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We analyze a fully stochastic model of heterogeneous nucleation and self-assembly in a closed sys-
tem with a fixed total particle number M, and a fixed number of seeds N. Each seed can bind a
maximum of N particles. A discrete master equation for the probability distribution of the cluster
sizes is derived and the corresponding cluster concentrations are found using kinetic Monte-Carlo
simulations in terms of the density of seeds, the total mass, and the maximum cluster size. In the
limit of slow detachment, we also find new analytic expressions and recursion relations for the clus-
ter densities at intermediate times and at equilibrium. Our analytic and numerical findings are com-
pared with those obtained from classical mass-action equations and the discrepancies between the
two approaches analyzed. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4817202]

. INTRODUCTION

The self-assembly of molecules and macroscopic parti-
cles into larger units is a common process in materials sci-
ence and cell biology.! In homogeneous nucleation, identical
components are able to spontaneously self-assemble to form
larger clusters; however, in many cases, the growth process
may be catalyzed or even triggered by a “seed” such as an
impurity particle or boundary. Such seeds tend to lower the
free energy barrier for particle aggregation so that heteroge-
neous nucleation is typically more commonly observed than
homogeneous nucleation.’

Self-assembly arises in numerous systems in the natu-
ral sciences and engineering. For example, within structural
biology, a long standing issue has been that of identifying
a “universal nucleant” to induce the rapid growth of protein
crystals suitable for X-ray diffraction to determine the pro-
tein’s 3D structure.” Conversely, the formation of large ag-
gregates of insulin and other proteins is problematic in drug
preparation, delivery, and storage.* Polymerization of various
proteins and polypeptides into amyloid fibers is also impli-
cated in the emergence of neurodegenerative disorders such
as Parkinson’s, Alzheimer’s, and prion diseases.” The typical
mechanism through which proteins self-assemble in all these
biological examples is by monomers slowly forming an inter-
mediate size fiber of few units, which then acts a nucleation
site for accelerated absorption of further units.%’

In this paper, we will be concerned with systems where
heterogeneous self-assembly occurs in small compartments of
finite volumes, such as cells and organelles. This assumption
is appropriate when particle aggregation is much faster than
the typical times for monomers or seeds to be synthesized or
degraded. Moreover, molecular stoichiometry typically pre-
vents clusters from growing indefinitely. After a maximum
size N is reached, the self-assembly process is completed. Ex-
amples of self-assembly constrained by a maximum cluster
size include ligand-receptor binding such as oxygen binding
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to a single hemoglobin protein (N = 4),* self-assembly of
membrane peptides to form pores (N &~ 6-8),” self-assembly
of capsid proteins around RNA/DNA templates to form viral
capsids (N ~ 100-1000),'” or assembly of clathrin triskelion
proteins to form the clathrin-coated pits that arise in endocy-
tosis (N ~ 25-50)."" Macroscopic examples of self-assembly
in finite-sized systems can also be easily realized using, e.g.,
capillary-force assisted self-assembly.'?

We describe our problem as a self-assembly process in
a closed system with a total of M particles that can bind N,
seeds, each of which can accommodate a maximum of N par-
ticles as shown in Fig. 1. Given the discreteness of the sys-
tem and possible finite size effects, we will consider a dis-
crete stochastic treatment and our results will be compared to
those derived from classical mean-field equations. The clas-
sical mass-action equations for heterogeneous nucleation un-
der fixed {M, N, N} were previously analyzed in Ref. 13,
where both limits of reversible and irreversible monomer at-
tachment and detachment were considered. In this paper, we
will present the corresponding master equation for the proba-
bility distribution of cluster sizes, and from these, derive mean
cluster concentrations to be directly compared to those ob-
tained in Ref. 13.

We have performed a similar comparison in the case
of homogeneous nucleation where stochastic and mean-field
treatments were shown to yield remarkably different results
at equilibrium, especially when M and N were of the same
order of magnitude and in the limit of small detachment.'*
The origin of the discrepancy was identified in the non-
commensurability between M and N, so that when M was
not a multiple of N, finite-size effects not captured by the
mass action equations could be quite striking in the stochastic
system.

