CHAPTER 5

Risk and Return: Past and Prologue

Holding Period Return
$H P R=\frac{P_{1}-P_{0}+D_{1}}{P_{0}}$
$\mathrm{P}_{0}=$ Beginning Price
$\mathrm{P}_{1}=$ Ending Price
$\mathrm{D}_{1}=$ Cash Dividend

5.1 RATES OF RETURN

```
Rates of Return: Single Period
            Example
Ending Price = 24
Beginning Price = 20
Dividend =
1
HPR =(24-20+1)/(20)=25%
```

Measuring Investment Returns Over Multiple Periods

1 May need to measure how a fund performed over a preceding five-year period
1 Return measurement is more ambiguous in this case

Rates of Return: Multiple Period Example Text (Page 128)

Data from Table 5.1

	1	2	3	4
Assets(Beg.)	1.0	1.2	2.0	.8
HPR	.10	.25	$(.20)$.25
TA (Before				
Net Flows	1.1	1.5	1.6	1.0
Net Flows	0.1	0.5	(0.8)	0.0
End Assets	1.2	2.0	.8	1.0

Returns Using Arithmetic and Geometric Averaging

Arithmetic

$$
\begin{aligned}
r_{a} & =\left(r_{1}+r_{2}+r_{3}+\ldots r_{n}\right) / n \\
r_{a} & =(.10+.25-.20+.25) / 4 \\
& =.10 \text { or } 10 \%
\end{aligned}
$$

Geometric

```
rg}={[(1+\mp@subsup{r}{1}{})(1+\mp@subsup{r}{2}{})\ldots(1+\mp@subsup{r}{n}{})]\mp@subsup{}}{}{1/n}-
rg}={[(1.1)(1.25)(.8)(1.25)]} 1/4 -1
    =(1.5150) 1/4 -1 = .0829 = 8.29%
```


Dollar Weighted Average

Using Text Example (Page 128)

Net CFs	1	2	3	4
$\$(\mathrm{mil})$	-0.1	-0.5	0.8	1.0

$1.0=\frac{-0.1}{1+I R R}+\frac{-0.5}{(1+I R R)^{2}}+\frac{0.8}{(1+I R R)^{3}}+\frac{1.0}{(1+I R R)^{4}}=4.17 \%$

Quoting Conventions

```
APR = annual percentage rate
    (periods in year) X (rate for period)
EAR = effective annual rate
    ( 1+ rate for period)Periods per yr - 1
    Example: monthly return of 1%
        APR = 1% X 12 = 12%
        EAR = (1.01) 12 - 1 = 12.68%
```


Scenario Analysis and Probability Distributions

1) Mean: most likely value
2) Variance or standard deviation
3) Skewness

[^0]

Skewed Distribution: Large Negative Returns Possible

Measuring Mean: Scenario or Subjective Returns

Subiective returns
$E(r)=\sum_{t=1}^{S} p(s) r(s)$
$p(s)=$ probability of a state $r(s)=$ return if a state occurs
1 to s states

Numerical Example: Subjective or Scenario Distributions

State Prob. of State	in State	
1	.1	-.05
2	.2	.05
3	.4	.15
4	.2	.25
5	.1	.35

$E(r)=(.1)(-.05)+(.2)(.05) \ldots+(.1)(.35)$
$E(r)=.15$ or 15%

Measuring Variance or Dispersion of Returns

Subiective or Scenario

$$
\begin{gathered}
\operatorname{Var}(r)=\sum_{t=1}^{s} p(s)[r(s)-E(r)]^{2} \\
S D(r) \equiv \sigma=\sqrt{\operatorname{Var}(r)}
\end{gathered}
$$

Measuring Variance or Dispersion of Returns

Using Our Example:
$\operatorname{Var}=[(.1)(-.05-.15) 2+(.2)(.05-.15) 2 \ldots+.1(.35-.15) 2]$
Var= 0.01199
S.D. $=[.01199] 1 / 2=.1095$ or 10.95%

Risk Premiums and Risk Aversion

1 Degree to which investors are willing to commit funds

- Risk aversion

1 If T-Bill denotes the risk-free rate, r_{f}, and variance, σ_{P}^{2}, denotes volatility of returns then: The risk premium of a portfolio is:

$$
E\left(r_{p}\right)-r_{f}
$$

Risk Premiums and Risk Aversion

1 To quantify the degree of risk aversion with parameter A:

$$
\begin{aligned}
& E\left(r_{P}\right)-r_{f}=\frac{1}{2} A \sigma_{P}^{2} \\
& A=\frac{E\left(r_{P}\right)-r_{f}}{\frac{1}{2} \sigma_{P}^{2}}
\end{aligned}
$$

5.3 THE HISTORICAL RECORD

Annual Holding Period Returns

 From Table 5.3 of Text| | Geom.
 Mean\% | Arith.
 Mean\% | Stan.
 Dev. \% |
| :--- | :---: | :---: | :---: |
| Series | Merld | | |
| World Stk | 9.80 | 11.32 | 18.05 |
| US Lg Stk | 10.23 | 12.19 | 20.14 |
| US Sm Stk 12.43 | 18.14 | 36.93 | |
| Wor Bonds | 5.80 | 6.17 | 9.05 |
| LT Treas. | 5.35 | 5.64 | 8.06 |
| T-Bills | 3.72 | 3.77 | 3.11 |
| Inflation | 3.04 | 3.13 | 4.27 |

Annual Holding Period Excess Returns From Table 5.3 of Text			
Series	Risk Prem.	Stan Dev. \%	Sharpe Measure
World Stk	7.56	18.37	0.41
US Lg Stk	8.42	20.42	0.41
US Sm Stk	14.37	37.53	0.38
Wor Bonds	2.40	8.92	0.27
LT Treas	1.88	7.87	0.24

Figure 5.2 Rates of Return on Stocks, Bonds and T-Bills

FIGURE 5.2
 Rates of returs on stocks, bonds and T-bills.
 stocks, bond $1926-2006$
 Suance: Prepured from Tathe 5.3.

