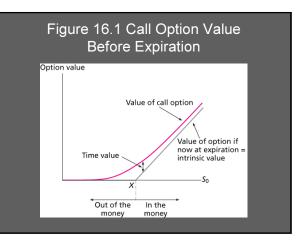
CHAPTER 16 **Option Valuation**

16.1 OPTION VALUATION: INTRODUCTION

Option Values

- Intrinsic value profit that could be made if the option was immediately exercised
 - Call: stock price exercise price
 - Put: exercise price stock price
- Time value the difference between the option price and the intrinsic value



Determinants of Call Option Values

- Stock price
- Exercise price
- Volatility of the stock price
- Time to expiration
- Interest rate
- Dividend rate of the stock

Table 16.1 Determinants of Call Option Values

The Value of a Call Option

Increases

Decreases

Increases

Increases

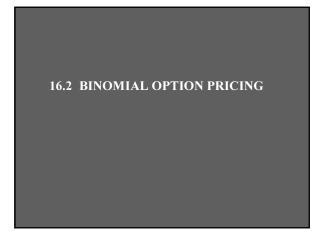
Increases

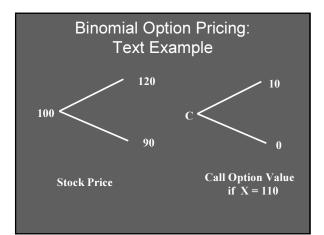
Decreases

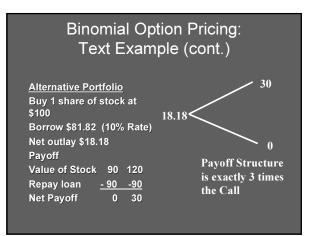
If This Variable Increases

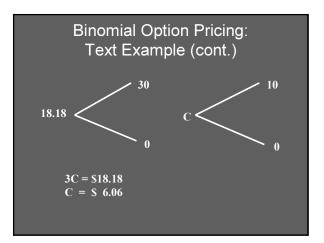
TABLE 16.1 Determinants of call option values

- Stock price, S Exercise price, X Volatility, or Time to expiration, T
 - Interest rate, r_f Dividend payouts



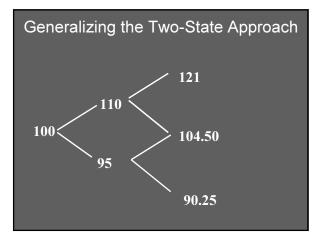


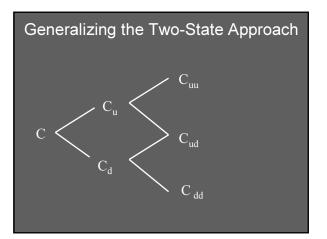


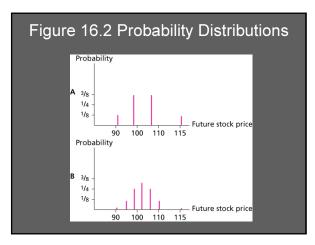


Another View of Replication of Payoffs and Option Values

Alternative Portfolio - one share of stock
and 3 calls written (X = 110)Portfolio is perfectly hedgedStock Value90Call Obligation0- 30Net payoff90Hence100 - 3C = 81.82 or C = 6.06







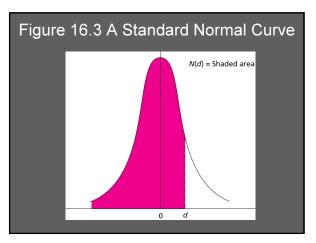
16.3 BLACK-SCHOLES OPTION VALUATION

Black-Scholes Option Valuation

$$\begin{split} C_o &= S_o e^{-\delta T} N(d_1) - X e^{-rT} N(d_2) \\ d_1 &= \left[ln(S_o/X) + (r-\delta+\sigma^2/2)T \right] / (\sigma \ T^{1/2}) \\ d_2 &= d_1 - (\sigma \ T^{1/2}) \\ where \\ C_o &= \text{Current call option value.} \\ S_o &= \text{Current stock price} \\ N(d) &= \text{probability that a random draw from a normal dist. will be less than d.} \end{split}$$

Black-Scholes Option Valuation

- X = Exercise price.
- δ = Annual dividend yield of underlying stock
- e = 2.71828, the base of the natural log
- r = Risk-free interest rate (annualizes continuously compounded with the same maturity as the option.
- T = time to maturity of the option in years.
- In = Natural log function
- $\label{eq:standard} \sigma = \text{Standard deviation of annualized cont.} \\ \text{compounded rate of return on the stock}$



Call Option Example

Probabilities from Normal Distribution

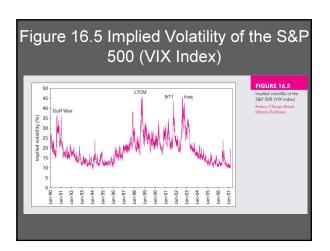
N (.43) = .6	6664	
Table 17.2		
d	N(d)	
.42	.6628	
.43	.6664	Interpolation
.44	.6700	