The goal of the current paper is to investigate any pos-
sible discrepancies between stochastic and mean-field results
within the context of homogeneous nucleation. To this end,
we perform numerical simulations and, where possible, derive
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FIG. 1. A schematic of the heterogeneous self-assembly process in a closed

system. The open hexagons represent seed particles on which the monomers
(filled circles) aggregate. In this example, the total mass, the number of seed
particles, and the maximum cluster size are M = 30, N, = 6, and N = 6,
respectively.

analytical results. We find that, although less dramatic than in
the case of homogeneous nucleation, subtle discrepancies be-
tween the two methods also arise in the heterogeneous case.
Similar to homogeneous nucleation, these discrepancies are
smallest for M ~ NN /2 (excluding the trivial cases when M
~ NN and M ~ ().

In Sec. II, we will give a brief overview for the classi-
cal mass actions equations for heterogeneous nucleation, as
derived in Ref. 13. In Sec. III, we will introduce the corre-
sponding master equation and derive the average cluster sizes
for comparison with the mean-field values. Analytical and nu-
merical results are discussed in Sec. IV. We end with some
brief considerations on our results in Sec. V.

Il. MASS-ACTION KINETICS

In this section, we briefly recapitulate results from
Ref. 13 that will be used for comparison with the stochas-
tic results that will be later derived in Sec. III. We derive
mass-action equations for a system of total fixed number M of
bound and unbound monomers and a fixed number N; of seeds
where each seed can accommodate at the most N monomers.
Fragmentation and aggregation processes that do not involve
monomers are neglected.

Following conventional notation, we denote by ¢(r) the
concentration of clusters of size k at time ¢. The attachment
of monomers to a cluster of size k depends on an intrinsic
rate p; and on the total number of free monomers m(r), while
detachment from clusters occurs at a rate ¢;. The mass-action
equations for ¢ (r) are thus written as

¢p = —pom(t)co + qicy,
¢ = —prm(t)cg — qrck + pr—im(t)ci—1 + Gry1¢k41, (1)
cy = —gnen + py—im(t)en—y,

where the number of free monomers is constrained by

N
mt)= M — chk(r) (2)

k=1

and where conservation of seeds requires

N
Ne= ) ¢ 3)

=0

J. Chem. Phys. 139, 121918 (2013)

Initial conditions are chosen so that m(t = 0) = M, cy(t
= 0) = N, ¢~ ot = 0) = 0. Equations (1) are analogous
to the Becker-Doring (BD) equations commonly used to de-
scribe homogeneous nucleation.'* Here, we restrict ourselves
to the case of constant detachment rates that are much smaller
than the constant monomer attachment rates (g, = ¢ < py =
p). We will analyze results for both the reversible limit and
the strictly singular, irreversible limit g = 0.

The long-time behavior of this process will depend
critically on whether there is an excess or deficiency of
monomers. An important parameter will be the quantity o
= M/(NN;). In the case of irreversible binding (¢ = 0), the
choice o > | implies that all seeds are fully occupied at
t — 00 so that ex(f — 00) = N, ¢y xn(t — o0) = 0, and
m(t — o) = M — NN,. However, if o < 1, a finite time r*
exists at which the pool of free monomers is depleted, m(t*)
= (), and the system stops evolving. The final concentrations
¢t were found to be'?

Gon®) _ &t G© | ’E gt
N k! N J!

=0

where & is determined by the real root of the transcendental
equation EVe™8 + (N — £)I' (N, &) = (1 — o )NT(N).

For the case of reversible binding (¢ > 0), we will focus
on the small ¢ = ¢/p regime, where monomers bind strongly
to clusters. In this limit, the concentrations ¢ (¢) first approach
values close to ¢j before slow detachment eventually allows
monomer redistribution and equilibration to a new cluster size
distribution after a time scale 7 > ¢~'. These equilibrium
cluster concentrations, c; ', can be found by keeping g > 0
and setting the left hand side of Egs. (1) to zero. Upon solv-
ing the resulting algebraic equations along with Egs. (2) and
(3), we find

' (z- D
N, N ©)
where z satisfies
£2
(MN—0)(2—1)(z"’+‘—l)+z”+2
l vl
(14— )M E 6
( + N) + N (6)

and 0 < € = g/p < 1. Since ¢ multiplies the highest power
of the fugacity z in Eq. (6), ¢ — 0% constitutes a singular
limit. When o < 1, not all binding sites can be filled, and ap-
proximations for z can be found for o <« | and 0 &~ 1/2. In
Ref. 13, we performed numerical estimates of Eq. (6) show-
ing that for 12 < 0 < 1,z > 1, and ¢}, > ¢;", implying
that larger clusters tend to be favored. For example, consider
the case M = 5, N, = 2, and N = 3, for which o = 5/6.
Equations (1) yield increasing values of c;': ng = 0.063,
e =0.173, ¢5' = 0.473, ¢;* = 1.291. On the other hand, for
o<12,z<1, cii, < ¢;", and smaller clusters are favored.
Foro = 1/2,z = 1, and all cluster sizes are equally populated.

