THE JOURNAL OF CHEMICAL PHYSICS 127, 105101 (2007)
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We derive the equations that describe adsorption of diffusing particles onto a surface followed by
additional surface kinetic steps before being transported across the interface. Multistage surface
kinetics occurs during membrane protein insertion, cell signaling, and the infection of cells by virus
particles. For example, viral entry into healthy cells is possible only after a series of receptor and
coreceptor binding events occurs at the cellular surface. We couple the diffusion of particles in the
bulk phase with the multistage surface kinetics and derive an effective, integrodifferential boundary
condition that contains a memory kernel embodying the delay induced by the surface reactions. This
boundary condition takes the form of a singular perturbation problem in the limit where
particle-surface interactions are short ranged. Moreover, depending on the surface kinetics, the delay
kernel induces a nonmonotonic, transient replenishment of the bulk particle concentration near the
interface. The approach generalizes that of Ward and Tordai [J. Chem. Phys. 14, 453 (1946)] and
Diamant and Andelman [Colloids Surf. A 183-185, 259 (2001)] to include surface Kinetics, giving
rise to qualitatively new behaviors. Our analysis also suggests a simple scheme by which stochastic
surface reactions may be coupled to deterministic bulk diffusion. © 2007 American Institute of

Physics. [DOI: 10.1063/1.2764053]

I. INTRODUCTION

The kinetics of surface particle adsorption and of trans-
port through interfaces play a key role in surfactant
phenomena,l’2 membrane biology and cell signaling,&8 ma-
rine layer oceanography,9 and other biological and chemical
processes. Particle adsorption may fundamentally alter the
physical and chemical properties of the interface, and it is
crucial to understand both equilibrium and dynamical prop-
erties of the adsorbed layers.1’2’4’10 In the seminal work of
Ward and Tordai,'0 a bulk phase acting as a reservoir of
particles is bound by an empty surface onto which the par-
ticles can adsorb. Particles are assumed to lower their free
energy with respect to the bulk phase by irreversibly and
instantaneously adsorbing onto the interface. Under these
conditions, the total concentration of adsorbed particles may
be estimated in relation to measurable interfacial properties,
such as the dynamic surface tension. Several applications,
extensions, and alternate approaches to this work have been
proposed.1 M2 particular, adsorption dynamics in the Ward-
Tordai setting can be rederived through a free energy
approach,11 allowing for the inclusion of ionic surfactant ef-
fects and electrostatic interactions.

In many biochemical systems, the complete adsorption
of a particle arriving from the bulk requires a series of aux-
iliary transformations at the surface before the particle can be
successfully incorporated or “fused” into the surface. These
intermediate steps give rise to a lag time in the complete
adsorption process. For example, the incorporation of emul-
sifying proteins onto an air-water interface may be delayed
by the unfolding of the polypeptide at the interface.’ Adsorp-
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tion of proteins on polymer-grafted interfaces, such as the
glycocalyx layer of vascular endothelial cells, is also delayed
due to the progressive insertion of the protein through the
polymer brush.'*'* Kinetic delays have also been observed
in the adsorption of the hemagglutinin glycoprotein (HA) of
the influenza virus as it enters target host cellular
membranes.”> The mechanisms underlying this delay are not
known in detail but are believed to involve conformational
changes of HA molecules into fusion enabling complexes,
mediated by the presence of binding receptors and corecep-
tors on the target cell membrane. >’ Similarly, the incorpo-
ration of a human immunodeficiency virus (HIV) particle
into a T cell or a macrophage is possible only after the gp120
glycoprotein of the HIV virus membrane recognizes and
binds to the target cell surface receptor CD4, and subse-
quently to other coreceptors such as CCR5 or CXCR4. As in
the case of HA and influenza, the exact number of gp120-
bound receptors and coreceptors required for HIV particle
fusion is yet unknown and might depend on gp120 confor-
mations and receptor/coreceptor binding cooperativity.l&19
The complex nature of surface biochemistry makes quantita-
tive kinetic measurements challenging. Recently, the binding
kinetics of the CD4 cellular receptor to the gp120 HIV ligand
have been measured under different experimental conditions
yielding widely different dissociation rates.”®*! In this work,
we will provide a quantitative framework that can be used to
better understand the experimentally observed lag times in
surface kinetics phenomena that involve multistage surface
chemistry.

