt with a
different Env on its membrane. But unlike simian immunode-
ficiency virus (SIV) that is covered in large amounts of spikes,40

HIV-1 has relatively small numbers of Env on its surface; often on
the order of five spikes per virus.41 Thus, fusion inhibition
becomes a process of repeated failed attempts at infection of a
virus until the Env spikes are depleted. In this context, two time
scales would be established between the rate of fusion without
inhibitor and the rate of depletion of glycoprotein spikes.
Modeling this aspect of the infectivity process in the presence of
fusion inhibitors can give better insight into the effectiveness of
inhibitor treatment and recommendations on the duration of
possible treatment protocols. As shown in Figure 3(b), a model
of infectivity can be used to predict a reduction in viral infection
as a function of fusion inhibitor dosage. Instead of performing
infectivity measurements for varying [CD4] and [CCR5], we can
also change fusion inhibitor levels and study the corresponding
infectivity patterns using the samemodels presented in this work.
Similar analyses can also be performed to study the efficacy of
broadly neutralizing antibodies in suppressing viral entry. These
and other physical chemical considerations will be pursued in
future work involving model analysis and inference from
forthcoming data.
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K. Tracking and Quantitation of Fluorescent HIV During Cell-Cell
Transmission. Methods 2011, 53, 20−26.
(35) Hoffman, T.; LaBranche, C.; Zhang, W.; Canziani, G.; Robinson,
J.; Chaiken, I.; Hoxie, J.; Doms, R. Stable Exposure of the Coreceptor-
Binding Site in a CD4-Independent HIV-1 Envelope Protein. Proc. Natl.
Acad. Sci. U. S. A. 1999, 96, 6359−6364.
(36) Zhuang, K.; Leda, A.; Tsai, L.; Knight, H.; Harbison, C.; Gettie, A.;
Blanchard, J.; Westmoreland, S.; Cheng-Mayer, C. Emergence of CD4
Independence Envelopes and Astrocyte Infection in R5 Simian-Human
Immunodeficiency Virus Model of Encephalitis. J. Virol. 2014, 88,
8407−8420.
(37) Edinger, A. L.; Blanpain, C.; Kunstman, K. J.; Wolinsky, S. M.;
Parmentier, M.; Doms, R. W. Functional Dissection of CCR5
Coreceptor Function through the Use of CD4-Independent Simian
Immunodeficiency Virus Strains. J. Virol. 1999, 73, 4062−4073.
(38)Miyauchi, K.; Kim, Y.; Latinovic, O.; Morozov, V.; Melikyan, G. B.
HIV Enters Cells via Endocytosis and Dynamin-Dependent Fusion with
Endosomes. Cell 2009, 137, 433−444.

(39) Miyauchi, K.; Kozlov, M.; Melikyan, G. Early Steps of HIV-1
Fusion Define the Sensitivity to Inhibitory Peptides That Block 6-Helix
Bundle Formation. PLoS Pathog. 2009, 5, e1000585.
(40) Yang, C.; Yang, Q.; Compans, R. W. Coreceptor-Dependent
Inhibition of the Cell Fusion Activity of Simian Immunodeficiency Virus
Env Proteins. J. Virol. 2000, 74, 6217−6222.
(41) Brown, A. J. L. Analysis of HIV-1 Env Gene Sequences Reveals
Evidence for a Low Effective Number in the Viral Population. Proc. Natl.
Acad. Sci. U. S. A. 1997, 94, 1862−1865.

The Journal of Physical Chemistry B Article

DOI: 10.1021/acs.jpcb.6b02102
J. Phys. Chem. B XXXX, XXX, XXX−XXX

K

http://dx.doi.org/10.1021/acs.jpcb.6b02102

