Chapter 9

Making Capital Investment Decisions

Key Concepts and Skills

- Understand how to determine the relevant cash flows for a proposed investment
- Understand how to analyze a project's projected cash flows
- Understand how to evaluate an estimated NPV

Chapter Outline

- Project Cash Flows: A First Look
- Incremental Cash Flows
- Pro Forma Financial Statements and Project Cash Flows
- More on Project Cash Flows
- Evaluating NPV Estimates
- Scenario and Other What-If Analyses
- Additional Considerations in Capital Budgeting

Relevant Cash Flows

- The cash flows that should be included in a capital budgeting analysis are those that will only occur if the project is accepted
- These cash flows are called *incremental* cash flows
- The *stand-alone principle* allows us to analyze each project in isolation from the firm simply by focusing on incremental cash flows

Asking the Right Question

- You should always ask yourself "Will this cash flow change ONLY if we accept the project?"
 - If the answer is "yes," it should be included in the analysis because it is incremental
 - If the answer is "no", it should not be included in the analysis because it is not affected by the project
 - If the answer is "part of it," then we should include the part that occurs because of the project

Common Types of Cash Flows

- Sunk costs costs that have accrued in the past
- Opportunity costs costs of lost options
- Side effects
 - Positive side effects benefits to other projects
 - Negative side effects costs to other projects
- Changes in net working capital
- Financing costs
- Taxes

Pro Forma Statements and

- Cash Flow
 Capital budgeting relies heavily on pro forma accounting statements, particularly income statements
- Computing cash flows refresher
 Operating Cash Flow (OCF) = EBIT + depreciation – taxes
 - OCF = Net income + depreciation when there is no interest expense
 - Cash Flow From Assets (CFFA) = OCF net capital spending (NCS) – changes in NWC

Table 9.1 Pro Forma Income Statement

Sales (50,000 units at \$4.00/unit)	\$200,000
Variable Costs (\$2.50/unit)	125,000
Gross profit	\$ 75,000
Fixed costs	12,000
Depreciation (\$90,000 / 3)	30,000
EBIT	\$ 33,000
Taxes (34%)	11,220
Net Income	\$ 21,780

Table 9.2 Projected Capital Requirements

	Year				
	0	1	2	3	
NWC	\$20,000	\$20,000	\$20,000	\$20,000	
Net Fixed Assets	90,000	60,000	30,000	0	
Total Investment	\$110,000	\$80,000	\$50,000	\$20,000	

		Flows		
		Yea	ır	
	0	1	2	3
OCF		\$51,780	\$51,780	\$51,780
Change in NWC	-\$20,000			\$20,000
Capital Spending	-\$90,000			
CFFA	-\$110,00	\$51,780	\$51,780	\$71,780

Making The Decision

- Now that we have the cash flows, we can apply the techniques that we learned in chapter 8
- Enter the cash flows into the calculator and compute NPV and IRR
 - NPV = -\$110,000 + 51,780/1.2 + 51,780/(1.2)² + 71,780/(1.2)³
 - NPV = \$10,648
 - IRR = 25.8%
- Should we accept or reject the project?

The Tax Shield Approach

- You can also find operating cash flows, using the tax shield approach
- OCF = (Sales costs)(1 T) + Depreciation*T
- This form may be particularly useful when the major incremental cash flows are the purchase of equipment and the associated depreciation tax shield – such as when you are choosing between two different machines

More on NWC

- Why do we have to consider changes in NWC separately?
 - GAAP requires that sales be recorded on the income statement when made, not when cash is received
 - GAAP also requires that we record cost of goods sold when the corresponding sales are made, regardless of when we actually pay our suppliers
 - So, cash flow timing differences exist between the purchase of inventory, revenue and costs from its sale on the income statement, and the actual cash collection from its sale

Depreciation

- The depreciation expense used for capital budgeting should be the depreciation schedule required by the IRS for tax purposes
- Depreciation itself is a non-cash expense; consequently, it is only relevant because it affects taxes
- Depreciation tax shield = DxT
 D = depreciation expense
 - -T = marginal tax rate

Computing Depreciation

- Straight-line depreciation
 - D = (Initial cost salvage) / number of years
 Very few assets are depreciated straight-line for tax purposes
- MACRS
 - Need to know which asset class is appropriate for tax purposes
 - Multiply percentage given in table by the initial cost
 - Depreciate to zero
 - Mid-year convention

After tax Salvage

- If the salvage value is different from the book value of the asset, then there is a tax effect
- Book value = initial cost accumulated depreciation
- After tax salvage = salvage T(salvage book value)

Example: Depreciation and After-tax Salvage • You purchase equipment for \$100,000

• You purchase equipment for \$100,000 and it costs \$10,000 to have it delivered and installed. Based on past information, you believe that you can sell the equipment for \$17,000 when you are done with it in 6 years. The company's marginal tax rate is 40%. What is the depreciation expense each year, and the after tax salvage in year 6, for each of the following situations?

