Chapter 8

Net Present Value and Other
Investment Criteria

Key Concepts and Skills

- Understand the payback rule and its shortcomings
- Understand accounting rates of return and their problems
- Understand the internal rate of return and its strengths and weaknesses
- Understand the net present value rule and why it is the best decision criteria

Chapter Outline

- Net Present Value
- The Payback Rule
- The Average Accounting Return
- The Internal Rate of Return
- The Profitability Index
- The Practice of Capital Budgeting

Good Decision Criteria

- We need to ask ourselves the following questions when evaluating decision criteria
- Does the decision rule adjust for the time value of money?
- Does the decision rule adjust for risk?
- Does the decision rule provide information on whether we are creating value for the firm?

Project Example Information

- You are looking at a new project and you have estimated the following cash flows:
- Year 0: $\quad C F=-165,000$
-Year 1: $\quad C F=63,120 ; N I=13,620$
- Year 2: $\quad C F=70,800 ; \mathrm{NI}=3,300$
- Year 3: $\quad C F=91,080 ; \mathrm{NI}=29,100$
- Average Book Value $=72,000$
- Your required return for assets of this risk is 12%.

Net Present Value

- The difference between the market value of a project and its cost
- How much value is created from undertaking an investment?
- The first step is to estimate the expected future cash flows.
- The second step is to estimate the required return for projects of this risk level.
- The third step is to find the present value of the cash flows and subtract the initial investment.

NPV Decision Rule

- If the NPV is positive, accept the project

- A positive NPV means that the project is expected to add value to the firm and will therefore increase the wealth of the owners.
- Since our goal is to increase owner wealth, NPV is a direct measure of how well this project will meet our goal.

Decision Criteria Test - NPV

- Does the NPV rule account for the time value of money?
- Does the NPV rule account for the risk of the cash flows?
- Does the NPV rule provide an indication about the increase in value?
- Should we consider the NPV rule for our primary decision criteria?

Computing NPV for the Project

- Using the formulas:
- NPV $=63,120 /(1.12)+70,800 /(1.12)^{2}+$ $91,080 /(1.12)^{3}-165,000=\$ 12,627.41$
- Using the calculator:
$-\mathrm{CF}_{0}=-165,000 ; \mathrm{C} 01=63,120 ; \mathrm{F} 01=1 ; \mathrm{C} 02$ $=70,800 ; F 02=1 ; C 03=91,080 ; F 03=1$; NPV; I = 12; CPT NPV = 12,627.41
- Do we accept or reject the project?

Computing Payback For the Project

- Assume we will accept the project if it pays back within two years.
- Year 1: 165,000-63,120 $=101,880$ still to recover
- Year 2: $101,880-70,800=31,080$ still to recover
- Year 3: 31,080 $-91,080=-60,000$ project pays back during year 3
- Payback $=2$ years $+31,080 / 91,080=2.34$ years
- Do we accept or reject the project?

Payback Period

- How long does it take to get the initial cost back in a nominal sense?
- Computation
-Estimate the cash flows
- Subtract the future cash flows from the initial cost until the initial investment has been recovered
- Decision Rule - Accept if the payback period is less than some preset limit

Decision Criteria Test - Payback

- Does the payback rule account for the time value of money?
- Does the payback rule account for the risk of the cash flows?
- Does the payback rule provide an indication about the increase in value?
- Should we consider the payback rule for our primary decision criteria?

Advantages and Disadvantages
 of Payback

- Advantages
- Easy to understand
- Adjusts for uncertainty of later cash flows
- Biased towards liquidity
- Disadvantages
- Ignores the time value of money
- Requires an arbitrary cutoff point
- Ignores cash flows beyond the cutoff date
- Biased against longterm projects, such as research and development, and new projects

Average Accounting Return

- There are many different definitions for average accounting return
- The one used in the book is:
- Average net income / average book value
- Note that the average book value depends on how the asset is depreciated.
- Need to have a target cutoff rate
- Decision Rule: Accept the project if the AAR is greater than a preset rate.

Computing AAR For the Project

- Assume we require an average accounting return of 25%
- Average Net Income:
- $(\$ 13,620+3,300+29,100) / 3=\$ 15,340$
- $A A R=\$ 15,340 / 72,000=.213=21.3 \%$
- Do we accept or reject the project?

Decision Criteria Test - AAR

- Does the AAR rule account for the time value of money?
- Does the AAR rule account for the risk of the cash flows?
- Does the AAR rule provide an indication about the increase in value?
- Should we consider the AAR rule for our primary decision criteria?

Advantages and Disadvantages of AAR

- Advantages
- Easy to calculate
- Needed information will usually be available

Disadvantages

- Not a true rate of return; time value of money is ignored
- Uses an arbitrary benchmark cutoff rate
- Based on accounting net income and book values, not cash flows and market values

Internal Rate of Return

- This is the most important alternative to NPV
- It is often used in practice and is intuitively appealing
- It is based entirely on the estimated cash flows and is independent of interest rates found elsewhere

IRR - Definition and Decision Rule

- Definition: IRR is the return that makes the NPV = 0
- Decision Rule: Accept the project if the IRR is greater than the required return

Computing IRR For the Project

- If you do not have a financial calculator, then this becomes a trial-and-error process
- Calculator
- Enter the cash flows as you did with NPV
- Press IRR and then CPT
- IRR = 16.13\% > 12\% required return
- Do we accept or reject the project?