Figure 5.3 Normal Distribution with Mean of 12\% and St Dev of 20\%

Table 5.4
Size-Decile Portfolios

TABLE 5.4	Decile	Geometric Average	Arithmetic Average	Standard Deviation
Size-decile portiolios of	1 Largest	9.6\%	11.4\%	19.1\%
DAO Summary Statisics	2	10.9	13.2	21.6
of Annual Returns,	3	11.4	13.8	22.9
1927-2006	4	11.9	14.8	25.2
	5	12.0	15.2	26.6
	6	12.1	15.6	27.6
	7	12.4	16.3	30.0
	8	12.5	17.0	32.5
		12.2	17.5	35.3
	10 Smallest	13.8	20.4	40.9
	Total Value Weighted Index	10.1\%	12.1\%	20.2\%

5.4 INFLATION AND REAL RATES OF RETURN

Real vs. Nominal Rates

Fisher effect: Approximation
nominal rate $=$ real rate + inflation premium $R=r+i$ or $r=R-i$
Example $r=3 \%, i=6 \%$

$$
R=9 \%=3 \%+6 \% \text { or } 3 \%=9 \%-6 \%
$$

Real vs. Nominal Rates

Fisher effect:
$1+r=\frac{1+R}{1+i}$ or:
$r=\frac{R-i}{1+i}$
$2.83 \%=(9 \%-6 \%) /(1.06)$


```
        The Risky Asset:
        Text Example (Page 143)
```

```
Total portfolio value =$300,000
```

Total portfolio value =\$300,000
Risk-free value = 90,000
Risk-free value = 90,000
Risky (Vanguard and Fidelity)= 210,000
Risky (Vanguard and Fidelity)= 210,000
Vanguard (V)=54%
Vanguard (V)=54%
Fidelity (F) = 46%

```
Fidelity (F) = 46%
```

The Risky Asset:
Text Example (Page 143)

$$
\begin{aligned}
& y=\frac{210,000}{300,000}=0.7(\text { risky assets, portfolio } P) \\
& 1-y=\frac{90,000}{300,000}=0.3(\text { risk-free assets) }
\end{aligned}
$$

Vanguard	$113,400 / 300,000=0.378$
Fidelity	$96,600 / 300,000=0.322$
Portfolio P	$210,000 / 300,000=0.700$
Risk-Free Assets F	$90,000 / 300,000=0.300$
Portfolio C	$300,000 / 300,000=1.000$

Calculating the Expected Return
Text Example (Page 145)

$$
\begin{array}{ll}
r_{f}=7 \% & \sigma_{r f}=0 \% \\
E\left(r_{p}\right)=15 \% & \sigma_{p}=22 \% \\
y=\% \text { in } p & (1-y)=\% \text { in } r_{f}
\end{array}
$$

Expected Returns for Combinations

$E\left(r_{c}\right)=y E\left(r_{p}\right)+(1-y) r_{f}$
$\mathrm{r}_{\mathrm{c}}=$ complete or combined portfolio
For example, y = . 75

$$
E\left(r_{c}\right)=.75(.15)+.25(.07)
$$

$$
=.13 \text { or } 13 \%
$$

Figure 5.5 Investment Opportunity Set with a Risk-Free Investment

Variance on the Possible Combined Portfolios

Since $\sigma_{r_{f}}=0$, then

$$
\sigma_{c}=y \sigma_{p}
$$

Combinations Without Leverage

If $\mathrm{y}=.75$, then
$\sigma_{c}=.75(.22)=.165$ or 16.5%
If $y=1$
$\sigma_{c}=1(.22)=.22$ or 22%
If $\mathrm{y}=0$
$\sigma_{c}=0(.22)=.00$ or 0%

Using Leverage with Capital Allocation Line

Borrow at the Risk-Free Rate and invest in stock
Using 50\% Leverage
$r_{c}=(-.5)(.07)+(1.5)(.15)=.19$
$\sigma_{c}=(1.5)(.22)=.33$

Risk Aversion and Allocation

1 Greater levels of risk aversion lead to larger proportions of the risk free rate 1 Lower levels of risk aversion lead to larger proportions of the portfolio of risky assets
1 Willingness to accept high levels of risk for high levels of returns would result in leveraged combinations
5.6 PASSIVE STRATEGIES AND THE CAPITAL MARKET LINE
Table 5.5 Average Rates of Return, Standard Deviation and Reward to Variability

TABLE 5.5		Excess Return (\%)		
Averoge excess rote of		Average	SD	Sharpe Ratio
return, standord devio-	1926-1946	8.36	27.98	0.30
tions and the reward-to-	1947-1966	12.72	18.05	0.70
volatility ratio of large common stock over	1967-1986	4.14	17.44	0.24
common stocks over	1987-2006	8.47	16.22	0.52
one-month bills over 1926-2006 and various subperiods	1926-2006	8.42	20.42	0.41

[^0]: * If a distribution is approximately normal, the distribution is described by characteristics 1 and 2

