CHAPTER 18 Performance Evaluation and Active Portfolio Management

18.1 RISK-ADJUSTED RETURNS

Introduction

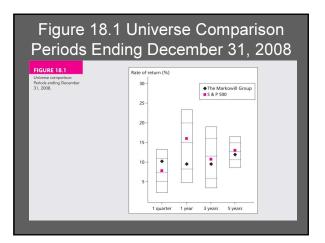
- Complicated subject
- Theoretically correct measures are difficult to construct
- Different statistics or measures are appropriate for different types of investment decisions or portfolios
- Many industry and academic measures are different
- The nature of active managements leads to measurement problems

Abnormal Performance

What is abnormal

- Abnormal performance is measured:
 - Comparison groups
 - Market adjusted
 - Market model / index model adjusted
 - Reward to risk measures such as the Sharpe Measure;

E (r_p-r_f) / σ_p


Factors That Lead to Abnormal Performance

Market timing

- Superior selection
 - Sectors or industries
 - Individual companies

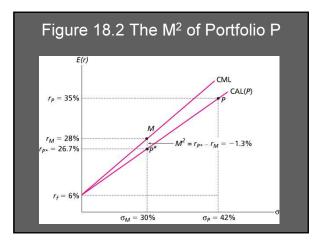
Comparison Groups

- Simplest method
- Most popular
- Compare returns to other funds with similar investment objectives

Risk Adjusted Performance: Treynor

- 2) <u>Treynor Measure</u> $r_{p} r_{f}$
- $\overline{r_n}$ = Average return on the portfolio
- $\overline{r_{f}}$ = Average risk free rate
- β_p = Weighted average β for portfolio

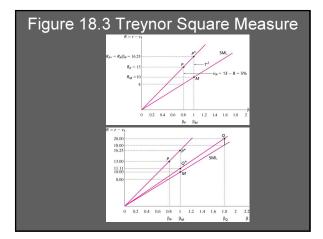
Risk Adjusted Performance: Jensen


- 3) <u>Jensen's Measure</u> $\alpha_{p} = \overline{r_{p}} - [\overline{r_{f}} + \beta_{p} (\overline{r_{m}} - \overline{r_{f}})]$
- α_p = Alpha for the portfolio
- \bar{r}_{p} = Average return on the portfolio
- β_p = Weighted average Beta
- \overline{r}_{f} = Average risk free rate
- $r_m = Avg.$ return on market index port.

M² Measure

- Developed by Modigliani and Modigliani
- Equates the volatility of the managed portfolio with the market by creating a hypothetical portfolio made up of T-bills and the managed portfolio
- If the risk is lower than the market, leverage is used and the hypothetical portfolio is compared to the market

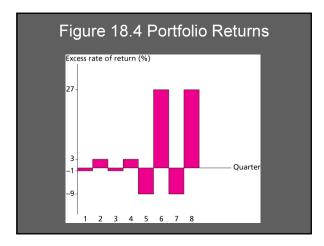
M² Measure: Example

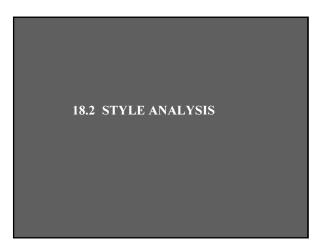

	Managed Portfolio	Market	T-bill				
Return	35%	28%	6%				
Stan. Dev	42%	30%	0%				
Hypothetical Portfolio: Same Risk as Market							
30/42 = .714 in P (1714) or .286 in T-bills							
(.714) (.35) + (.286) (.06) = 26.7%							
	return is less than th portfolio underperfor		he				

T² (Treynor Square) Measure

- Used to convert the Treynor Measure into percentage return basis
- Makes it easier to interpret and compare
- Equates the beta of the managed portfolio with the market's beta of 1 by creating a hypothetical portfolio made up of T-bills and the managed portfolio
- If the beta is lower than one, leverage is used and the hypothetical portfolio is compared to the market

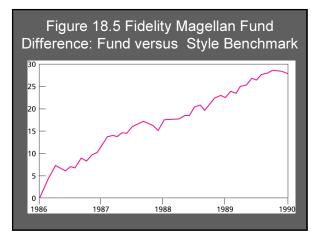
T ² Example						
	Port. P.	Market				
Risk Prem. (r-r _f)	13.00%	10.00%				
Beta	0.80	1.0				
Alpha	5.00%	0.00%				
Treynor Measure	16.25	10.00				
Weight to match Market w = β_M / β_P = 1.0 / 0.8						
Adjusted Return $R_{P}^{*} = w (R_{P}) = 16.25\%$						
T ² _P = R _P * - R _M = 16.25% - 1	0% = 6.25%					

