

5.1 RATES OF RETURN

$$HPR = \frac{P_1 - P_0 + D_1}{P_0}$$

 P_0 = Beginning Price P_1 = Ending Price D_1 = Cash Dividend

Rates of Return: Single Period Example

Ending Price = 24 Beginning Price = 20 Dividend = 1

HPR = (24 - 20 + 1)/ (20) = 25%

Measuring Investment Returns Over Multiple Periods

- May need to measure how a fund performed over a preceding five-year period
- Return measurement is more ambiguous in this case

Rates of Return: Multiple Period Example Text (Page 128)

Returns Using Arithmetic and Geometric Averaging

<u>Arithmetic</u>

$$\begin{split} r_a &= (r_1 + r_2 + r_3 + \dots r_n) \ / \ n \\ r_a &= (.10 + .25 - .20 + .25) \ / \ 4 \\ &= .10 \ or \ 10\% \\ \hline \frac{Geometric}{r_g = \{[(1+r_1) \ (1+r_2) \ \dots \ (1+r_n)]\}^{1/n} - 1 \\ r_g &= \{[(1.1) \ (1.25) \ (.8) \ (1.25)]\}^{1/4} - 1 \\ &= \ (1.5150)^{1/4} - 1 = .0829 = \ 8.29\% \end{split}$$

Dollar Weighted Returns

<u>Internal Rate of Return (IRR)</u> - the discount rate that results in present value of the future cash flows being equal to the investment amount

- Considers changes in investment
- Initial Investment is an outflow
- Ending value is considered as an inflow
- Additional investment is a negative flow
- Reduced investment is a positive flow

	lar Weigl Fext Exa			•	8)
Net CFs \$ (mil)	<u>1</u> - 0.1 -0				
$1.0 = \frac{-0.1}{1 + IRR} +$	$-\frac{-0.5}{\left(1+IRR\right)^2}+$	0.8 (1+ <i>IRI</i>	\overline{R}) ³ + $\overline{(1)}$	$\frac{1.0}{+IRR)^4}$	= 4.17%

Quoting Conventions

APR = annual percentage rate (periods in year) X (rate for period) EAR = effective annual rate (1+ rate for period)^{Periods per yr} - 1 *Example: monthly return of 1%* APR = 1% X 12 = 12% EAR = (1.01)¹² - 1 = 12.68%

Scenario Analysis and Probability Distributions

- 1) Mean: most likely value
- 2) Variance or standard deviation
- 3) Skewness
- * If a distribution is approximately normal, the distribution is described by characteristics 1 and 2

5.2 RISK AND RISK PREMIUMS

	_		_
		ple: Subjective Distributions	or
State Prob.	of State r	in State	
1	.1	05	
2	.2	.05	
2 3	.4	.15	
4	.2	.25	
5	.1	.35	
		2)(.05)+ (.1)(.35)	
E(r) = .1	5 or 15%		

Measuring Variance or Dispersion of Returns

Using Our Example:

Var =[(.1)(-.05-.15)2+(.2)(.05- .15)2...+ .1(.35-.15)2] Var= .01199 S.D.= [.01199] 1/2 = .1095 or 10.95%

Risk Premiums and Risk Aversion

Degree to which investors are willing to commit funds

Risk aversion

If T-Bill denotes the risk-free rate, r_f, and variance, σ²_p, denotes volatility of returns then:
 The risk premium of a portfolio is:

 $E(r_P)-r_f$

Risk Premiums and Risk Aversion

To quantify the degree of risk aversion with parameter A:

$$E(r_p) - r_f = \frac{1}{2} A \sigma_p^2$$

= Or:
$$A = \frac{E(r_p) - r_f}{\frac{1}{2} \sigma_p^2}$$

The Sharpe (Reward-to-Volatility) Measure $S = \frac{\text{portfolio risk premium}}{\text{standard deviation of portfolio excess return}}$ $= \frac{E(r_p) - r_f}{\sigma_p}$

5.3 THE HISTORICAL RECORD

Annual Holding Period Returns From Table 5.3 of Text

	Geom.	Arith.	Stan.
<u>Series</u>	Mean%	Mean%	<u>Dev.%</u>
World Stk	9.80	11.32	18.05
US Lg Stk	10.23	12.19	20.14
US Sm Stk	12.43	18.14	36.93
Wor Bonds	5.80	6.17	9.05
LT Treas.	5.35	5.64	8.06
T-Bills	3.72	3.77	3.11
Inflation	3.04	3.13	4.27

