Chapter 5

Discounted Cash Flow Valuation

Key Concepts and Skills

- Be able to compute the future value of multiple cash flows
- Be able to compute the present value of multiple cash flows
- Be able to compute loan payments
- Be able to find the interest rate on a loan
- Understand how loans are amortized, or "paid off"
- Understand how interest rates are quoted

Chapter Outline

- Future and Present Values of Multiple Cash Flows
- Valuing Level Cash Flows: Annuities and Perpetuities
- Comparing Rates: The Effect of Compounding Periods
- Loan Types and Loan Amortization

Multiple Cash Flows - FV Example 5.1

- Find the value at year 3 of each cash flow and add them together.
- Today (year 0): FV = \$7,000(1.08) ${ }^{3}=$ \$8,817.98
- Year 1: FV $=\$ 4,000(1.08)^{2}=\$ 4,665.60$
- Year 2: FV $=\$ 4,000(1.08)=\$ 4,320$
- Year 3: value $=\$ 4,000$
- Total value in 3 years $=\$ 8,817.98+$
$4,665.60+4,320+4,000=\$ 21,803.58$
- Value at year $4=\$ 21,803.58(1.08)=$ \$23,547.87

Example 2 Continued

- How much will you have in 5 years if you make no further deposits?
- First way:
- FV = \$500(1.09) ${ }^{5}+\$ 600(1.09)^{4}=\$ 1,616.26$
- Second way - use value at year 2 :
- FV = \$1,248.05(1.09) ${ }^{3}=\$ 1,616.26$

Multiple Cash Flows - FV Example 3

- Suppose you plan to deposit $\$ 100$ into an account in one year and $\$ 300$ into the account in three years. How much will be in the account in five years if the interest rate is 8% ?
- $\mathrm{FV}=\$ 100(1.08)^{4}+\$ 300(1.08)^{2}=\$ 136.05+$ \$349.92 = \$485.97

Multiple Cash Flows - PV Example 5.3

- Find the PV of each cash flow and add them
- Year 1 CF: $\$ 200 /(1.12)^{1}=\$ 178.57$
- Year 2 CF: $\$ 400 /(1.12)^{2}=\$ 318.88$
- Year 3 CF: $\$ 600 /(1.12)^{3}=\$ 427.07$
- Year 4 CF: $\$ 800 /(1.12)^{4}=\$ 508.41$
- Total PV $=\$ 178.57+318.88+427.07+$ $508.41=\$ 1,432.93$

Multiple Cash Flows - PV

Another Example

- You are considering an investment that will pay you $\$ 1,000$ in one year, $\$ 2,000$ in two years, and $\$ 3,000$ in three years. If you want to earn 10% on your money, how much would you be willing to pay?
- PV = \$1,000 / (1.1) ${ }^{1}=\$ 909.09$
- PV = $\$ 2,000 /(1.1)^{2}=\$ 1,652.89$
- PV $=\$ 3,000 /(1.1)^{3}=\$ 2,253.94$
- PV $=\$ 909.09+1,652.89+2,253.94=$ \$4,815.92

Decisions, Decisions

- Your broker calls you and tells you that he has this great investment opportunity. If you invest $\$ 100$ today, you will receive $\$ 40$ in one year and $\$ 75$ in two years. If you require a 15% return on investments of this risk, should you take the investment?
- PV = \$40/(1.15) ${ }^{1}+\$ 75 /(1.15)^{2}=\$ 91.49$
- No! The broker is charging more than you would be willing to pay.

Saving For Retirement

- You are offered the opportunity to put some money away for retirement. You will receive five annual payments of $\$ 25,000$ each beginning in 40 years. How much would you be willing to invest today if you desire an interest rate of 12\%?
- PV = \$25,000/(1.12) ${ }^{40}+\$ 25,000 /(1.12)^{41}+$ $\$ 25,000 /(1.12)^{42}+\$ 25,000 /(1.12)^{43}+$ $\$ 25,000 /(1.12)^{44}=\$ 1,084.71$

Saving For Retirement Time Line

Annuities and Perpetuities Defined

- Annuity - finite series of equal payments that occur at regular intervals
- If the first payment occurs at the end of the period, it is called an ordinary annuity
- If the first payment occurs at the beginning of the period, it is called an annuity due
- Perpetuity - infinite series of equal payments
- What is the value of the cash flows at year 3?

Quick Quiz: Part 1

- Suppose you are looking at the following possible cash flows: Year $1 \mathrm{CF}=\$ 100$; Years 2 and 3 CFs = \$200; Years 4 and 5 CFs $=\$ 300$. The required discount rate is 7\%
- What is the value of the cash flows at year 5?
- What is the value of the cash flows today?

Annuities and Perpetuities Basic Formulas

- Perpetuity: PV = C / r
- Annuities:

Annuity - Example 5.5

- You borrow money TODAY so you need to compute the present value.
- Formula:

$$
P V \square 632\left[\frac{1 \square \frac{1}{(1.01)^{48}}}{.01}\right] \square 23,999.54
$$

Annuity - Sweepstakes

Example

- Suppose you win the Publishers Clearinghouse $\$ 10$ million sweepstakes. The money is paid in equal annual installments of $\$ 333,333.33$ over 30 years. If the appropriate discount rate is 5%, how much is the sweepstakes actually worth today?
- PV = \$333,333.33[1-1/1.0530] / . 05 = \$5,124,150.29

Buying a House

- You are ready to buy a house and you have $\$ 20,000$ for a down payment and closing costs. Closing costs are estimated to be 4% of the loan value. You have an annual salary of $\$ 36,000$ and the bank is willing to allow your monthly mortgage payment to be equal to 28% of your monthly income. The interest rate on the loan is 6% per year with monthly compounding (.5\% per month) for a 30-year fixed rate loan. How much money will the bank loan you? How much can you offer for the house?

Buying a House - Continued

- Bank loan
- Monthly income = \$36,000 / $12=\$ 3,000$
- Maximum payment $=.28(\$ 3,000)=\$ 840$
- PV = \$840[1-1/1.005360] / $.005=\$ 140,105$
- Total Price
- Closing costs $=.04(\$ 140,105)=\$ 5,604$
- Down payment $=\$ 20,000-5,604=\$ 14,396$
- Total Price $=\$ 140,105+14,396=\$ 154,501$

Quick Quiz: Part 2

- You know the payment amount for a loan and you want to know how much was borrowed. Do you compute a present value or a future value?
- You want to receive $\$ 5,000$ per month in retirement. If you can earn $.75 \%$ per month and you expect to need the income for 25 years, how much do you need to have in your account at retirement?

