Chapter 4

Introduction to Valuation: The Time Value of Money

Key Concepts and Skills

- Be able to compute the future value of an investment made today
- Be able to compute the present value of cash to be received at some future date
- Be able to compute the return on an investment

Chapter Outline

- · Future Value and Compounding
- · Present Value and Discounting
- More on Present and Future Values

Basic Definitions

- Present Value earlier money on a time line
- Future Value later money on a time line
- Interest rate "exchange rate" between earlier money and later money
 - Discount rate
 - Cost of capital
 - Opportunity cost of capital
 - Required return

Future Values

- Suppose you invest \$1,000 for one year at 5% per year. What is the future value in one year?
 - Interest = \$1,000(.05) = \$50
 - Value in one year = principal + interest = \$1,000 + 50 = \$1,050
 - Future Value (FV) = \$1,000(1 + .05) = \$1,050
- Suppose you leave the money in for another year. How much will you have two years from now?
 - FV = \$1,000(1.05)(1.05) = \$1,000(1.05)² = \$1,102.50

Future Values: General Formula

- $FV = PV(1 + r)^t$
 - FV = future value
 - -PV = present value
 - r = period interest rate, expressed as a decimal
 - -T = number of periods
- Future value interest factor = (1 + r)^t

Effects of Compounding

- Simple interest (interest is earned only on the original principal)
- Compound interest (interest is earned on principal and on interest received)
- · Consider the previous example
 - FV with simple interest = \$1,000 + 50 + 50 = \$1,100
 - FV with compound interest = \$1,102.50
 - The extra \$2.50 comes from the interest of .05(\$50) = \$2.50 earned on the first interest payment

Calculator Keys

- · Texas Instruments BA-II Plus
 - FV = future value
 - PV = present value
 - I/Y = period interest rate
 - P/Y must equal 1 for the I/Y to be the period rate
 - Interest is entered as a percent, not a decimal
 - -N = number of periods
 - Remember to clear the registers (CLR TVM) before (and after) each problem
 - Other calculators are similar in format

Future Values – Example 2

- Suppose you invest the \$1,000 from the previous example for 5 years. How much would you have?
 - FV = \$1,000(1.05)⁵ = \$1,276.28
- The effect of compounding is small for a small number of periods, but increases as the number of periods increases. (Simple interest would have a future value of \$1,250, for a difference of \$26.28.)

Future Values – Example 3

- Suppose you had a relative deposit \$10 at 5.5% interest 200 years ago. How much would the investment be worth today?
 - $FV = $10(1.055)^{200} = $447,189.84$
- What is the effect of compounding?
 - Simple interest = 10 + 10(200)(.055) = 120
 - Compounding added \$447,069.84 to the value of the investment

Future Value as a General Growth Formula

- Suppose your company expects to increase unit sales of widgets by 15% per year for the next 5 years. If you currently sell 3 million widgets in one year, how many widgets do you expect to sell during the fifth year?
 - $FV = 3,000,000(1.15)^5 = 6,034,072$

Quick Quiz: Part 1

- What is the difference between simple interest and compound interest?
- Suppose you have \$500 to invest and you believe that you can earn 8% per year over the next 15 years.
 - How much would you have at the end of 15 years using compound interest?
 - How much would you have using simple interest?

Present Values

- How much do I have to invest today to have some amount in the future?
 - FV = PV(1 + r)^t
 - Rearrange to solve for PV = FV / (1 + r)^t
- When we talk about discounting, we mean finding the present value of some future amount.
- When we talk about the "value" of something, we are talking about the present value unless we specifically indicate that we want the future value.

PV – One-Period Example

- Suppose you need \$10,000 in one year for the down payment on a new car. If you can earn 7% annually, how much do you need to invest today?
- $PV = $10,000 / (1.07)^1 = $9,345.79$
- Calculator
 - 1 N
 - 7 I/Y
 - 10,000 FV
 - CPT PV = -9,345.79

Present Values – Example 2

- You want to begin saving for your daughter's college education and you estimate that she will need \$150,000 in 17 years. If you feel confident that you can earn 8% per year, how much do you need to invest today?
 - $PV = $150,000 / (1.08)^{17} = $40,540.34$

Present Values – Example 3

- Your parents set up a trust fund for you 10 years ago that is now worth \$19,671.51. If the fund earned 7% per year, how much did your parents invest?
 - PV = \$19,671.51 / (1.07)¹⁰ = \$10,000

PV - Important Relationship I

- For a given interest rate the longer the time period, the lower the present value (ceteris paribus: all else equal)
 - What is the present value of \$500 to be received in 5 years? 10 years? The discount rate is 10%
 - -5 years: PV = \$500 / $(1.1)^5$ = \$310.46
 - -10 years: PV = \$500 / $(1.1)^{10}$ = \$192.77

PV - Important Relationship II

- For a given time period the higher the interest rate, the smaller the present value (ceteris paribus)
 - What is the present value of \$500 received in 5 years if the interest rate is 10%? 15%?
 - Rate = 10%: PV = \$500 / (1.1)⁵ = \$310.46
 - Rate = 15%; PV = \$500 / (1.15)⁵ = \$248.59

Quick Quiz: Part 2

- What is the relationship between present value and future value?
- Suppose you need \$15,000 in 3 years.
 If you can earn 6% annually, how much do you need to invest today?
- If you could invest the money at 8%, would you have to invest more or less than at 6%? How much?

