

Fundamental Stock Analysis:
Models of Equity Valuation
Basic Types of Models
Models of Equity Valuation

- Valuation models use comparables
- Look at the relationship between price and various determinants of value for similar firms
1 The internet provides a convenient way to
access firm data. Some examples are
- EDGAR
- Finance.yahoo.com

1 Estimating Growth Rates and

Required Return

CAPM gave us required return:

$$
k=r_{f}+\beta\left[E\left(r_{M}\right)-r_{f}\right]
$$

1 If the stock is priced correctly

- Required return should equal expected return

Expected Holding Period Return

1 The return on a stock investment comprises cash dividends and capital gains or losses

- Assuming a one-year holding period

$$
\text { Expected } \operatorname{HPR}=E(r)=\frac{E\left(D_{1}\right)+\left[E\left(P_{1}\right)-P_{0}\right]}{P_{0}}
$$

Intrinsic Value and Market Price

1 Market Price

- Consensus value of all potential traders
- Current market price will reflect intrinsic value estimates
- This consensus value of the required rate of return, k, is the market capitalization rate
1 Trading Signal
- IV > MP Buy
- IV < MP Sell or Short Sell
- IV = MP Hold or Fairly Priced

General Model

$$
V_{o}=\sum_{t=1}^{\infty} \frac{D_{t}}{(1+k)^{t}}
$$

$-\mathrm{V}_{0}=$ Value of Stock
$1 \mathrm{D}_{\mathrm{t}}=$ Dividend
Ik = required return

No Growth Model

$$
V_{o}=\frac{D}{k}
$$

1 Stocks that have earnings and dividends that are expected to remain constant - Preferred Stock

No Growth Model: Example

$$
\begin{aligned}
& V_{o}=\frac{D}{k} \\
& \mathrm{E}_{1}=\mathrm{D}_{1}=\$ 5.00 \\
& \mathrm{k}=.15 \\
& \mathrm{~V}_{0}=\$ 5.00 / .15=\$ 33.33
\end{aligned}
$$

Constant Growth Model: Example

$$
V_{o}=\frac{D_{o}(1+g)}{k-g}
$$

$$
\begin{array}{lll}
E_{1}=\$ 5.00 & b=40 \% & k=15 \% \\
(1-b)=60 \% & D_{1}=\$ 3.00 & g=8 \% \\
V_{0}=3.00 /(.15-.08)=\$ 42.86
\end{array}
$$

Figure 13.1 Dividend Growth for
Two Earnings Reinvestment Policies

$$
g=R O E \times b
$$

$1 \mathrm{~g}=$ growth rate in dividends
1 ROE = Return on Equity for the firm

- b = plowback or retention percentage rate
- (1- dividend payout percentage rate)

Present Value of Growth Opportunities

11 If the stock price equals its IV, growth rate is sustained, the stock should sell at:

$$
P_{0}=\frac{D_{1}}{k-g}
$$

1 If all earnings paid out as dividends, price should be lower (assuming growth opportunities exist)

Partitioning Value: Example

1ROE $=20 \% \quad d=60 \% \quad b=40 \%$
$-E_{1}=\$ 5.00 \quad D_{1}=\$ 3.00 \quad k=15 \%$
$\lg =.20 \times .40=.08$ or 8%

Present Value of Growth Opportunities (cont.)

1 Price $=$ No-growth value per share + PVGO (present value of grewth opportunities)

$$
P_{0}=\frac{1}{k}+P V G O
$$

1 Where
$E_{1}=$ Earnings Per Share for period 1 and $P V G O=\frac{D_{0}(1+g)}{(k-g)}-\frac{E_{1}}{k}$

Partitioning Value: Example (cont.)

$$
\begin{aligned}
& P_{o}=\frac{3}{(.15-.08)}=\$ 42.86 \\
& N G V_{o}=\frac{5}{.15}=\$ 33.33 \\
& P V G O=\$ 42.86-\$ 33.33=\$ 9.52
\end{aligned}
$$

$P_{0}=$ price with growth
$\mathrm{NGV}_{\mathrm{o}}=$ no growth component value
PVGO = Present Value of Growth Opportunities

Life Cycles and Multistage Growth Models
$P_{o}=D_{0} \sum_{i=1}^{T} \frac{\left(1+g_{1}\right)^{t}}{(1+k)^{t}}+\frac{D_{I}\left(1+g_{2}\right)}{\left(k-g_{2}\right)(1+k)^{T}}$
$1 \mathrm{~g}_{1}=$ first growth rate
$1 \mathrm{~g}_{2}=$ second growth rate
IT = number of periods of growth at g_{1}