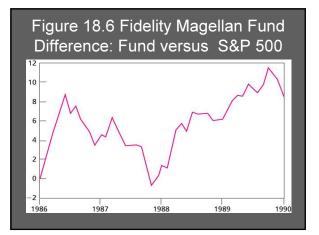


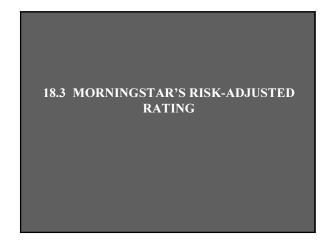

Which Measure is Appropriate

- It depends on investment assumptions
- 1) If the portfolio represents the entire investment for an individual, Sharpe Index compared to the Sharpe Index for the market.
- 2) If many alternatives are possible, use the Jensen α or the Treynor measure
 The Treynor measure is more complete
 because it adjusts for risk

Limitations

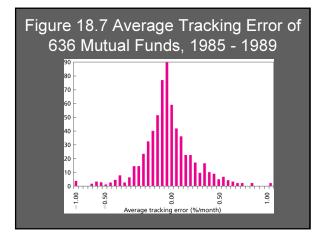

- Assumptions underlying measures limit their usefulness
- When the portfolio is being actively managed, basic stability requirements are not met
- Practitioners often use benchmark portfolio comparisons to measure performance

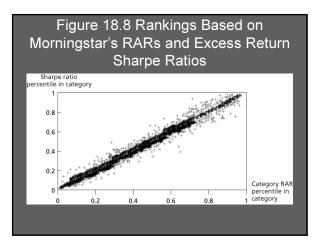




Style Analysis

- Introduced by Bill Sharpe
- Explaining percentage returns by allocation to style
- Style Analysis has become popular with the industry




Morningstar

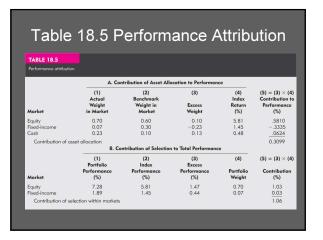
- Premier source of information on mutual funds
- Risk Adjusted Rating (RAR) among most widely used performance measures

Morning Star's Risk Adjusted Rating

- Similar to mean Standard Deviation rankings
- Companies are put into peer groups
- Stars are assigned
 - 1-lowest
 - 5-highest
- Highly correlated to Sharpe measures

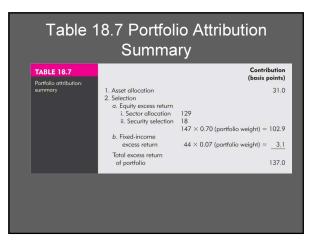
Performance Attribution

- Decomposing overall performance into components
- Components are related to specific elements of performance
- Example components
 - Broad Allocation
 - Industry
 - Security Choice
 - Up and Down Markets


18.4 PERFORMANCE ATTRIBUTION PROCEDURES

Process of Attributing Performance to Components

- Set up a 'Benchmark' or 'Bogey' portfolio
 - $-\operatorname{Use}$ indexes for each component
 - Use target weight structure


Process of Attributing Performance to Components

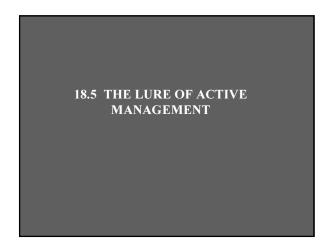

- Calculate the return on the 'Bogey' and on the managed portfolio
- Explain the difference in return based on component weights or selection
- Summarize the performance differences into appropriate categories

Table 18.6 Sector Allocation Withinthe Equity Market

	(1)	(2)	(3)	(4)	(5) = (3) × (-
Sector	Beginning of Month Weights		Difference in	Sector	Contribution of Sector
	Portfolio	S&P 500	Weights	Return (%)	Allocation (%
Basic materials	0.0196	0.083	-0.0634	6.9	-0.437
Business services	0.0784	0.041	0.0374	7.0	0.262
Capital goods	0.0187	0.078	-0.0593	4.1	-0.243
Consumer cyclical	0.0847	0.125	-0.0403	8.8	-0.355
Consumer noncyclical	0.4037	0.204	0.1997	10.0	1.997
Credit sensitive	0.2401	0.218	0.0221	5.0	0.111
Energy	0.1353	0.142	-0.0067	2.6	-0.017
Technology	0.0195	0.109	-0.0895	0.3	-0.027
Total	1.0000	1.000	0.0000		1.290

