CHAPTER 13
Equity Valuation

13.1 VALUATION BY COMPARABLES

Fundamental Stock Analysis: Models of Equity Valuation

- Basic Types of Models
 - Balance Sheet Models
 - Dividend Discount Models
 - Price/Earnings Models

- Estimating Growth Rates and Opportunities

Models of Equity Valuation

- Valuation models use comparables
 - Look at the relationship between price and various determinants of value for similar firms
- The internet provides a convenient way to access firm data. Some examples are:
 - EDGAR
 - Finance.yahoo.com

Table 13.1 Microsoft Corporation Financial Highlights

<table>
<thead>
<tr>
<th>Valuation Method</th>
<th>January 1, 2006</th>
<th>Industry Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Book value</td>
<td>53.6</td>
<td>32.7</td>
</tr>
<tr>
<td>Market value</td>
<td>99.9</td>
<td>72.7</td>
</tr>
<tr>
<td>Liquidation value</td>
<td>33.3</td>
<td>23.3</td>
</tr>
<tr>
<td>Replacement cost</td>
<td>56.6</td>
<td>34.4</td>
</tr>
</tbody>
</table>

13.2 INTRINSIC VALUE VERSUS MARKET PRICE

Expected Holding Period Return
- The return on a stock investment comprises cash dividends and capital gains or losses.
 - Assuming a one-year holding period:

\[
\text{Expected HPR} = E(r_t) = \frac{E(D_t) + [E(P_t) - P_0]}{P_0}
\]

Required Return
- CAPM gave us required return:
 \[k = r_f + \beta \left(E(r_{kt}) - r_f \right)\]

- If the stock is priced correctly
 - Required return should equal expected return

Intrinsic Value and Market Price
- Market Price
 - Consensus value of all potential traders
 - Current market price will reflect intrinsic value estimates
 - This consensus value of the required rate of return, \(k\), is the market capitalization rate

- Trading Signal
 - \(IV > MP\) Buy
 - \(IV < MP\) Sell or Short Sell
 - \(IV = MP\) Hold or Fairly Priced

13.3 DIVIDEND DISCOUNT MODELS

General Model
\[
V_0 = \sum_{t=1}^{\infty} \frac{D_t}{(1 + k)^t}
\]
- \(V_0\) = Value of Stock
- \(D_t\) = Dividend
- \(k\) = required return
No Growth Model

\[V_0 = \frac{D}{k} \]

- Stocks that have earnings and dividends that are expected to remain constant
 - Preferred Stock

No Growth Model: Example

\[V_0 = \frac{D}{k} \]

\[E_1 = D_1 = \$5.00 \]
\[k = .15 \]
\[V_0 = \$5.00 / .15 = \$33.33 \]

Constant Growth Model

\[V_0 = \frac{D_1 (1 + g)}{k - g} \]

- \(g \) = constant perpetual growth rate

Constant Growth Model: Example

\[V_0 = \frac{D_1 (1 + g)}{k - g} \]

\[E_1 = \$5.00 \quad b = 40\% \quad k = 15\% \]
\[(1-b) = 60\% \quad D_1 = \$3.00 \quad g = 8\% \]
\[V_0 = 3.00 / (.15 - .08) = \$42.86 \]

Stock Prices and Investment Opportunities

\[g = ROE \times b \]

- \(g \) = growth rate in dividends
- \(ROE \) = Return on Equity for the firm
- \(b \) = plowback or retention percentage rate
 - \((1-\text{dividend payout percentage rate})\)

Figure 13.1 Dividend Growth for Two Earnings Reinvestment Policies
Present Value of Growth Opportunities

- If the stock price equals its IV, growth rate is sustained, the stock should sell at:
 \[P_0 = \frac{D_1}{k-g} \]

- If all earnings paid out as dividends, price should be lower (assuming growth opportunities exist)

Present Value of Growth Opportunities (cont.)

- Price = No-growth value per share + PVGO (present value of growth opportunities)
 \[P_0 = \frac{D_1}{k} + PVGO \]

- Where:
 \[E_1 = \text{Earnings Per Share for period 1} \]
 \[PVGO = \frac{D_1(1+g)}{(k-g)} - \frac{E_1}{k} \]

Partitioning Value: Example

- ROE = 20% d = 60% b = 40%
- \[E_1 = \$5.00 \] \[D_1 = \$3.00 \] \[k = 15\% \]
- \[g = .20 \times .40 = .08 \text{ or } 8\% \]

Partitioning Value: Example (cont.)