In particular, we will explicitly consider intermediate,
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FIG. 1. (Color online) A schematic of a typical adsorption experiment on a
confluent monolayer of target cells. Particles such as viruses are spread over
the cell layer in a thin supernatant film. Inset: After initial nonspecific viral
adsorption on the supernatant-cell interface, cellular receptors and corecep-
tors bind to the virus via a certain stoichiometry, forming fusion intermedi-
ates I';. The location of the interface on which I'; reside is labeled S. The
subsurface layer of thickness €, the subsurface concentration n(z), and the
adsorbed species I';(#) are discussed in the text.

reversible steps for surface binding in the Ward-Tordai for-
malism, deriving an effective boundary condition to comple-
ment the bulk diffusion process. Chemical transitions among
the surface species will introduce memory terms in the
boundary conditions for the bulk concentration. Our analysis
can be readily applied to the titration of replication-
incompetent virus via a colony formation assay,22 as shown
in Fig. 1.

Il. MODEL EQUATIONS

In this section, we motivate and derive the equations
coupling bulk diffusion to surface layer evolution. We con-
sider a general linear reaction scheme to describe the multi-
step surface reaction dynamics. Effective boundary condi-
tions for diffusion from the bulk are derived in Sec. III. As
we shall discuss in detail, we are able to embody the re-
sponse of the adsorbing particle system to the existence of
intermediate chemical steps at the surface into a unique delay
kernel regulating the boundary dynamics. All microscopic
details stemming from the surface dynamics, no matter how
complicated, are contained in the derived memory kernel.
Our approach includes ligand rebinding to surfaces found to
be important for analyzing surface plasmon resonance assays
of biochemical systems.23 In Sec. IV we particularize our
surface reaction scheme to a specific Markov process chain
and evaluate all physically relevant quantities.

A. Bulk diffusion

In the continuum limit, the density of particles n(r,7) in
the bulk phase at position r and time ¢ obeys the convection-
diffusion equation

d 1

2 _V.[DV,]+—V -[DnV U], (1)
ot kgT

where D(r) and U(r) are the local diffusion coefficient and

potential of mean force, respectively, and kT is the thermal
energy. Spatial variation of D(r) and U(r) may arise from
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FIG. 2. Interaction potential between diffusing species and the interface.
The subsurface layer is defined by either the range of the interaction poten-
tial €;,, or the mean free path €,,;,, depending upon which is larger.

interactions with the interface, as shown in Fig. 2. Boundary
conditions are typically applied at the mathematical surface
onto which the particles adsorb or reflect. By balancing the
diffusive flux just above this mathematical interface with the
particle rate of insertion into the interface, a mixed boundary
condition arises

D(r)ir- Vn(r,7) = yn(r,t), reS. (2)

Here, S denotes a position of the surface having normal di-
rection fi. The parameter 7, which has the physical units of
speed, is proportional to the probability f (often called the
accommodation coefficient** or sticking probability25’26) that
a particle is adsorbed into the mathematical interface upon
collision. We define y=y,f such that in the limit y,— % and
f#0, Eq. (2) is equivalent to n(r e S)=0, an absorbing
boundary condition. A reflecting boundary condition, fi-Vn
=0, arises when f=0. Equations (1) and (2) are commonly
used to model simple diffusion-adsorption processes at sur-
faces.