The Basic PV Equation - Refresher

- $PV = FV / (1 + r)^t$
- There are four parts to this equation
 - PV, FV, r, and t
 - If we know any three, we can solve for the fourth
- If you are using a financial calculator, be sure to remember the sign convention or you will receive an error when solving for r or t

Discount Rate

- Often, we will want to know what the implied interest rate is in an investment
- Rearrange the basic PV equation and solve for r
 - $FV = PV(1 + r)^t$
 - r = (FV / PV)^{1/t} − 1
- If you are using formulas, you will want to make use of both the y^x and the 1/x keys

Discount Rate - Example 1

- You are looking at an investment that will pay \$1,200 in 5 years if you invest \$1,000 today.
 What is the implied rate of interest?
 - $r = (\$1,200 / \$1,000)^{1/5} 1 = .03714 = 3.714\%$
 - Calculator the sign convention matters!!!
 - N = 5
 - PV = -1,000 (you pay \$1,000 today)
 - FV = 1,200 (you receive \$1,200 in 5 years)
 - CPT I/Y = 3.714%

Discount Rate - Example 2

- Suppose you are offered an investment that will allow you to double your money in 6 years. You have \$10,000 to invest. What is the implied rate of interest?
 - r = (\$20,000 / \$10,000)^{1/6} 1 = .122462 = 12.25%

Discount Rate – Example 3

- Suppose you have a 1-year old son and you want to provide \$75,000 in 17 years toward his college education. You currently have \$5,000 to invest. What interest rate must you earn to have the \$75,000 when you need it?
 - r = (\$75,000 / \$5,000)^{1/17} 1 = .172686 = 17.27%

Quick Quiz: Part 3

- What are some situations in which you might want to compute the implied interest rate?
- Suppose you are offered the following investment choices:
 - You can invest \$500 today and receive \$600 in 5 years. The investment is considered low risk.
 - You can invest the \$500 in a bank account paying 4% annually.
 - What is the implied interest rate for the first choice and which investment should you choose?

Finding the Number of Periods

- Start with basic equation and solve for t (remember your logs)
 - FV = PV(1 + r)^t
 - t = In(FV / PV) / In(1 + r)
- You can use the financial keys on the calculator as well. Just remember the sign convention.

Number of Periods – Example 1

- You want to purchase a new car and you are willing to pay \$20,000. If you can invest at 10% per year and you currently have \$15,000, how long will it be before you have enough money to pay cash for the car?
 - t = ln(\$20,000 / \$15,000) / ln(1.1) = 3.02 years

Number of Periods – Example 2

• Suppose you want to buy a new house. You currently have \$15,000 and you figure you need to have a 10% down payment plus an additional 5% in closing costs. If the type of house you want costs about \$150,000 and you can earn 7.5% per year, how long will it be before you have enough money for the down payment and closing costs?

Example 2 Continued

- How much do you need to have in the future?
 - Down payment = .1(\$150,000) = \$15,000
 - Closing costs = .05(\$150,000 15,000) = \$6,750
 - Total needed = \$15,000 + 6,750 = \$21,750
- · Compute the number of periods
 - PV = -15.000
 - FV = 21,750
 - I/Y = 7.5
 - CPT N = 5.14 years
- · Using the formula
 - $t = \ln(\$21,750 / \$15,000) / \ln(1.075) = 5.14$ years

Table 4.4

- Symbols

 FV = Present value, what future cash flows are worth today

 FV_t = Future value, what cash flows are worth in the future

 r = Interest rate, rate of return, or discount rate per period typically, but not always,
- one year $t={\sf Number}$ of periods typically , but not always, the number of years ${\it C}={\sf Cash}$ amount
- II. Future value of C invested at r percent per period for t periods $FV_t = C \times (1 + r)^t$ The term $(1 + r)^t$ is called the *future value factor*.
- Present value of C to be received in t periods at r percent per period
- $PV = C/(1 + r)^t$ The term $1/(1 + r)^t$ is called the *present value factor*.
- IV. The basic present value equation giving the relationship between present and future

Quick Quiz: Part 4

- · When might you want to compute the number of periods?
- Suppose you want to buy some new furniture for your family room. You currently have \$500 and the furniture you want costs \$600. If you can earn 6%, how long will you have to wait if you don't add any additional money?

Comprehensive Problem

- You have \$10,000 to invest for five years.
- How much additional interest will you earn if the investment provides a 5% annual return, when compared to a 4.5% annual return?
- How long will it take your \$10,000 to double in value if it earns 5% annually?
- What annual rate has been earned if \$1,000 grows into \$4,000 in 20 years?