Multistage Growth Rate Model: Example
$D_{0}=\$ 2.00 \quad g_{1}=20 \% \quad g_{2}=5 \%$
$k=15 \% \quad T=3 \quad D_{1}=2.40$
$D_{2}=2.88 \quad D_{3}=3.46 \quad D_{4}=3.63$

$$
V_{0}=D_{1} /(1.15)+D_{2} /(1.15)^{2}+D_{3} /(1.15)^{3}+
$$

$$
D_{4} /(.15-.05)\left((1.15)^{3}\right.
$$

$$
V_{0}=2.09+2.18+2.27+23.86=\$ 30.40
$$

P/E Ratio and Growth Opportunities

1 P/E Ratios are a function of two factors

- Required Rates of Return (k)
- Expected growth in Dividends

1 Uses

- Relative valuation
- Extensive use in industry

P/E Ratio: No expected growth

$$
\begin{aligned}
& P_{0}=\frac{E_{1}}{k} \\
& \frac{P_{0}}{E_{1}}=\frac{1}{k}
\end{aligned}
$$

$1 E_{1}$ - expected earnings for next year
$-E_{1}$ is equal to D_{1} under no growth
$\square \mathrm{k}$ - required rate of return

P/E Ratio: Constant Growth

$$
\begin{aligned}
& P_{0}=\frac{D_{1}}{k-g}=\frac{E_{1}(1-b)}{k-(b \times R O E)} \\
& \frac{P_{0}}{E_{1}}=\frac{1-b}{k-(b \times R O E)}
\end{aligned}
$$

$1 b=$ retention ration
1 ROE = Return on Equity

> Numerical Example: No Growth
> $E_{0}=\$ 2.50 \quad \mathrm{~g}=0 \quad \mathrm{k}=12.5 \%$
> $P_{0}=\mathrm{D} / \mathrm{k}=\$ 2.50 / .125=\$ 20.00$
> P/E $=1 / k=1 / .125=8$

Numerical Example with Growth

$$
\begin{aligned}
& b=60 \% \quad R O E=15 \% \quad(1-b)=40 \% \\
& E_{1}=\$ 2.50(1+(.6)(.15))=\$ 2.73 \\
& D_{1}=\$ 2.73(1-.6)=\$ 1.09 \\
& k=12.5 \% \quad g=9 \% \\
& P_{0}=1.09 /(.125-.09)=\$ 31.14 \\
& P / E=31.14 / 2.73=11.4 \\
& P / E=(1-.60) /(.125-.09)=11.4
\end{aligned}
$$

P/E Ratios and Stock Risk

1 Riskier stocks will have lower P/E multiples

- Riskier firms will have higher required rates of return (higher values of k)

$$
\frac{P}{E}=\frac{1-b}{k-g}
$$

Figure 13.3 P/E Ratios and Inflation

Figure 13.4 Earnings Growth for Two Companies

Figure 13.5 Price-Earnings Ratios

Other Comparative Valuation Ratios

1 Price-to-book
1 Price-to-cash flow
1 Price-to-sales
1 Be creative

Free Cash Flow (cont.)

1 Another approach focuses on the free cash flow to the equity holders (FCFE) and discounts the cash flows directly at the cost of equity

- FCFE = FCFF - Interest expense $\left(1-t_{c}\right)+$ Increases in net debt

Figure 13.7 Valuation Ratios for the S\&P 500

Free Cash Flow

1 One approach is to discount the free cash flow for the firm (FCFF) at the weightedaverage cost of capital

- Subtract existing value of debt
- FCFF $=$ EBIT $\left(1-t_{c}\right)+$ Depreciation - Capital expenditures - Increase in NWC
where:
EBIT = earnings before interest and taxes
$t_{c}=$ the corporate tax rate
NWC = net working capital

Comparing the Valuation Models

1 Free cash flow approach should provide same estimate of IV as the dividend growth model
In practice the two approaches may differ substantially

- Simplifying assumptions are used

Earnings Multiplier Approach

1 Forecast corporate profits for the coming period
1 Derive an estimate for the aggregate P/E ratio using long-term interest rates
1 Product of the two forecasts is the estimate of the end-of-period level of the market

Figure 13.8 Earnings Yield of the S\&P 500 Versus 10-year Treasury Bond Yield

Table 13.4 S\&P 500 Index Forecasts