B. Surface reactions

In many applications, particles at an interface undergo
chemical or physical modifications that control, for example,
surface reactivity, surface tension,"*'*!" and conductivity.25
Biological examples include tissue factor initiated coagula-
tion reactions and viral entry. Coagulation factors must work
their way through the glycocalyx layer before they can be
enzymatically primed by the membrane-bound tissue
factors.>’ Entry of viruses, such as HIV, into cells requires
the binding of membrane-bound receptors and coreceptors
before fusion with the target cell can occur. All of these
processes can be thought of as reactions at the membrane
surface. Immediately after adsorption from the bulk, the sur-
face particle concentration, whether of coagulation factors or
of virus particles, is denoted by I';. For example, in the case
of viruses, we can identify the I'; state as being that of a
virus bound to i=1 CD4 surface receptor. The initially ad-
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FIG. 3. Surface reaction scheme among the intermediate states I';. The
source species I'; is supplied by the bulk surface concentration at the inter-
face, n,. In the context of virus recognition and infection, the intermediate
steps label various numbers of receptors or coreceptors associated with the
surface bound virus particle. For example, I'; may denote the surface con-
centration of HIV particles with i receptors and coreceptors attached. This
catenary model could also represent successive degrees of insertion of an
absorbing species through a polymer brush or glycocalyx coated interface.

sorbed species can then kinetically evolve into the other spe-
cies I'; representing virus particles with i > 1 bound receptors
or coreceptors. The kinetics among the N surface species
follows the linear rate equation ,I'=MI"+F(¢), where T'
=(I',,I'5,...,Iy), M is the transition matrix among the N
surface states, and F=(F,0,...,0) is the source of the first,
originating source species I'; coming from the bulk.

Figure 3 illustrates a simple example of a linear surface
reaction scheme that can be described by the above linear
rate equation. In this case the reaction matrix M is tridiago-
nal. General linear reaction matrices can also be analyzed
since our results will depend only on the eigenvalues and
eigenvectors of M.

C. Surface layer

Because the surface densities I'; carry units of number
per area, and the bulk densities are expressed by number per
volume, any kinetic parameter linking bulk source concen-
trations to those at the interface must introduce a physical
length scale. Diamant and Andelman'' have introduced the
sublayer thickness as a mathematical step coupling the bulk
density to surface density. Here, we physically motivate this
“surface layer” and the associated transport. Let us thus in-
troduce a thin layer of thickness ¢ near the surface, in which
the particle density is denoted ny(¢) and is still expressed in
units of number per volume.

The continuum approximation, Eq. (1), breaks down
when resolving the transport within distances of a few mean
free paths. If we identify the sublayer thickness € with the
mean free path €., as shown in Fig. 2, we must solve Eq.
(1) with a nonuniform U(r), and possibly a nonuniform
D(r), to within a distance €=¢, of the interface. For the
choice €=4,,¢, the adsorption velocity y, can be approxi-
mated by the thermal velocity vy such that y=y,f~v;f. The
value of the bulk density at the boundary S+ €11 is defined as
the sublayer density: n(r=S+€n,7)=n ). The equation for
the rate of change of the number per area of molecules in the
thin layer, d(€n(t))/dt, can be obtained by balancing the
latter with the diffusive flux into the layer D(r)i-Vn
(S+¢n, 1), the adsorption into the surface concentration I';,
and the spontaneous desorption from the initially adsorbed
species I'; occurring at rate ¢,. The complete set of equations
coupling the variables n(r,?), ny(z), and I'; is thus

on 1
—=V-[DV —V - [DnV U], 3
o=V DYV DV U] )
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dn .
(—=-F+Dn- Vn|r=S+«‘fn""]11—‘1v n|r:S+€n=”sv (4)

dt

dr
—-=MI+F. F=(F.00,...0). (5)

Here, F=F[n,,{I';}] is the flux of the surface concentration
ng into the incipiently adsorbed species I';. This functional
may depend on interactions among the adsorbed species T';,
including cooperative or crowding effects, and may be mod-
eled using free energies and chemical potential differences
between the bulk and surface.'""?