Note that even if ¢ — 0" (or ¢ — 07), the equilibration
values ¢} arising in the 7 3> ¢~' regime can be quite different
from the metastable values ¢} obtained by directly setting g
= ¢ = 0 in Egs. (1). On the other hand, in the case of excess
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monomers (o > 1), all binding sites will be nearly always
filled and

N—k

N. £ a

eq s N—k+1

c A + Of(e . 7
k (N,N)N_k (g l)N—k ( ) ( )

Here, the difference between reversible and irreversible
binding kinetics vanishes since c::‘éN ~ ciyny — 0 and cy
~ ¢y — Nqinthe ¢ — 0" limit. In Sec. III, we derive the
discrete master equation associated with the heterogeneous
self-assembly process. We will find expected cluster sizes and
compare them with their corresponding values found from
mass-action kinetics.

lll. MASTER EQUATION FOR HETEROGENEOUS
SELF-ASSEMBLY

We now introduce the master equation for our discrete
heterogeneous self-assembly. Denote by P({n}; t) = P(m|ny,
ny,..., ny; t) the probability distribution function for the sys-
tem to be in a state with m free monomers, ny unbound seeds,
and n; (1 <i < N) seeds with i bound monomers. Since each
seed can bind at most N particles, the sequence is arrested at
ny. Using the same notation as in Sec. II for the attachment
and detachment rates p; and gy, respectively, we can write the
full master equation as

N-1 N

P(n};t)=—m Yy pini P({n};1) = Y qini P({n};1)

i=0 i=1
N-1
+m+ 1)) pilni + DWW W, P({n):1)

i=0

N
+ ) qilni + DWo W2, W P(n)io), ()

i=1

where we have implicitly assumed that P({n}; r) = 0 if, for
any i, n; < 0, orm < 0. The W;" and W terms represent the
unit raising or lowering operators on the number »; of clusters
of size i and on the number of free monomers m, respectively.
For example, the operator W W;" W7 | acting on state P({n},
1) is defined as

W:' Wi+ WI:- 1

P({n};1)
= P(m + l|ny, ..., ni+lngg—1,..., nyst). (9

As in our analysis of the mass-action kinetics, we will assume
that monomer binding and unbinding occur at constant, clus-
ter size-independent rates p and g, respectively,

N
M=m+ ank (10)
k=1

and a total cluster number constraint

N
Ne=)m. (11)

k=0

Equations (10) and (11) are the discrete counterparts to the
mass-action equation constraints Egs. (2) and (3). We assume
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that all the monomers are free at r = () so that
P({n];t = 0) = (SI".M(SII(),N\(SIH.O e an‘\v.(h (12)

where §; ; is the Kronecker delta function such that §; ; = 1 if
i = j and 0 otherwise. In order to compare results arising from
Eq. (9) to the ones derived from the mean-field Eqgs. (1) we
define the mean number of clusters of size k as

(ni() = Y niP({n);1). (13)
{n}

The values of (n(r)) derived from the full stochastic treat-
ment in Eq. (13) are the direct counterparts to the mean-field
approximation to ¢(f) found by solving Egs. (1). This can be
most easily seen by multiplying Eq. (9) by n; and by summing
over all possible states to give

(no(1)) = —(mng) + &(ny),
(M(0)) = (mng_y) — (mng) — e({ng) — (ngga)), (14)
(nn(0)) = (mny_y) — elny),

where we have rescaled time in units of p~' and (mny)
= Z.,,lmnkP([n}; f) represent monomer-cluster correlations.
If we further assume that the monomer and cluster num-
bers are uncorrelated so that (mn;) = (m)(n;), and identify
m = (m) and (n;) = ¢y, Egs. (14) reduce to the mass-action
equations (Egs. (1)).