Example: Straight-line Depreciation

- Suppose the appropriate depreciation schedule is straight-line
 - D = (\$110,000 17,000) / 6 = \$15,500 every year for 6 years
 - − BV in year 6 = \$110,000 − 6(\$15,500) = \$17,000
 - After tax salvage = \$17,000 .4(17,000 17,000) = \$17,000

Exa	ample	: Three-yea	r MACRS
Year	MACRS percent	D	BV in year 6 = 110,000 - 36,663 -
1	.3333	.3333(110,000) = 36,663	48,884 - 16,302 - 8,151 = 0
2	.4444	.4444(110,000) = 48,884	After-tax salvage = 17,0004(17,000
3	.1482	.1482(110,000) = 16,302	- 0) = \$10,200
4	.0741	.0741(110,000) = 8,151	1

DV in year C	D	MACRS Percent	Year
BV in year 6 = 110,000 - 15,719 - 26,939 - 19,239 -	.1429(110,000) = 15,719	.1429	1
13,739 – 9,823 – 9,823 = 14,718	.2449(110,000) = 26,939	.2449	2
After-tax salvage :	.1749(110,000) = 19,239	.1749	3
17,0004(17,000 - 14,718) =	.1249(110,000) = 13,739	.1249	4
16,087.20	.0893(110,000) = 9,823	.0893	5
	.0893(110,000) = 9,823	.0893	6

Example: Replacement Problem

• Original Machine

- Initial cost = 100,000
- Annual depreciation = 9,000
- Purchased 5 years ago
- Book Value = 55,000Salvage today = 65,000
- Salvage today = 65,000
 Salvage in 5 years =

10,000

depreciation
 Required return = 10%

- 3-year MACRS

• New Machine

- 5-year life

per year

- Initial cost = 150,000

- Salvage in 5 years = 0

- Cost savings = 50,000

• Tax rate = 40%

Replacement Problem – Computing Cash Flows

- Remember that we are interested in incremental cash flows
- If we buy the new machine, then we will sell the old machine
- What are the cash flow consequences of selling the old machine today instead of in 5 years?

Forn	<u>na Ind</u>	come	e Stat	eme	nts
Year	1	2	3	4	5
Cost Savings	50,000	50,000	50,000	50,000	50,000
Depr.					
New	49,995	66,660	22,230	11,115	C
Old	9,000	9,000	9,000	9,000	9,000
Increm.	40,995	57,660	13,230	2,115	(9,000)
EBIT	9,005	(7,660)	36,770	47,885	59,000
Taxes	3,602	(3,064)	14,708	19,154	23,600
NI .	5,403	(4,596)	22,062	28,731	35,400

Replacement Problem – Incremental Net Capital Spending

Year 0

- Cost of new machine = \$150,000 (outflow)
 After-tax salvage on old machine = \$65,000 .4(65,000 55,000) = \$61,000 (inflow)
- Incremental net capital spending = \$150,000- 61,000 = \$89,000 (outflow)
- Year 5
 - After tax salvage on old machine = \$10,000 .4(10,000 10,000) = \$10,000 (outflow because we no longer receive this)

	0	1	2	3	4	5
OCF		46,398	53,064	35,292	30,846	26,400
NCS	-89,000					-10,000
∆ In NWC	0					0
CFFA	-89,000	46,398	53,064	35,292	30,846	16,400

Replacement Problem – Analyzing • Now that we have the cash flows, we can compute the NPV and IRR - Discount the cash flows at 10% - NPV = 54,801.29 - IRR = 36% by trial-and-error (36.27%, more

- precisely, using a financial calculator or spreadsheet)
- Note that the positive NPV indicates IRR > 10%
- · Should the company replace the equipment?

Evaluating NPV Estimates

- The NPV estimates are just that estimates
- A positive NPV is a good start now we need to take a closer look
 - Forecasting risk how sensitive is our NPV to changes in the cash flow estimates, the more sensitive, the greater the forecasting risk
 - Sources of value why does this project create value?

Scenario Analysis

- What happens to the NPV under different cash flows scenarios?
- At the very least look at: - Best case - revenues are high and costs are low
 - Worst case revenues are low and costs are high
 - Measure of the range of possible outcomes
- Best case and worst case are not necessarily probable; they can still be possible

- What happens to NPV when we vary one variable at a time
- · This is a subset of scenario analysis where we are looking at the effect of specific variables on NPV
- The greater the volatility in NPV in relation to a specific variable, the larger the forecasting risk associated with that variable and the more attention we want to pay to its estimation

New Project Example

- · Consider the project discussed in the text
- The initial cost is \$200,000 and the project has a 5-year life. There is no salvage. Depreciation is straight-line, the required return is 12% and the tax rate is 34%
- The base case NPV is \$15,567

Scenario	Net Income	Cash Flow	NPV	IRR
Base case	\$19,800	\$59,800	\$15,567	15.1%
Worst Case	-15,510	24,490	-111,719	-14.4%
Best Case	59,730	99,730	159,504	40.9%

Summary of Sensitivity Analysis

	Sales	Cash Flow	NPV	IRR
Base case	6,000	59,800	15,567	15.1%
Worst case	5,500	53,200	-8,226	10.3%
Best case	6,500	66,400	39,357	19.7%

• Beware "Paralysis of Analysis"

- At some point, you have to make a decision
- If the majority of your scenarios have positive NPVs, then you can feel reasonably comfortable about accepting the project
- If you have a crucial variable that leads to a negative NPV with a small change in the estimates, then you may want to forgo the project

Managerial Options

- Capital budgeting projects often provide other options that we have not yet considered
 - Contingency planning
 - Option to expand
 - Option to abandon
 - Option to wait
 - Strategic options

Capital Rationing

- Capital rationing occurs when a firm or division has limited resources
 - Soft rationing the limited resources are temporary, often self-imposed
 - Hard rationing capital will never be available for this project
- The profitability index is a useful tool when faced with soft rationing