

11.1 INTEREST RATE RISK

Interest Rate Sensitivity

- Inverse relationship between price and yield
- An increase in a bond's yield to maturity results in a smaller price decline than the gain associated with a decrease in yield
- Long-term bonds tend to be more price sensitive than short-term bonds

Interest Rate Sensitivity (cont)

- Sensitivity of bond prices to changes in yields increases at a decreasing rate as maturity increases
- Interest rate risk is inversely related to bond's coupon rate
- Sensitivity of a bond's price to a change in its yield is inversely related to the yield to maturity at which the bond currently is selling

Duration

- A measure of the effective maturity of a bond
- The weighted average of the times until each payment is received, with the weights proportional to the present value of the payment
- Duration is shorter than maturity for all bonds except zero coupon bonds
- Duration is equal to maturity for zero coupon bonds

Duration: Calculation

$$w_{t} = \left[CF_{t} / (1 + y)^{t} \right] / Price$$

$$D = \sum_{t=1}^{T} t \times w_{t}$$

$$CF_{t} = Cash \ Flow \ for \ period \ t$$

Duration Calculation					
8% Bon	Time d years	Payment	PV of CF (10%)	Weight	C1 X C4
	1	80	72.727	.0765	.0765
	2	80	66.116	.0690	.1392
	3	1080	811.420	.8539	2.5617
Sum			950.263	1.0000	2.7774

Duration/Price Relationship

 Price change is proportional to duration and not to maturity
 ΔP/P = -D x [Δy / (1+y)]
 D* = modified duration
 D* = D / (1+y)
 ΔP/P = - D* x Δy

11.2 PASSIVE BOND MANAGEMENT

Immunization

Passive management

- Net worth immunization
- Target date immunization

Figure 11.4 Growth of Invested Funds

Cash Flow Matching and Dedication

- Automatically immunizes a portfolio from interest rate movements
 - Cash flow from the bond and the obligation exactly offset each other
- Not widely pursued
- Sometimes not even possible

Limitations of Duration

- Duration is only an approximation
- Duration asserts that the percentage price change is directly proportional to the change in the bond's yield
- Underestimates the increase in bond prices when yield falls
- Overestimates the decline in price when the yield rises

11.3 CONVEXITY

Swapping Strategies

- Substitution swap
- Intermarket swap
- Rate anticipation swap
- Pure yield pickup
- Tax swap

Horizon Analysis

Analyst selects a particular investment period and predicts bond yields at the end of that period

Contingent Immunization

- Allow the managers to actively manage until the bond portfolio falls to a threshold level
- Once the threshold value is hit the manager must then immunize the portfolio
 Active with a floor loss level

<figure>