Differences between the expected cluster numbers de-
rived from stochastic and mean-field approaches arise from
nonvanishing correlations (mny) # (m) {n;). One approach for
determining exact cluster numbers involves enumerating the
possible states of the system by elements of the probability
vector P, and solving a large set of coupled ordinary differ-
ential equations P = AP. Here, the transition matrix A is to
be constructed from the rates of entering and exiting each
configuration. This approach is feasible only for small val-
ues of {M, N, N} where the number of distinguishable con-
figurations is manageable. Consider again the simple case of
M =5, N, =2, N =3, corresponding to o = 5/6 that we have
considered at the end of Sec. II. Here, there are nine possible
configurations (m|ng, ny, na, n3) as shown in Fig. 2, which we
enumerate in the order (5|2, 0, 0, 0), (4|1, 1, 0, 0), (3]0, 2, 0,

(512,0,0,0)
lr
(411,1,0,0)
lr\
(302,000  (3]1,0,1,0)
AN
(210,1,1,0) (211,0,0,1)
I |
(110,0,2,0) (110,1,0,1)
\ Lr
(010,0,1,1)

FIG. 2. State space for a self-assembling system consisting of M = 5 total
monomers, Ny = 2 seeds, and a maximum cluster size of N = 3. In this
example, o = M/(N,N) = 5/6.
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0), (31, 0, 1, 0), (210, 1, 1, 0), (2|1, 0, 0, 1), (1]0, 0, 2, 0),
(110, 1, 0, 1), (0]0, 0, 1, 1), so that P,(r) = P({5|2, 0,0, 0}, 7).
After solving the nine coupled ordinary differential equations
for P;(r) we use Eq. (13) to construct the expected equilib-
rium cluster numbers and find for ¢ = 107, (ny(r — 00))
=0, (n(t — 00)) = 0.0001, (n2(t — o0)) = 0.99995, (ns(t
— 00)) = 0.99995. Clearly, these mean equilibrium cluster
numbers (n,") are often quite different from the correspond-
ing concentrations ¢, found from the mass-action equations
in Sec. IL

In principle, one can construct the transition matrix A for
general values of {M, N, N}, but its dimensionality rapidly
increases with increasing system size. For a given set of {M,
N, N} the total number of configurations is

M M—jN M~ N —k(N-1)
() [MLN | MmNk oD )

230 3Dy}

j=0 k=0 £=0

(15)

where [ -] indicates the integer part and where there are N
sums to be performed with their respective indices subject
to the constraints 0 < j + k+ € + --- < Ngand M — Nj
— (N - 1Dk - (N —2)t —-.- < N,. As can be verified nu-
merically, the sum increases dramatically even for moderate
values of {M, N, N}. For such larger systems, kinetic Monte-
Carlo (KMC) simulations of the stochastic process described
by Eq. (9) can be straightforwardly performed. We discuss
our numerical and analytical results, as well as how they re-
late to mean cluster concentrations derived from mass-action
equations, in Sec. IV.

IV. RESULTS AND DISCUSSION

We first show results obtained by simulating the stochas-
tic process described by the master equation (9), where we
rescale time in units of p~'. In order to compare our sim-
ulated stochastic results to those obtained from mass-action
kinetics we plot (n;(7)) together with the solutions ¢, (f) of the
mass-action equations (Egs. (1)).

In Fig. 3, we compare mean cluster numbers derived from
numerical solutions of Egs. (1) with those derived from KMC

M=5, N.=10, N=5

1

M=15, N.=10, N=5

n
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M=25, N, =10, N=5
1

I
1
e e e e
L L 1}

[V ST

8,(n)

- ——— -

Ll
o
'S
>

log (1)

FIG. 4. The difference §; (1) = (m(1)) — () for k=0, 1, 2, 3, 4, 5. In this
example, M =25, N =5, and N = 10.

simulations of the process described by the master equation
(9). We consider a system with g/p = ¢ = 10~ and N, = 10
seeds that can bind up to N = 5 monomers. The mean clusters
numbers (n;(#)) are plotted as a function of time for increasing
total mass M. For M < NN, we find the expected intermedi-
ate metastable configuration that lasts on order of r ~ 1/e,
before reorganizing into an equilibrium configuration. Upon
comparing KMC simulations with the mass-action results, we
find that generally, both methods give qualitatively similar re-
sults. However, deviations of mass-action kinetics from the
simulated do exist and depend primarily on o = M/(N(N).

The discrepancies §;(f) = (ni(t)) — ¢4(t) are plotted in
Fig. 4 as a function of log (¢) for various k. Note that the errors
in this case are predominantly negative for small 4, increase
with cluster size k, then become negative again for the largest
k. These qualitative dependences of the discrepancy on cluster
sizes are also observed for different values of N, N.