Probabiliti	es from	Normal Distribution
N (.18) = .5	714	
Table 17.2		
d	N(d)	
.16	.5636	
.18	.5714	
.20	.5793	

Call Option Value

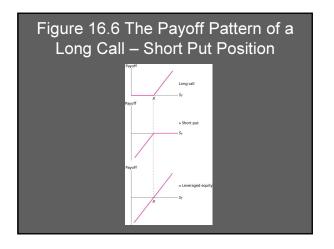
$$\begin{split} &C_o = S_o e^{-\delta T} N(d_1) - X e^{-rT} N(d_2) \\ &C_o = 100 \ X \ .6664 \ -95 \ e^{-.10 \ X \ .25} \ X \ .5714 \\ &C_o = 13.70 \\ \hline \\ & \underline{Implied \ Volatility} \\ & Using \ Black-Scholes \ and \ the \ actual \ price \ of \ the \ option, \ solve \ for \ volatility. \\ & Is \ the \ implied \ volatility \ consistent \ with \ the \end{split}$$

stock?



	$S_T \leq X$	$S_T > X$
Payoff for		
Call Owned	0	S _T - X
Payoff for		
Put Written	-(X -S _T)	0
Total Payoff	S _T - X	S _T - X

Dut Call Darity Palatia



Arbitrage & Put Call Parity

Since the payoff on a combination of a long call and a short put are equivalent to leveraged equity, the prices must be equal.

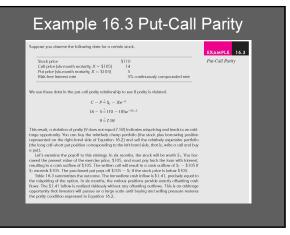
 $C - P = S_0 - X / (1 + r_f)^T$

If the prices are not equal arbitrage will be possible

Put Call Parity - Disequilibrium Example

Stock Price = 110Call Price = 17Put Price = 5Risk Free = 5%Maturity = .5 yrExercise (X) = 105C - P > S₀ - X / (1 + r_f)^T14- 5 > 110 - (105 e (-05 x - 5))9 > 7.59Since the leveraged equity is less expensive;

acquire the low cost alternative and sell the high cost alternative

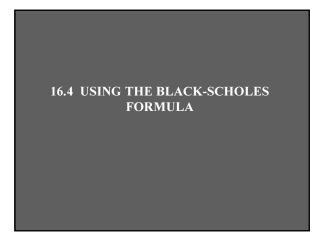


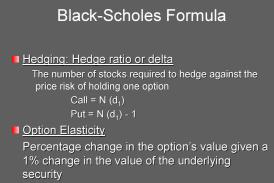
Put Option Valuation

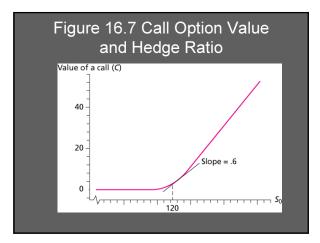
$$\begin{split} \mathsf{P} = & \mathsf{X} e^{\mathsf{-r}\mathsf{T}} \left[1 - \mathsf{N}(\mathsf{d}_2) \right] - \mathsf{S}_0 e^{\mathsf{-}\delta\mathsf{T}} \left[1 - \mathsf{N}(\mathsf{d}_1) \right] \\ \text{Using the sample data} \\ \mathsf{P} &= \$95 e^{(-.10X.25)} (1 - .5714) - \$100 \; (1 - .6664) \\ \mathsf{P} &= \$6.35 \end{split}$$

Put Option Valuation: Using Put-Call Parity

 $P = C + PV (X) - S_{o} + PV (Div)$ = C + Xe^{-rT} - S_{o} + 0 <u>Using the example data</u> C = 13.70 X = 95 S = 100 r = .10 T = .25 P = 13.70 + 95 e^{-.10 X .25} - 100 + 0 P = 6.35

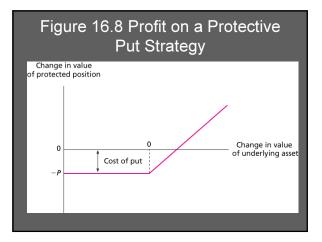


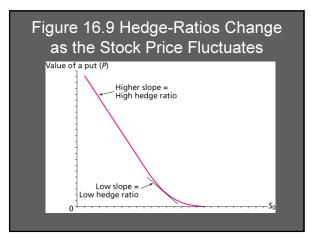




Portfolio Insurance - Protecting Against Declines in Stock Value

- Buying Puts results in downside protection with unlimited upside potential
- Limitations
 - Tracking errors if indexes are used for the puts
 - Maturity of puts may be too short
 - Hedge ratios or deltas change as stock values change





Empirical Tests of Black-Scholes Option Pricing

- Implied volatility varies with exercise price
 - If the model were accurate, implied volatility should be the same for all options with the same expiration date
 - Implied volatility steadily falls as the exercise price rises