A further simplification can be introduced by defining a
different sublayer thickness ¢ =¢;,, where €;, is the typical
range of the particle-surface interaction, as shown in Fig. 2.
In this case, at a distance of at least ¢;,, from the interface,
D(r) is constant, U(r) is zero, and Eq. (1) is approximated by
the standard diffusion equation

on(r,t)

P DV?n(r,1). (6)

All effects of the potential of mean force U(r) and spa-
tially varying D(r) are now subsumed into an effective
source F[n,,{I';}]. This is consistent with all previous
treatments™'®"" in which transport in the bulk phase was
described by simple diffusion with uniform D and U. For
low surface densities I'; such that additional adsorption is not
hindered by steric exclusion, one can assume a form F[n,]
independent of surface concentrations I';. Provided F[n,,I;]
is independent of I';, Egs. (1)—(5) can be explicitly solved in
simple geometries. For €=¢;,, v is now interpreted as an
effective adsorption coefficient allowing Eq. (1) to be re-
placed by Eq. (6) and simplifying the bulk concentration
equation.

lll. ANALYSIS

Following the original work of Ward and Tordai, subse-
quent studies on adsorption and dynamic surface tension
measurements”'" eliminate the bulk density at the interface
in Eq. (4) to yield two coupled integrodifferential equations
for n; and I'; which must be numerically self-consistently
solved. Here, we solve the linear Eq. (5) independently from
the bulk densities, but with a source term F[n,] that connects
the surface concentrations I'; with the bulk concentration
n(r,1). If F{n,] is independent of I';, the explicit solution to
Eq. (5) can be found by evaluating the eigenvalues \; and
corresponding eigenvectors v/ of the chemical transition ma-
trix M. Denoting the similarity transform matrix ijEv-,i
such that VMV~!=diag(\ ), the surface densities are

N
Fk(t)z E VZjlvjmrm(O)e}\jt

Jj.m=1
N t

2V, J M Fn (YNt (7)
j=1 0

where I'(0) are the intermediate surface concentrations at ¢
=0. If there are no spontaneous sources of the surface cell
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intermediates, all eigenvalues \;<<0. From Egq. (7), in the
case I'(0)=0, I'(z) is proportional to F[n(z)].

By setting k=1 in Eq. (7), we substitute I';(¢) into Eq.
(4) and find a concise description of the diffusion-adsorption

process:

‘9”;‘;’0 =DV?n(r,1), n(S+€n,10)=nyr), ®
€@5g2=Dﬁ-Vn(nﬂk$wn‘J.K@—tUFMAfﬂdf»
dt 0
)
N
K(1) = 81) - q,>, VijVie, (1o
j=1

where K(t) is the kernel constructed from the eigenvalues
and eigenvectors of M. It is composed of an instantaneous
response—the immediate depletion of n, due to adsorption
into the I"; surface species—and delay terms arising from the
surface kinetics of Eq. (5). The bulk diffusion [Eq. (8)] and
the boundary condition [Eq. (9)] form a complete set of
equations that is one of our main findings. This result explic-
itly shows how multistage adsorption is modeled by a bulk
diffusion equation with a nonlinear integrodifferential
boundary condition that incorporates the delay arising from
the multistep kinetics. Under this scheme, all effects of sur-
face reactions are incorporated in the kernel K(z).

Our analysis can be carried further by specifying a linear
form for the I';-independent source term

Flny(0)]= (), (11)

which simply takes the source for the surface concentration
I'; of the first species to be proportional to the subsurface
concentration. The surfaces densities I';(r) can be found by
substituting n,(¢), derived from Egs. (8)—(10), into the ex-
pression for F[n,(z)] in Eq. (7). Note that the boundary con-
dition, Eq. (9), contains a singular perturbation, and that for
times > {/ v, the “outer solution” approximation €(dn,/dt)
~( yields the standard mixed boundary condition, Eq. (2),
with an additional memory kernel. Moreover, in the linear
approximation of Eq. (11), the convolution of the delay term
in the effective boundary condition (9) is amenable to analy-
sis by Laplace transforms.

