CHAPTER 13 Equity Valuation

13.1 VALUATION BY COMPARABLES

Fundamental Stock Analysis: Models of Equity Valuation

- Basic Types of Models
 - Balance Sheet Models
 - Dividend Discount Models
 - Price/Earnings Ratios
- Estimating Growth Rates and Opportunities

Models of Equity Valuation

- Valuation models use comparables
 - Look at the relationship between price and various determinants of value for similar firms
- The internet provides a convenient way to access firm data. Some examples are;
 EDGAR

Valuation Methods

- Book value
- Market value
- Liquidation value
- Replacement cost

13.2 INTRINSIC VALUE VERSUS MARKET PRICE

Expected Holding Period Return

 The return on a stock investment comprises cash dividends and capital gains or losses

 Assuming a one-year holding period

Expected HPR=
$$E(r) = \frac{E(D_1) + [E(P_1) - P_0]}{P_0}$$

Required Return

CAPM gave us required return:

$$k = r_f + \beta \left[E(r_M) - r_f \right]$$

If the stock is priced correctly
 Required return should equal expected return

Intrinsic Value and Market Price

Market Price

- Consensus value of all potential traders
- Current market price will reflect intrinsic value estimates
- This consensus value of the required rate of return, k, is the market capitalization rate

Trading Signal

- IV > MP Buy
- IV < MP Sell or Short Sell
- IV = MP Hold or Fairly Priced

General Model

$$V_o = \sum_{t=1}^{\infty} \frac{D_t}{\left(1+k\right)^t}$$

V₀ = Value of Stock
 D_t = Dividend
 k = required return

13.3 DIVIDEND DISCOUNT MODELS

No Growth Model

$$V_o = \frac{D}{k}$$

 Stocks that have earnings and dividends that are expected to remain constant

 Preferred Stock

No Growth Model: Example

$$V_o = \frac{D}{k}$$

E₁ = D₁ = \$5.00 k = .15 V₀ = \$5.00 / .15 = \$33.33

Constant Growth Model

$$V_O = \frac{D_o(1+g)}{k-g}$$

g = constant perpetual growth rate

Constant Growth Model: Example

$$V_O = \frac{D_0(1+g)}{k-g}$$
E₁ = \$5.00 b = 40% k = 15%
(1-b) = 60% D₁ = \$3.00 g = 8%
V₀ = 3.00 / (.15 - .08) = \$42.86

Present Value of Growth Opportunities

If the stock price equals its IV, growth rate is sustained, the stock should sell at:

$$P_0 = \frac{D_1}{k - g}$$

If all earnings paid out as dividends, price should be lower (assuming growth opportunities exist)

Partitioning Value: Example

■ ROE = 20% d = 60% b = 40%

■ g = .20 x .40 = .08 or 8%

$$P_o = \frac{3}{(.15-.08)} = \$42.86$$
$$NGV_o = \frac{5}{.15} = \$33.33$$
$$PVGO = \$42.86 - \$33.33 = \$9$$

.52

P_o = price with growth NGV_o = no growth component value PVGO = Present Value of Growth Opportunities

Life Cycles and Multistage Growth Models

$$P_{o} = D_{o} \sum_{t=1}^{T} \frac{(1+g_{1})^{t}}{(1+k)^{t}} + \frac{D_{T}(1+g_{2})}{(k-g_{2})(1+k)^{T}}$$

g₁ = first growth rate
g₂ = second growth rate

■ T = number of periods of growth at g₁

Multistage Growth Rate Model: Example

 $\begin{array}{l} D_0 = \$2.00 \quad g_1 = 20\% \quad g_2 = 5\% \\ k = 15\% \quad T = 3 \quad D_1 = 2.40 \\ D_2 = 2.88 \quad D_3 = 3.46 \quad D_4 = 3.63 \end{array}$