In order to more efficiently analyze the discrepancies be-
tween exact solutions and those from mass-action kinetics,
we now develop some analytic approaches. To estimate the
metastable cluster numbers (n}), we preclude detachment by
setting ¢ = 0. As shown in the previous work,"? the final
quenched configurations in this case will depend on the initial
cluster distribution. Analytic progress can be made by using
combinatoric analyses for the related “urn™ problem where

M=25, N=10, N=5
| PR I PURN [T ST T (R ST

(a)

k=1

(c)

log (1)

FIG. 3. Mean cluster sizes (m(t)) obtained from averaging 10° KMC simulations of the stochastic process in Eq. (9) with N = 5, Ny = 10, and ¢ = 10 3,
The dashed curves represent solutions from BD equations for comparison. (a) M = 5 corresponding to o = 0.1, (b) M = 15 corresponding to ¢ = 0.3, and

()M =25(c = 1/2).
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the number of ways to distribute M balls into N bins is enu-
merated. Here, we must also consider a maximum capacity
for each bin of N balls. While results for the simple case
of unlimited capacity (N = oo) are well-known, to the best

J. Chem. Phys. 139, 121918 (2013)

of our knowledge, expressions for the finite capacity N case
have not been previously derived. Using simple combinato-
rial arguments based on the inclusion-exclusion principle il-
lustrated in the Appendix, we find

[#51 M M=Y\\ e NS
(Ng— 1) =ML
by N +Z( l)( ) Z Z by -y, jon N Y O !
i=1 A=N+1 ji=N+1 = L=l Jt)‘nt=1lt‘
(nf) = e e , (16)
V_I t= |Jr SM=Y" e
(Ng — 1) =t JEM
NM+Z(_1)( ) Z Z PN =T A
Ji=N+1  ji=N+1 (M — Zt‘:l Jo! nt‘zl Je:
[
where by ar n,) is the average number of clusters of size & 0, 0) = 42/332. These weights lead to
assuming M particles can be distributed in N seeds without
any constraints (ng') = 3 = 6.416, ¢! = 6.5927,
M LAMK 71 \* ntd) =32 = 1.5813, 9 =2.2673,
bik.m .y = N - — — . an ') =32 :
’ k N N ,
(n3') = 35 =0.8283, ' =0.7797, (18)
We can also map the problem onto a Tonks gas and use similar - ;
techniques. '3 (n) = &5 =0.2259, 5" =0.2682,
Expressions for the true equilibrium cluster numbers » ] e
(n;}(t > &7')) can be constructed using detailed balance ("4 ) = 533 = 0.04518, ¢;” = 0.0922.

among the lowest free energy states, just as done for the ho-
mogeneous case.'* For small detachment rates and ¢ — 07,
the lowest energy states are those containing no free
monomers. We can enumerate such states and find their rel-
ative weights by invoking the appropriate, single-monomer
connecting states, and applying detailed balance. For exam-
ple, in the specific case of M = 5, N, = 10, and N = 4 the
states without any free monomers that carry the most weight
are (0/8, 1, 0,0, 1), (08,0, 1, 1, 0), (0|7, 2,0, 1, 0), (0|7, 1,
2,0,0), (06, 3, 1,0, 0), and (0|5, 5, 0, 0, 0). These states are
indirectly connected via intermediate states with population
of order & by detaching one particle from an existing cluster
and reattaching the monomer to another cluster. For instance,
detachment from the cluster of size four of state (08, 1, 0, 0,
1) leads to state (1|8, 1,0, 1, 0) with a free monomer that may
reattach to any of the eight free seeds to create state (0|7, 2,
0, 1, 0). Similarly, any one of the two monomers can detach
from the latter state, leading to the single-monomer config-
uration (1(8, 1, 0, 1, 0). This free monomer can then attach
to the trimer and lead to the state (0|8, 1, 0, 0, 1). Detailed
balance among the two states with m = 0 leads to 8¢P(0|8,
1, 0,0, 1) =2eP(0[7, 2, 0, 1, 0), so that 4P(0[8, 1,0, 0, 1)
= P(0[7, 2, 0, 1, 0). Similar arguments can be applied to all
equilibrium states with m = 0 to find their relative weights.
Upon normalizing, one can derive the exact probability for
each state to occur. In the above case of M = 5, Ny = 10, N
=4,and ¢ — 0", we find P(0(8, 1, 0,0, 1) = 15/332, P(0|8,
0,1, 1,0) = 15/332, P(0|7, 2, 0, 1, 0) = 60/332, P(0|7, 1, 2,
0, 0) = 60/332, P(0l6, 3, 1, 0, 0) = 140/332, and P(0]5, 5, 0,

Downloaded 01 Aug 2013 to 130.166.52.164. This article is ¢
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As expected, the (nzq) agree with results from our KMC sim-
ulations, but differ significantly from results derived from the
mass-action equations, shown in the right column.