v (u—yK(- u))sinv%(z -1)- Vub cosv’%(z - l)iE
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For simplicity, we will assume a simple one-dimensional
problem where all quantities vary spatially only in the direc-
tion normal to an infinite, flat interface at z=0. We nondi-
mensionalize all quantities by using € as the unit of length,
and q?l as the unit of time. Henceforth, in all equations, we
make the replacements z— 7/, t—q,t, n— €, n,— €31,
I',—€*G;, D—{*D/q,, and y— y/({q,). The interface be-
tween the bulk phase and the subsurface layer now resides at
z=1. To render the notation less cumbersome we omit the
overbars from the redefined quantities. In the discussion that
follows, the quantities z,t,n,n,,I';,D,y parameters are di-
mensionless. Upon taking the Laplace transform in time of
the dimensionless forms of Egs. (8)-(10), we obtain

si(z,s) —ng = D(?fﬁ(z,s) , (12)
siiy(s) = ng = Da,it (2,5)|,o1 — YK(s)it,(s), (13)
where
Noyrly
K(s)=1-> L (14)
=1 SN

and ng is the initial, dimensionless constant bulk and sub-
layer concentration. The general solution to the bulk density
n(z,s) from Eq. (12) is

iz,s) 1 yK(s)exp(- (z= 1)\s/D)
v s — . (15)
s(s + VsD + yK(s))

Once the bulk density is derived, all other quantities can be
found by inverse Laplace transforming 7(z,s). In the absence
of spontaneous sources of the surface intermediates, A;<0.
In this case, it is possible to show that 7(s,z) only has a
simple pole at s=0 and a branch cut on s=(—c0,0]. Perform-
ing the integral along the latter, we find the exact results

n(z,t) = nof L(z,u)e™du, (16)
0
and
N | o e)\jt_ P
T(t) =y 2 ViV, f ————L(1,u)du, (17)
j=1 0 u+ )\]
where

L(z,u) =~ — -
™ u(u — yK(-u))* + Du?

Equations (16)—(18) are used to numerically compute all of
our results in the next section. For completeness, analytic
expressions for asymptotically short and long times are de-
rived in the Appendix.

(—u). (18)

IV. RESULTS

We now specify a surface reaction scheme and construct
the delay kernel by using its associated eigenvalues and
eigenvectors. For applications such as multiple receptor
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FIG. 4. (Color online) Surface densities n,(r) for N=1. (a) The sublayer density n(f) as a function of time, for various values of the dimensionless adsorption
rate y. The other parameters are fixed at D=10* and p"=1. (b) The sublayer density n,(t) for D=10* and p"=0.1. Note the bump in concentration imparted
by the slow annihilation rate p”. (c) The deviation of n,(t) (for y=1000) if the transient term €dn,/dt is neglected. The solid curves are found from the full
Eq. (13), while the dashed curves are solutions when the left-hand-side of Eq. (13) is neglected. The deviation occurs only at very short times, is independent

of p*, and is greatest for smaller diffusion coefficient D.

binding of the adsorbed species, we consider a reversible
sequential Markov process among N chemical intermediates
I';, i=1,...,N. As shown in Fig. 3, formation of states I';,,
from state I'; occurs at rate p;, while the reverse step occurs
at rate ¢,,;. The final state I'y is irreversibly annihilated, by
transport across the membrane, or by irreversible reaction,
with rate p*. We can then explicitly write the dimensional
form of Eq. (5) as

dar

d_t] =Fln AU} = (p1+q )+ qo.l5,

dr, |

I =piilici = (@i +p)Ui+ gL, 2<isN-1,
dar N

d_tN =—(p +qn)n+pyily. (19)

In the simplest case where there is only one surface interme-
diate before transport across the interface, N=1 and the di-
mensionless (g;=1) delay kernel is simply K(s)=(s+p") /(s
+p +1). The sublayer concentration n(¢) derived from Eq.
(16) and the surface concentration evaluated from Eq. (17)
are shown in Fig. 4 for various values of y.