Annual Holding From Ta			
	Risk	Stan.	Sharpe
<u>Series</u>	Prem.	Dev.%	<u>Measure</u>
World Stk	7.56	18.37	0.41
US Lg Stk	8.42	20.42	0.41
US Sm Stk	14.37	37.53	0.38
Wor Bonds	2.40	8.92	0.27
LT Treas	1.88	7.87	0.24

Real vs. Nominal Rates

Fisher effect: Approximation nominal rate = real rate + inflation premium R = r + i or r = R - iExample r = 3%, i = 6%R = 9% = 3% + 6% or 3% = 9% - 6%

Real vs. Nominal Rates

Fisher effect:

2.83%

$$1 + r = \frac{1 + R}{1 + i}$$
 or:
 $r = \frac{R - i}{1 + i}$
 $r = (9\% - 6\%) / (1.06)$

Allocating Capital

 Possible to split investment funds between safe and risky assets
 Risk free asset: proxy; T-bills
 Risky asset: stock (or a portfolio)

Allocating Capital

Issues

- Examine risk/ return tradeoff
- Demonstrate how different degrees of risk aversion will affect allocations between risky and risk free assets

The Risky Asset: Text Example (Page 143)

Total portfolio value	=	\$300,000
Risk-free value	=	90,000
Risky (Vanguard and Fidelity)	=	210,000
Vanguard (V) = 54%		
Fidelity (F) = 46%		

The Risky Asset: Text Example (Page 143)

$y = \frac{210,000}{300,000}$	
$1 - y = \frac{90,00}{300,00}$	$\frac{10}{00} = 0.3$ (risk-free assets)
Vanguard	113,400/300,000 = 0.378
Fidelity	96,600/300,000 = 0.322
Portfolio <i>P</i>	210,000/300,000 = 0.700
<u>Risk-Free Assets F</u>	90,000/300,000 = 0.300
Portfolio C	300,000/300,000 = 1.000

Calculating the E Text Example	
r _f = 7%	σ _{rf} = 0%
E(r _p) = 15%	σ _p = 22%
y = % in p	(1-y) = % in r _f

Expected Returns for Combinations $E(r_c) = yE(r_p) + (1 - y)r_f$ $r_c = \text{complete or combined portfolio}$ For example, y = .75 $E(r_c) = .75(.15) + .25(.07)$ = .13 or 13%

Variance on the Possible Combined Portfolios Since $\sigma_{r_r} = 0$, then $\sigma_c = y \sigma_p$ Combinations Without Leverage If y = .75, then $\sigma_c = .75(.22) = .165$ or 16.5% If y = 1 $\sigma_c = 1(.22) = .22$ or 22% If y = 0 $\sigma_c = 0(.22) = .00$ or 0%

Using Leverage with Capital Allocation Line

Borrow at the Risk-Free Rate and invest in stock Using 50% Leverage $r_c = (-.5) (.07) + (1.5) (.15) = .19$

 σ_{c} = (1.5) (.22) = .33

Risk Aversion and Allocation

- Greater levels of risk aversion lead to larger proportions of the risk free rate
- Lower levels of risk aversion lead to larger proportions of the portfolio of risky assets
- Willingness to accept high levels of risk for high levels of returns would result in leveraged combinations

5.6 PASSIVE STRATEGIES AND THE CAPITAL MARKET LINE

Table 5.5 Average Rates of Return, Standard Deviation and Reward to Variability

TABLE 5.5		Excess R	eturn (%)	
Average excess rate of		Average	SD	Sharpe Ratio
return, standard devia-	1926-1946	8.36	27.98	0.30
tions and the reward-to-	1947-1966	12.72	18.05	0.70
volatility ratio of large	1967-1986	4.14	17.44	0.24
common stocks over	1987-2006	8.47	16.22	0.52
one-month bills over 1926–2006 and various subperiods	1926-2006	8.42	20.42	0.41
ource: Data in Table 5.3.			_	_
ource: Data in Table 5.3.				
ource: Data in Table 5.3.				
eurce: Data in Table 5.3.				
ource: Data in Table 5.3,				

Costs and Benefits of Passive Investing

- Active strategy entails costs
- Free-rider benefit
- Involves investment in two passive portfolios
 - Short-term T-bills
 - Fund of common stocks that mimics a broad market index