One can extend the detailed balance method to larger sys-
tems, however state space becomes increasingly larger as {M,
Ng, N} increase and the enumeration process much more dif-
ficult. Therefore, we have implemented a computational al-
gorithm that determines the allowable transitions among the
various states (ng, n;. .., ny) via single monomer detachment
to an intermediate state, followed by reattachment, under the
fixed seed number constraint. In our algorithm, we first enu-
merate all possible states for a given set of {M, N, N}. Next,
we determine the set of all allowable transitions, and de-
termine the probabilities between various states by detailed
balancing.

Using these combinatoric approaches, we can easily
compute (n}) and (n?‘) as functions of the total mass M, and
the number of seeds N. In Fig. 5, we plot ¢}, (n ( 5, ¢, and
(n}"). Note that the equilibrium pair values of ¢ and ¢} .
and (n;') and (ny_, ) are symmetric with respect to each other
about M/2 (in the & — 07 limit) due to simple particle-hole
symmetry considerations. As is evident from Fig. 5, except for
very small systems, the difference between c;(r) and (n(r))
are largely quantitative.

In order to systematically quantify the overall difference
between the mass-action cluster size estimates ¢;(r) and the
stochastic exact value (n(7)), we introduce the squared dis-
crepancy A(f) which measures the relative error averaged over

subject to the terms at: httpz/jep.aip.org/about/rights_and_permissions
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FIG. 5. Expected metastable and equilibrium cluster numbers calculated as
a function of M using numerical methods and combinatoric algorithms. Here,
as in Fig. 3, N; = 10, N = 5. For metastable concentrations, (a) and (b), the
differences between the mean-field and exact results are small except for the
largest cluster sizes k = 4, 5. For comparison, ¢;(M) is shown by the dashed
grey curve in (b). (¢) and (d) show C:q and (nzq). respectively. The differences
between czq and (n:q) are more subtle but are generally most noticeable for
o ~0.1,0.9. All densities are symmetric in k<N — k about M = NN/2, with
c:q. to order &, forming an isosbestic point at M = N,N/2.

all k clusters,

N
A(r) = @) —a®P. (19
k=0

N2(N + 1)

In Fig. 6, we plot A(z) for different values of M for N
= 10, N = 5 (the same parameters as used in Figs. 3-5). The
error increases in time and is seen to be largest for M = 5
and M = 45. The behavior in the error A() suggests that cor-
relations in the cluster densities are nonmonotonic in M, and
that mean-field approximations are more accurate for certain
masses M.

To explore the dependence of the error on the system
mass, we restrict ourselves to the metastable (1 < ¢ < ¢7')
and equilibrium (z > £~') regimes. We denote the errors in

4x10™
.’*xl()’4 N

%107

A1)

1x10™

FIG. 6. Plot of A(t) (N = 5, N, = 10) for M = 5, 25, 45. These curves
were generated from KMC simulation of the stochastic process and numerical
evaluation of Egs. (1) for ¢;(#). Note that the error in the metastable regime (1
&t < e ")is largest for M = 45, while at equilibrium (¢ 3> ¢ ') the errors
are largest for M = 5, 45.
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FIG. 7. The overall error of mass-action kinetics. (a) The averaged error in
the metastable regime A*. (b) The averaged error A*! in the equilibrium limit
t>» el

these regimes A* and A®Y, respectively. In Fig. 7(a), we use
Eq. (16) to compute (n}) and Eq. (4) to find ¢, and plot A*
according to Eq. (19). Values for different sets of {M, N, N}
are plotted. Note that A* vanishes as M — 0 and M — NN
as expected. We find that the maximum error typically occurs
for o ~ 0.9. In Fig. 7(b), we used Egs. (5) and (6) to find
¢, and our combinatoric algorithm to compute (n;") in the
construction of A®. Here, both ¢;* and (n}") are particle-hole
“symmetric” as clearly shown in Fig. 5. Therefore, the error
A* is a symmetric function about M = N,N/2, and is typically
maximal near o ~ 0.1, 0.9.