Let us estimate typical parameter values for viral fusion
or molecular binding processes. Typical diffusion constants
for viruses of diameter 100 nm and in aqueous environments
are D~ 1078 cm?/s. Using the typical screened electrostatic
interaction potential, €= 1077 cm, we estimate the dimen-
sionless diffusion coefficient D~ 10° s7!/g,. On the other
hand, typical diameters of small ligand molecules are of the
order of 1 nm yielding a nondimensional diffusion constant
D~10% s7'/q,. The nondimensional y estimated using the
thermal velocity vy is now y= fu;/(€q,). For virus particles
y~108s7'f/q,, while for molecular ligands 7y
~10' s7!f/g,. The dissociation rate g, is highly variable
and typically falls in the broad range ¢,
~107*s7! to 10* s7!. For the gp120-CD4 interaction, the
dissociation has been estimated in model systemszo to be
g1~1073 57!, while the detachment rate for mutant viral

specieszl can be as high as ¢, ~ 103 s™!. Lower dissociation
rates are possible in tighter binding ligand receptor pairs
such as EGF—receptor28 where ¢, ~107* s™!. For other pairs
such as P-selectin and its receptors,zg’30 q;~0.1-1 s7!. The
sticking probability f is proportional to the binding probabil-
ity of upon ligand-receptor contact, multiplied by the recep-
tor area fraction at the interface. The factor f depends on the
receptor density but is typically of the order f~ 1074-1072,

In Fig. 4(a), we plot the sublayer density 7, as a function
of time. For p“=1, Fig. 4(a) shows that the sublayer density
ny() starts at its initial value n, and decreases with a nondi-
mensional rate proportional to 7y, eventually monotonically
reaching n,(t—%)—0. If the annihilation rate p* is de-
creased, n, may no longer be monotonic. The observed in-
crease in the surface concentration is due to the slow con-
sumption of material at the interface, allowing some of the
material to desorb after being delayed at the interface, rather
than irreversibly reaching the final annihilated or fused state.
For example, when p“=0.1, the surface concentration 7,(?)
first decreases but recovers slightly at longer times, before
ultimately decaying to zero, as shown in Fig. 4(b).

Note that the curves for n,(r) exhibit a transient at short
times determined by 1/v. Beyond this transient, the full so-
lution we plot in Fig. 4(b) reduces to the outer solution,
corresponding to setting dn,/dt=0 on the left hand side of
Eq. (9). Figure 4(c) explicitly shows different behaviors of
the full and outer solutions during the transient time. The
effect of the €dn,/dt term is to slow down the initial decrease
of n,, particularly for short times within the transient defined
by 1/v. The effects of neglecting the boundary layer are less
pronounced for larger bulk diffusivities D.

The temporal evolution of ny(¢) is strongly dependent on
[',(r). In fact, the nonmonotonicity of ny(¢) for small p*
shown in Fig. 4(b) arises from the buildup of I'; indicated in
Fig. 5(a) which can get released back into the subsurface
layer. For smaller p*, I'; reaches larger values. As long as
p >0, both n, and I'; vanish at sufficiently long times. Com-
plete particle depletion near the surface occurs in dimensions
less than two because there is no bounded steady-state solu-
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FIG. 5. (Color online) (a) The surface concentration I';(¢) for various p*
with D=10* and y=200. (b) The bulk density profiles n(z,#) as a function of
position z at times r=0.01, 0.1, 0.75, and 6.

tion to the diffusion equation and the depletion zone moves
away from the interface for all times, as shown in Fig. 5(b).
Despite free diffusion, the bulk is unable to sustain a particle
source near the surface as is known from classic diffusion
theory.31 The replenishment at small annihilation rates p*
also manifests itself in the bulk. In the case shown in Fig.
5(b), as time increases from t=0.75 to =6, the bulk concen-
tration near the interface recovers before ultimately decreas-
ing according to Eq. (A2).