 $V_0 = D_1 / (1.15) + D_2 / (1.15)^2 + D_3 / (1.15)^3 + D_4 / (.15 - .05) ((1.15)^3$

 $V_0 = 2.09 + 2.18 + 2.27 + 23.86 = 30.40

P/E Ratio and Growth Opportunities

- P/E Ratios are a function of two factors
 - Required Rates of Return (k)
 - Expected growth in Dividends
- Uses 🛛
 - Relative valuation
 - Extensive use in industry

$$P_{0} = \frac{E}{k}$$
$$\frac{P_{0}}{E_{1}} = \frac{1}{k}$$

E₁ - expected earnings for next year
 - E₁ is equal to D₁ under no growth
 k - required rate of return

P/E Ratio: Constant Growth

$$P_{0} = \frac{D_{1}}{k-g} = \frac{E_{1}(1-b)}{k-(b \times ROE)}$$

$$\frac{P_{0}}{E_{1}} = \frac{1-b}{k-(b \times ROE)}$$

Numerical Example: No Growth

$$E_0 = $2.50 \quad g = 0 \quad k = 12.5\%$$

$$P_0 = D/k =$$
\$2.50/.125 = \$20.00

$$P/E = 1/k = 1/.125 = 8$$

Numerical Example with Growth

b = 60% ROE = 15% (1-b) = 40% $E_1 = \$2.50 (1 + (.6)(.15)) = \2.73 $D_1 = \$2.73 (1-.6) = \1.09 k = 12.5% g = 9% $P_0 = 1.09/(.125-.09) = \31.14 P/E = 31.14/2.73 = 11.4P/E = (1 - .60) / (.125 - .09) = 11.4

Pitfalls in Using P/E Ratios

- Flexibility in reporting makes choice of earnings difficult
- Pro forma earnings may give a better measure of operating earnings
- Problem of too much flexibility

Other Comparative Valuation Ratios

- Price-to-book
- Price-to-cash flow
- Price-to-sales
- Be creative

13.5 FREE CASH FLOW VALUATION APPROACHES

Free Cash Flow

- One approach is to discount the free cash flow for the firm (FCFF) at the weightedaverage cost of capital
 - Subtract existing value of debt
 - FCFF = EBIT (1- t_c) + Depreciation Capital expenditures – Increase in NWC where:
 - EBIT = earnings before interest and taxes t_c = the corporate tax rate
 - NWC = net working capital

Free Cash Flow (cont.)

- Another approach focuses on the free cash flow to the equity holders (FCFE) and discounts the cash flows directly at the cost of equity
- FCFE = FCFF Interest expense (1- t_c) + Increases in net debt

Comparing the Valuation Models

- Free cash flow approach should provide same estimate of IV as the dividend growth model
- In practice the two approaches may differ substantially
 - Simplifying assumptions are used

13.6 THE AGGREGATE STOCK MARKET

Earnings Multiplier Approach

- Forecast corporate profits for the coming period
- Derive an estimate for the aggregate P/E ratio using long-term interest rates
- Product of the two forecasts is the estimate of the end-of-period level of the market

Table 13.4 S&P 500 Index Forecasts

TABLE 13.4		Most Likely	Pessimistic	Optimisti
S&P 500 index forecasts under various scenarios		Scenario	Scenario	Scenario
	Treasury bond yield	4.8%	5.3%	4.3%
	Earnings yield	5.8%	6.3%	5.3%
	Resulting P/E ratio	17.2	15.9	18.9
	EPS forecast	86	86	86
	Forecast for S&P 500	1,483	1,365	1,623
tote: The forecast for the earning the forecasted earnings yield.	s yield on the S&P 500 equals the T	reasury bond yield plu	s 1%. The P/E ratio	is the reciproca
	s yield on the S&P 500 equals the T	reasury bond yield plu	s 1%. The P/E ratio	is the reciproca
	s yield on the S&P 500 equals the T	reasury bond yield plu	s 1%. The P/E ratio	is the reciproca
	s yield on the S&P 500 equals the T	reasury bond yield plu	s 1%. The P/E ratio	is the reciproca