The error in the metastable regime A* typically has a
strong peak near o = (.9. The difference between ¢} and (n})
is most pronounced for large k as shown in Figs. 5(a) and 5(b).
Because the dynamics are irreversible, small M populating an
initially large number of sites can be accurately described by
mass-action. However, when M is large and clusters of maxi-
mum size are populated, a correlation between larger clusters
is induced and mass-action becomes less accurate, resulting
in larger errors in ¢},_,, ¢, near o & (.9, giving rise to the
qualitative shape of A*(M).

The behavior of the equilibrium error A*Y indicates
that the effects of correlations are dominant when there are
few particle or holes in the system. As can be seen from
Figs. 5(c) and 5(d), it is clear that the aggregate difference
between ;! and (n}) is greatest at the lobes near small and
large M, giving rise to the double-peaked error function A®.
When M ~ NN/2, all cluster sizes are equally (mean-field),
or nearly equally (exact solution) populous, leading to a min-
imum in A%,

V. CONCLUSIONS

We formulated and analyzed a model of heterogeneous
self-assembly in a finite-sized system. The system is initiated
with N, seeds, where each can bind monomers one at a time
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with unit rate. Monomers can also detach with rate e. A max-
imum cluster size of N and a total mass M are imposed. Ana-
lytic results in the £ — 0 limit were found for the mean-field,
mass-action model. The full stochastic problem was treated
using KMC simulations, as well as combinatoric analyses
in metastable regime (1 <« t < e !) and at equilibrium (¢
> &7 !). These results allowed us to efficiently analyze the er-
ror arising from cluster number correlations not captured by
the mass-action model.

By comparing the mass-action equation derived cluster
concentrations c(f) with the expected cluster numbers (n;(z))
derived analysis (KMC or combinatorics) of the stochas-
tic model, we find general patterns for the cluster-averaged
squared error A as a function of the mass ratio o = M/(NN).
During the metastable phase of self-assembly (1 <« r < ¢7')
the overall error A* is maximal for o ~ 0.9, which at equi-
librium, the error A® symmetrically peaks at o ~ 0.1 and
o ~ 0.9. These qualitative behaviors are evident in Fig. 7, but
also hold for general parameter values N and N,. We have not
considered the effects of cluster-size dependent attachment
and detachment rates, however, we expect that the double-
peaked symmetry properties at equilibrium to hold to order &
even when ¢, = O(¢) as long as p; = p is constant.

Our analytic results may provide a useful means for es-
timating occupancies of macromolecular assemblies in con-
fined systems such as ligand-receptor complexes and cellular
transcription machinery. The results also confirm that, unlike
in the case of homogeneous self-assembly,'* heterogeneous
self-assembly provides an additional constraint on the number
of seeds or clusters, rendering the mean-field, mass-action de-
scription qualitatively good. However, the overall discrepancy
between the mass-action and exact combinatoric analysis was
found to be nonmonotonic and is maximal especially near
MI(NN) ~ 0.9. Finally, although the expected cluster num-
bers can be qualitatively described using mass-action equa-
tions, calculation of other statistical quantities such as the first
passage time to maximum cluster formation will require a full
stochastic analysis.'®
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APPENDIX: COMBINATORICS IN THE METASTABLE
REGIME

In this appendix, we illustrate the steps taken to derive
Eq. (16), for general {M, N, N}. We will frame our discus-
sion by referring to M as balls and to N, as bins within the
context of the “balls in bins,” since this is a well known topic
in combinatorics.!” It is straightforward to see that our hetero-
geneous cluster size distribution at equilibrium must reduce to
the “balls in bins” results in the limit of ¢ = 0 when no de-
tachment is allowed. Although the problem is well defined,
to the best of our knowledge there are no known results for
the expected cluster numbers under an additional maximum
capacity constraint.