For general N, the eigenvectors and eigenvalues must be
explicitly computed. In Fig. 6(a), we plot n, as a function of
N for uniform g=1 and uniform p. For small p, the surface
kinetics is a highly biased random walk away from I'y to-
ward T, resulting in a larger n,. Both small p and large N
hinder the annihilation process and impart a more reflective
character to the interface. After initial transients, both n; and
the surface concentrations I'; maintain a high level for a long
time before dissipating. Larger N also effectively trap surface
material in the surface reservoir I';. The relative amounts of
I'; for N=4 are shown in Fig. 6(b). For the small p=0.1 used,
most of the surface density lies in the initial species I},
decreasing in the latter species.

V. SUMMARY AND CONCLUSIONS

We derived an effective, integrodifferential equation for
the boundary condition of a simple diffusion process. The
approach presented differs from the typical Ward and Tordai
treatments since we use a linear model for the time rate of

J. Chem. Phys. 127, 105101 (2007)
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FIG. 6. (Color online) Dependence of surface quantities on number of steps
N in the surface reaction scheme. (a) The sublayer density n, as N is in-
creased. The initial rapid fall from n,/ny=1 is imperceptible on this scale.
(b) The surface concentrations I'; as a function of time for N=4.

change of the initially adsorbed species I';, rather than elimi-
nating the bulk diffusion equation. The effects of intermedi-
ate chemical steps at the boundary are described by a delay
kernel that can be decomposed using Laplace transforms.
This kernel is an explicit function of the eigenvalues and
eigenvectors of the surface reaction transition matrix. Our
results suggest that measurement of a few quantities, such as
fluorescence monitoring of the sublayer density,32 can be
used to reconstruct the principal components of K(z). This
approach can be used to probe qualitative features of the
surface kinetics important in modeling cell membrane signal-
ing and viral infection, where a sequence of chemical steps at
the surface is required before initiation of signaling or viral
fusion. In HIV infection, the initial adsorption rate would be
proportional to the surface CD4 concentration, and the sub-
sequent rates in the reaction scheme in Fig. 3 would depend
on the coreceptor concentrations, their surface mobilities, as
well as the effects of cooperative binding.18 All of these
physical attributes are encoded in the distribution of eigen-
values and eigenvectors of M.

For simple linear reaction schemes on a flat surface, we
find explicit dependencies of the surface concentrations I';
and sublayer concentrations on the eigenvalues and eigen-
vectors of the transition matrix. For smaller annihilation rates
p”, and at least one (N=1) surface intermediate, we find that
the surface concentration persists and can replenish the bulk
concentrations n; after its initial decay. The depletion zone in
the bulk can also recover. Delays that induce instabilities in
dynamical systems have been well established.*® Here, al-
though the delay occurs in a boundary condition, we observe
nonmonotonic behavior arising in the bulk concentrations as
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well. This rebounding effect is also apparent if one differen-
tiates Eq. (9) with respect to time, giving a second order,
harmonic oscillatorlike equation, plus a dissipative coupling
to the bulk concentration.

Whether the surface concentration or the bulk concentra-
tion near the surface vanishes at long times depends on the
surface kinetics as well as geometry. If the combined surface
kinetics toward annihilation is slow relative to bulk diffu-
sion, the decay of the sublayer concentration n, can be ex-
tremely slow. Similarly, if the number of surface states is
large, there is an effective delay to annihilation and a higher
probability that a surface species can detach and replenish
the sublayer concentration. This effect is very sensitive to the
annihilation rate p* and the size of the reaction N and can
keep the subsurface concentration high for essentially all
times.

A number of extensions and related approaches to this
and related systems can be readily investigated. For example,
in applications such as surfactant adsorption, the surface con-
centration I' can be appreciable and suppress additional ad-
sorption. If surface species I'; has molecular area a;, an
adsorption term including steric exclusion would be
yng(1 —Efilairi). The surface rate equations remain linear in
I', but with a time-dependent transition matrix M. The effec-
tive boundary condition, Eq. (9), is now nonlinear in n(z)
through F[n,]. However, for many biochemical applications
(such as cell signaling and virus adsorption and entry) the
total surface concentration is low such that =¥ a,I';<1 and
the adsorption term can be linearized. In our one-
dimensional analysis, as long as N is not too large and there
is an appreciable annihilation process, the surface concentra-
tions all vanish in time.