Advantages of IRR

- Knowing a return is intuitively appealing
- It is a simple way to communicate the value of a project to someone who doesn't know all the estimation details
- If the IRR is high enough, you may not need to estimate a required return, which is often a difficult task

Decision Criteria Test - IRR

- Does the IRR rule account for the time value of money?
- Does the IRR rule account for the risk of the cash flows?
- Does the IRR rule provide an indication about the increase in value?
- Should we consider the IRR rule for our primary decision criteria?

Summary of Decisions For the Project

Summary	Accept
Net Present Value	Reject
Payback Period	Reject
Average Accounting Return	Accept
Internal Rate of Return	

NPV vs. IRR

- NPV and IRR will generally give us the same decision
- Exceptions
- Nonconventional cash flows - cash flow signs change more than once
- Mutually exclusive projects
- Initial investments are substantially different
- Timing of cash flows is substantially different

Another Example -

 Nonconventional Cash Flows- Suppose an investment will cost $\$ 90,000$ initially and will generate the following cash flows:
- Year 1: \$132,000
- Year 2: \$100,000
- Year 3: -\$150,000
- The required return is 15%.
- Should we accept or reject the project?

Summary of Decision Rules

- The NPV is positive at a required return of 15\%, so you should Accept
- If you use the financial calculator, you would get an IRR of 10.11% which would tell you to Reject
- You need to recognize that there are nonconventional cash flows, and that you need to look at the NPV profile

IRR and Nonconventional Cash Flows

- When the cash flows change signs more than once, there is more than one IRR
- When you solve for IRR, you are solving for the root of an equation and when you cross the x-axis more than once, there will be more than one return that solves the equation
- If you have more than one IRR, which one do you use to make your decision?

IRR and Mutually Exclusive Projects

- Mutually exclusive projects
- If you choose one, you can't choose the other
- Example: You can choose to attend graduate school next year at either Harvard or Stanford, but not both
- Intuitively, you would use the following decision rules:
- NPV - choose the project with the higher NPV
- IRR - choose the project with the higher IRR

Example With Mutually Exclusive Projects			
Period	Project A	$\begin{gathered} \text { Project } \\ \text { B } \end{gathered}$	The required return for both projects is 10%.
0	-500	-400	
1	325	325	Which project should you accept and why?
2	325	200	
IRR	19.43\%	22.17\%	
NPV	64.05	60.74	

Conflicts Between NPV and IRR

- NPV directly measures the increase in value to the firm
- Whenever there is a conflict between NPV and another decision rule, you should always use NPV
- IRR is unreliable in the following situations
- Non-conventional cash flows
-Mutually exclusive projects

Modified Internal Rate of Return (MIRR)

- Compute IRR of modified cash flows
- Controls for some problems with IRR
- Discounting Approach - Discount future outflows to present and add to CF_{0}
- Reinvestment Approach - Compound all CFs except the first one forward to end
- Combination Approach - Discount outflows to present; compound inflows to end
- MIRR will be a unique number for each method, but is difficult to interpret; discount/compound rate is externally supplied

Example: MIRR

- Project cash flows:
- Time 0: - $\$ 500$ today; Time 1: + \$1,000;

Time 2: -\$100

- Use combined method and RRR $=11 \%$
- PV (outflows) $=-\$ 500+-\$ 100 /(1.11)^{2}=$ -\$581.16
- FV (inflow) $=\$ 1,000 \times 1.11=\$ 1,110$
- MIRR: $\mathrm{N}=2 ; \mathrm{PV}=-581.16 ; \mathrm{FV}=1,110 ; \mathrm{CPT}$ $\mathrm{I} / \mathrm{Y}=\mathrm{MIRR}=38.2 \%$

Profitability Index

- Measures the benefit per unit cost, based on the time value of money
- A profitability index of 1.1 implies that for every $\$ 1$ of investment, we receive $\$ 1.10$ worth of benefits, so we create an additional $\$ 0.10$ in value
- This measure can be very useful in situations in which we have limited capital

Advantages and Disadvantages of Profitability Index
 - Advantages
 - Closely related to NPV, generally leading to identical decisions
 - Easy to understand and communicate
 - May be useful when available investment funds are limited
 - Disadvantages
 - May lead to incorrect decisions in comparisons of mutually exclusive investments

Capital Budgeting In Practice

- We should consider several investment criteria when making decisions
- NPV and IRR are the most commonly used primary investment criteria
- Payback is a commonly used secondary investment criteria

Quick Quiz

- Consider an investment that costs $\$ 100,000$ and has a cash inflow of \$25,000 every year for 5 years. The required return is 9% and the required payback is 4 years.
- What is the payback period?
- What is the NPV?
- What is the IRR?
- Should we accept the project?
- What should be the primary decision method?
- When is the IRR rule unreliable?

Comprehensive Problem

- An investment project has the following cash flows: CF0 $=-1,000,000 ;$ C01 - C08 $=200,000$ each
- If the required rate of return is 12%, what decision should be made using NPV?
- How would the IRR decision rule be used for this project, and what decision would be reached?
- How are the above two decisions related?