- \[P_o = \frac{3}{(1.15 - .08)} = \$42.86 \]
- \[NGV_o = \frac{5}{.15} = \$33.33 \]
- \[PVGO = \$42.86 - \$33.33 = \$9.52 \]
- \[P_o = \text{price with growth} \]
- \[NGV_o = \text{no growth component value} \]
- \[PVGO = \text{Present Value of Growth Opportunities} \]

Life Cycles and Multistage Growth Models

- \[P_o = D_0 \sum_{i=1}^{T} \frac{(1+g_1)^i}{(1+k)^i} + \frac{D_T(1+g_2)}{(k-g_2)(1+k)^T} \]

 - \[g_1 = \text{first growth rate} \]
 - \[g_2 = \text{second growth rate} \]
 - \[T = \text{number of periods of growth at } g_1 \]

Multistage Growth Rate Model: Example

- \[D_0 = \$2.00 \] \[g_1 = 20\% \] \[g_2 = 5\% \]
- \[k = 15\% \] \[T = 3 \] \[D_1 = 2.40 \]
- \[D_2 = 2.88 \] \[D_3 = 3.46 \] \[D_4 = 3.63 \]
- \[V_0 = D_0/(1.15) + D_2/(1.15)^2 + D_4/(1.15)^3 + D_4 / (.15 - .05) (.15)^3 \]
- \[V_0 = 2.09 + 2.18 + 2.27 + 23.86 = \$30.40 \]
13.4 PRICE-EARNINGS RATIOS

P/E Ratio and Growth Opportunities
- P/E Ratios are a function of two factors
 - Required Rates of Return (k)
 - Expected growth in Dividends
- Uses
 - Relative valuation
 - Extensive use in industry

P/E Ratio: No expected growth

\[P_0 = \frac{E_1}{k} \]
\[\frac{P_0}{E_1} = \frac{1}{k} \]

- \(E_1 \) - expected earnings for next year
- \(E_1 \) is equal to \(D_1 \) under no growth
- \(k \) - required rate of return

P/E Ratio: Constant Growth

\[P_0 = \frac{D_1}{k-g} = \frac{E_1(1-b)}{k-(b \times ROE)} \]
\[P_0 = \frac{1-b}{E_1} \frac{1}{k-(b \times ROE)} \]

- \(b \) = retention ratio
- \(ROE \) = Return on Equity

Numerical Example: No Growth

\(E_0 = $2.50 \quad g = 0 \quad k = 12.5\% \)
\(P_0 = D/k = \frac{$2.50}{.125} = $20.00 \)
\(P/E = 1/k = 1/.125 = 8 \)

Numerical Example with Growth

\(b = 60\% \quad ROE = 15\% \quad (1-b) = 40\% \)
\(E_1 = $2.50 \times (1 + (.6)\times(.15)) = $2.73 \)
\(D_1 = $2.73 \times (.1-6) = $1.09 \)
\(k = 12.5\% \quad g = 9\% \)
\(P_0 = \frac{1.09/(.125-.09)}{11.4} = $31.14 \)
\(P/E = \frac{1 - .60}{.125 - .09} = 11.4 \)
P/E Ratios and Stock Risk

- Riskier stocks will have lower P/E multiples
- Riskier firms will have higher required rates of return (higher values of k)

$$\frac{P}{E} = \frac{1 - b}{k - g}$$

Pitfalls in Using P/E Ratios

- Flexibility in reporting makes choice of earnings difficult.
- Pro forma earnings may give a better measure of operating earnings.
- Problem of too much flexibility.
Other Comparative Valuation Ratios
- Price-to-book
- Price-to-cash flow
- Price-to-sales
- Be creative

13.5 FREE CASH FLOW VALUATION APPROACHES

Free Cash Flow
- One approach is to discount the free cash flow for the firm (FCFF) at the weighted-average cost of capital
 - Subtract existing value of debt
 - FCFF = EBIT (1 - \(t_c \)) + Depreciation - Capital expenditures - Increase in NWC
 where:
 - EBIT = earnings before interest and taxes
 - \(t_c \) = the corporate tax rate
 - NWC = net working capital

Free Cash Flow (cont.)
- Another approach focuses on the free cash flow to the equity holders (FCFE) and discounts the cash flows directly at the cost of equity
 - FCFE = FCFF - Interest expense (1 - \(t_c \)) + Increases in net debt

Comparing the Valuation Models
- Free cash flow approach should provide same estimate of IV as the dividend growth model
- In practice the two approaches may differ substantially
 - Simplifying assumptions are used
13.6 THE AGGREGATE STOCK MARKET

Earnings Multiplier Approach

- Forecast corporate profits for the coming period
- Derive an estimate for the aggregate P/E ratio using long-term interest rates
- Product of the two forecasts is the estimate of the end-of-period level of the market

Figure 13.8 Earnings Yield of the S&P 500 Versus 10-year Treasury Bond Yield

Table 13.4 S&P 500 Index Forecasts

<table>
<thead>
<tr>
<th>S&P 500 Index Forecast under Various Scenarios</th>
<th>Most Likely Scenario</th>
<th>Pessimistic Scenario</th>
<th>Optimistic Scenario</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treasury bond yield</td>
<td>4.8%</td>
<td>5.3%</td>
<td>4.3%</td>
</tr>
<tr>
<td>Earnings yield</td>
<td>5.8%</td>
<td>6.3%</td>
<td>5.3%</td>
</tr>
<tr>
<td>Earnings-per-share ratio</td>
<td>17.2</td>
<td>15.9</td>
<td>18.9</td>
</tr>
<tr>
<td>EPS forecast</td>
<td>86</td>
<td>86</td>
<td>86</td>
</tr>
<tr>
<td>Forecast for S&P 500</td>
<td>1,483</td>
<td>1,383</td>
<td>1,623</td>
</tr>
</tbody>
</table>

Note: The forecast for the earnings yield on the S&P 500 implies the Treasury bond yield plus 3%. The P/E ratio is the reciprocal of the forecasted earnings yield.