The effects of multistage adsorption can also be explored
on surfaces of arbitrary shape, particularly for cylinders and
spheres. For multistage processes on a sphere, the sublayer
concentration approaches a positive value ny(t— ®)=n,
(1-[yKy/ (D+yKy)]). We also expect positive eigenvalues
A;>0 of M to have a striking effect on the transport.

Finally, although we have only considered simple linear-
ized surface reaction schemes with negative eigenvalues,
systems that support oscillations, such as those involved in
surface-mediated cell signaling, could also be treated within
our framework. Features of the surface reactions and the bulk
concentrations near the reacting surface remain coupled
through the kernel K(7). Under certain conditions, nonlinear
surface reaction schemes may also be linearized. One ex-
ample is in the stochastic representation of the surface reac-
tions. If we write the surface quantities in terms of the prob-
ability distribution function P(n,;,n,,ns, ...,t) that there are
n; molecules of of type 1, n, of type 2, etc., the surface
reactions can be written as a linear master equation. This
allows our approach to be applied when I'; in the last term of
Eq. (4) is interpreted as (I';(r)), the ensemble average
E{ni}an({n,-},t). Using this interpretation, the full problem
can be solved using linear methods similar to those pre-
sented, albeit for extremely large matrix dimensions.
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APPENDIX: ASYMPTOTIC LIMITS

Here, we derive asymptotic expression for bulk and sur-
face densities. The trivial short time behavior of the subsur-
face density is n,(r)/ny~ (1-yr), independent of the surface
reactions since the first physical phenomenon to occur is
particle adsorption from the bulk to_the interface, at rate .

For large distances (z—1)/VDt>1 and in the limit
yI?(szO) = yK,> \uT/z, asymptotic evaluation of the inverse
Laplace inversion integral over 7i(z,s) yields

1 [7D -1)?
_n(z )~l—<1+ T /—)exp[—(z ) ], ’Z=>l.
no YKo\t 4Dt VDt

(A1)

The condition yK,> \r’FM can be interpreted as a compari-
son between two typical velocities. The usual diffusive ve-
locity \,'Fn is compared to an effective reaction velocity
expressed by y modulated by surface effects through the
kernel K,. We may thus define an effective Damkohler num-
ber D, = yK,\t/\D, so that Eq. (A1) is valid only at large
distances and for large values of D,. The leading term on the
right-hand-side above is independent of the surface kinetics:
the first information to have traveled away from the interface
is the initial depletion of the n, layer into the surface and
interfacial effects emerge as first order corrections.

In the t— oo limit, the dominant contribution to n(z,)
comes from small values of u in Eq. (16). Approximating
L(1,u) with its u— 0 limit, we find the asymptotic long time
limit

()~ 22 "0[ :
nlt)~——\ _ "~ -
‘ YKo Vot i (14 3V, vilvngY)

(A2)

This expression is valid only if the surface dynamics include
a net sink of material. As long as there is some annihilation,
Ky=1 +Z§V=l VI]-I V;1/\;<0 and Eq. (A2) holds. A similar con-
sideration of the small-u dominated integration in Eq. (17)
yields for the surface concentrations

N
% ny D 1 _1
(N — o0 ~—\/—§ vaivaIn,
k(| | ) K, Wtj:l kj ]l| ]|

where A <<0 is the largest eigenvalue of the chemical tran-
sition matrix M. Both Eqgs. (A2) and (A3) exhibit diffusion-
limited 1/ behavior. These general results rely only on the
linearity of F[n,] and are valid for any surface reaction
scheme through the eigenvalues and eigenvectors of the tran-

(A3)

sition matrix M and the resulting function K(s).
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