Lure of Active Management

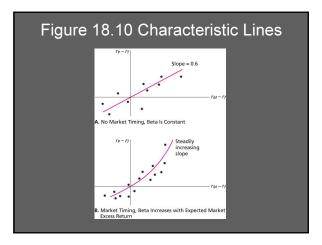
Are markets totally efficient?

- Some managers outperform the market for extended periods
- While the abnormal performance may not be too
- large, it is too large to be attributed solely to noise
- Evidence of anomalies such as the turn of the year exist
- The evidence suggests that there is some role for active management

18. MARKET TIMING

Market Timing

- Adjust the portfolio for movements in the market
- Shift between stocks and money market instruments or bonds
- With perfect ability to forecast behaves like an option
- Little evidence of market timing ability



With Imperfect Ability to Forecast

- Long horizon to judge the ability
- Judge proportions of correct calls
- Bull markets and bear market calls

Market Timing & Performance Measurement

- Adjusting portfolio for up and down movements in the market
 - Low Market Return low ßeta
 - High Market Return high ßeta

18.7 SECURITY SELECTION: THE TREYNOR-BLACK MODEL

Superior Selection Ability

- Concentrate funds in undervalued stocks or undervalued sectors or industries
- Balance funds in an active portfolio and in a passive portfolio
- Active selection will mean some nonsystematic risk

Treynor-Black Model

- Security analysts can analyze in depth only a small number of stocks
- Market index portfolio is the baseline portfolio
- Macro forecasting unit provides forecasts of expected rate of return

Treynor-Black Model: Characteristics

- Objective of security analysis is to form an active portfolio
 - Estimate the SCL
 - Determine the expected return
 - Use estimates for alpha, beta, and residual risk to determine optimal weight of each security
- Macroeconomic forecasts for passive index portfolio and composite forecast for the active portfolio are used to determine the optimal risky portfolio

Treynor-Black Model: Characteristics

- Analysis performed using the model can add value
- The model is easy to implement
- Lends itself to use with decentralized decision making

Portfolio Construction

Rate of return on security *i*, where *e_i* is the firm specific component

$$r_i = r_f + \beta_i (r_m - r_f) + e_i$$

Portfolio Construction

- Subset of available securities are researched and that portfolio will be mixed with the index portfolio to improve diversification
- For each security k, where α represents abnormal expected return

$$r_k = r_f + \beta_k (r_M - r_f) + e_k + \alpha_k$$

Estimating Parameters

For each security analyzed, the following parameters would be estimated:

$$\alpha_k, \beta_k, \sigma^2(e_k)$$

Active portfolio would have the following parameters:

$$\alpha_A, \beta_A, \sigma^2(e_A)$$
Total variance would be:

 $\beta_A^2 \sigma_M^2 + \sigma^2(e_A)$

Sharpe Measurement

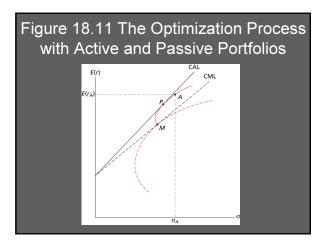
Sharpe measurement of the risky portfolio is:

$$S(P) = \left[\frac{S^2(M) + \alpha_A^2}{\alpha^2(e_A)}\right]$$

Position in active portfolio relative to the market portfolio depends on the ratio of the active portfolio's abnormal return relative to its weakness: appraisal ratio

Sharpe Measurement

Appraisal Ratio


$$\frac{\alpha_A}{\alpha(e_A)}$$

 $\alpha_A = Alpha \text{ for the active portfolic}$
 $\sigma_{(e_A)} = Nonsystematic risk$

Summary Points: Treynor-Black Model

- Sharpe Measure will increase with added ability to pick stocks
- Slope of CAL>CML

 $(r_p-r_f)/\sigma_p > (r_m-r_f)/\sigma_p$

- P is the portfolio that combines the passively managed portfolio with the actively managed portfolio
- The combined efficient frontier has a higher return for the same level of risk

