

Interest Rate Sensitivity

1 Inverse relationship between price and yield
1 An increase in a bond's yield to maturity results in a smaller price decline than the gain associated with a decrease in yield

- Long-term bonds tend to be more price sensitive than short-term bonds

Interest Rate Sensitivity (cont)

1 Sensitivity of bond prices to changes in yields increases at a decreasing rate as maturity increases
1 Interest rate risk is inversely related to bond's coupon rate
1 Sensitivity of a bond's price to a change in its yield is inversely related to the yield to maturity at which the bond currently is selling

Figure 11.1 Change in Bond Price as a Function of YTM

Duration

1 A measure of the effective maturity of a bond
1 The weighted average of the times until each payment is received, with the weights proportional to the present value of the payment
1 Duration is shorter than maturity for all bonds except zero coupon bonds
1 Duration is equal to maturity for zero coupon bonds

Figure 11.2 Cash Flows of 8-yr Bond with 9\% annual coupon and 10\% YTM

Duration Calculation					
8\% Bond	Time	Payment	$\begin{aligned} & \text { PV of CF } \\ & (10 \%) \end{aligned}$	Weight	$\begin{gathered} C_{4} 1 x \end{gathered}$
	1	80	72.727	. 0765	. 0765
	2	80	66.116	.0690	. 1392
	3	1080	811.420	. 8339	2.5617
Sum			950.263	1.0000	2.7774

Figure 11.3 Duration as a Function of Maturity

Duration/Price Relationship

1 Price change is proportional to duration and not to maturity
11.2 PASSIVE BOND MANAGEMENT
$\Delta P / P=-D \times[\Delta y /(1+y)]$
$\mathrm{D}^{*}=$ modified duration
$D^{*}=\mathrm{D} /(1+\mathrm{y})$
$\Delta P / P=-D^{*} x \Delta y$

Figure 11.4 Growth of Invested Funds

Cash Flow Matching and Dedication

1 Automatically immunizes a portfolio from interest rate movements

- Cash flow from the bond and the obligation exactly offset each other
1 Not widely pursued
Sometimes not even possible

Correction for Convexity

Modify the pricing equation:

$$
\frac{\Delta P}{P}=-D \times \Delta y+1 / 2 \times \text { Convexity } \times(\Delta y)^{2}
$$

Convexity is Equal to:

$$
\frac{1}{P \times(1+\mathrm{y})^{2}} \sum_{t=1}^{N}\left[\frac{C F_{t}}{(1+y)^{t}}\left(t^{2}+t\right)\right]
$$

$$
\text { Where: } \mathrm{CF}_{\mathrm{t}} \text { is the cash flow (interest }
$$ and/or principal) at time t .

Figure 11.7 Convexity of Two Bonds

Horizon Analysis

1 Analyst selects a particular investment period and predicts bond yields at the end of that period

Contingent Immunization

A Allow the managers to actively manage until the bond portfolio falls to a threshold level
1 Once the threshold value is hit the manager must then immunize the portfolio 1 Active with a floor loss level

Figure 11.8 Contingent Immunization