We start by considering the case of M < N. Here, bins
will never be filled to capacity so that by 4 .}, the average
number of bins occupied by & balls without constraints and
assuming there are M balls to distribute, is given by the well
known result

M LM /1 \K
by,m.n,) = Ns ) l—ﬁ v ) (A1)

The above expression is derived by noting that out of M pos-
sible balls & must occupy one specific bin out of a total of
N, while the other M — k balls must occupy a different one.
Equation (A1) is also the mean cluster size (n,(t — oc)) at
equilibrium for our heterogeneous problem, in the limit of ¢
=0 for M < N, or equivalently o < 1/N,. We can now use
Eq. (Al) to find the average number of bins occupied by k
balls by ar v, vy Where each bin cannot exceed capacity N and
assuming there are M balls to distribute. We first consider the
case of N < M < 2N + 1| where there will be at the most
one bin occupied to capacity. One possible way of evaluating
bk, m.n.. vy 1s to consider the general distribution without con-
straints given by Eq. (A1) for general M, N, and discard from
this evaluation any configurations with bins where there are
more than N balls present. We do this by enumerating all pos-
sible configurations in the unconstrained case, given by N
since all balls can be placed in any of the N, bins, subtracting
the contribution of all configurations that exceed bin capac-
ity and renormalizing by the total number of configurations
within the constraint. We thus find, forN < M < 2N + 1

by . m.N Ny =

S

Here, by m n,) is the average number of bins of size k for
M balls in N, bins, not subject to any constraints. Similarly,
bk m—j.n,—1) is the average number of bins of size k for M — j

(M
N _ZJM=N+I Ny(Ns — I)M_j(j)

(A2)

particles in N — 1 bins, not subject to any constraints. Both
are given by Eq. (A1). Note that if M < N, Eq. (A2) reduces
to the unconstrained distribution in Eq. (A1).
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In Eq. (A2), the sum that appears in the numerator is to
isolate and discard configurations with bin occupancy of size
J = N + 1. Since at the most one bin can exceed capacity
the remaining M — j balls are distributed without constraints
among the other N; — 1 bins. The denominator is a normaliz-
ing factor calculated on the total number of viable states under
the capacity constraint.

Within our heterogeneous nucleation framework,
Eq. (A2) represents (n(r — 00)) for 1/N; < o < 2/INg + 1/
(NN) and ¢ = 0 and may be used to approximate (n;(l
&« t < ")) for e — 0. For instance, when M = 5, N,
=2,and N = 3, Eq. (A2) yields the following approximations
for (n;): (ng) = (n;) = 0 and (n2) ~ (n3) ~ 1. These values
coincide with those obtained at the end of Sec. III. Using
Eq. (A2), mean, metastable cluster numbers in systems of
any size can be readily approximated to within order . For
M =6,N, =3, N =4, we find (ny) ~ 5/23, (n;) =~ 18/23,
(n2) &~ 24/23, (n3) ~ 16/23, and (n4) ~ 6/23.

We can now extend this result to larger values of M > 2N,
by invoking an exclusion-inclusion principle. Given general
{M, Ng, N}, at the most there can be [M/(N + 1)] clusters that
exceed capacity, where [ - | denotes the integer part. We will
progressively eliminate the contribution of all of them from
the unconstrained evaluation of by y, y), as done above for
Eq. (A2) when [M/(N + 1)] = 1.

Assume, for instance, that [M/(N + 1)] = 2. In this
case, there can be at the most two bins that exceed capacity.
We must then eliminate from the configurations that led to
Eq. (A2)—where we have only included the possibil-
ity that one bin and one bin only exceeds capacity—
the ones where a second bin may be filled beyond
capacity.

These configurations are characterized by two bins pop-
ulated by jj, j» = N + | particles, thus beyond capacity, and
by M — j; — j» particles distributed within capacity among
the remaining N¢ — 2 bins. We thus pick two bins from the
N that are available, j, = N + 1 from the M population, and
j» = N + 1 from the M — j, left. We find that the collective
weight of these configurations, for all possible j;,j» = N + 1

18
N; M M — NM=ji—h
(3) () (52

This is the extra term that appears in the denominator of
Eq. (16) for [M/(N + 1) = 2]. The numerator will contain the
distribution of the remaining particles within the remaining
bins associated to these configurations, by s—j, — j,. n.—2}, With
their proper weights.

J=N+1 jj=N+1
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The same enumeration process can be iterated for gen-
eral {M, N, N} and for increasing values of [M/(N + 1)].
At every step of the iteration, we need to subtract con-
figurations from the previous terms, resulting in an al-
ternating series. A careful evaluation results in Eq. (16),
which can be easily verified, for example, in the case
2N + 1 < M < 3. In particular, Eq. (16) reduces to
Eq. (A2) for [M = (N + 1)] =i = 1 and to Eq. (Al) for
M=N+1D]=i=0.
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