Chapter 4

Introduction to Valuation: The Time Value of Money

Key Concepts and Skills

- Be able to compute the future value of an investment made today
- Be able to compute the present value of cash to be received at some future date
- Be able to compute the return on an investment

Chapter Outline

- Future Value and Compounding
- Present Value and Discounting
- More on Present and Future Values

Basic Definitions

- Present Value – earlier money on a time line
- Future Value – later money on a time line
- Interest rate – “exchange rate” between earlier money and later money
 - Discount rate
 - Cost of capital
 - Opportunity cost of capital
 - Required return

Future Values

- Suppose you invest $1,000 for one year at 5% per year. What is the future value in one year?
 - Interest = $1,000(.05) = $50
 - Value in one year = principal + interest = $1,000 + 50 = $1,050
 - Future Value (FV) = $1,000(1 + .05) = $1,050
- Suppose you leave the money in for another year. How much will you have two years from now?
 - FV = $1,000(1.05)(1.05) = $1,000(1.05)^2 = $1,102.50

Future Values: General Formula

- FV = PV(1 + r)^t
 - FV = future value
 - PV = present value
 - r = period interest rate, expressed as a decimal
 - T = number of periods
- Future value interest factor = (1 + r)^t
Effects of Compounding

- Simple interest (interest is earned only on the original principal)
- Compound interest (interest is earned on principal and on interest received)
- Consider the previous example
 - FV with simple interest = $1,000 + 50 + 50 = $1,100
 - FV with compound interest = $1,102.50
 - The extra $2.50 comes from the interest of .05($50) = $2.50 earned on the first interest payment

Figure 4.1

Figure 4.2

Calculator Keys

- Texas Instruments BA-II Plus
 - FV = future value
 - PV = present value
 - I/Y = period interest rate
 - P/Y must equal 1 for the I/Y to be the period rate
 - Interest is entered as a percent, not a decimal
 - N = number of periods
 - Remember to clear the registers (CLR TVM) before (and after) each problem
 - Other calculators are similar in format

Future Values – Example 2

- Suppose you invest the $1,000 from the previous example for 5 years. How much would you have?
 - FV = $1,000(1.05)^5 = $1,276.28
- The effect of compounding is small for a small number of periods, but increases as the number of periods increases. (Simple interest would have a future value of $1,250, for a difference of $26.28.)

Future Values – Example 3

- Suppose you had a relative deposit $10 at 5.5% interest 200 years ago. How much would the investment be worth today?
 - FV = $10(1.055)^{200} = $447,189.84
- What is the effect of compounding?
 - Simple interest = $10 + $10(200)(.055) = $120
 - Compounding added $447,069.84 to the value of the investment
Future Value as a General Growth Formula

- Suppose your company expects to increase unit sales of widgets by 15% per year for the next 5 years. If you currently sell 3 million widgets in one year, how many widgets do you expect to sell during the fifth year?
 - \(FV = 3,000,000(1.15)^5 = 6,034,072 \)

Quick Quiz: Part 1

- What is the difference between simple interest and compound interest?
- Suppose you have $500 to invest and you believe that you can earn 8% per year over the next 15 years.
 - How much would you have at the end of 15 years using compound interest?
 - How much would you have using simple interest?

Present Values

- How much do I have to invest today to have some amount in the future?
 - \(FV = PV(1 + r)^t \)
 - Rearrange to solve for \(PV = FV / (1 + r)^t \)
- When we talk about discounting, we mean finding the present value of some future amount.
- When we talk about the “value” of something, we are talking about the present value unless we specifically indicate that we want the future value.

PV – One-Period Example

- Suppose you need $10,000 in one year for the down payment on a new car. If you can earn 7% annually, how much do you need to invest today?
 - \(PV = $10,000 / (1.07)^1 = $9,345.79 \)
 - Calculator
 - 1 N
 - 7 I/Y
 - 10,000 FV
 - CPT PV = -9,345.79

Present Values – Example 2

- You want to begin saving for your daughter’s college education and you estimate that she will need $150,000 in 17 years. If you feel confident that you can earn 8% per year, how much do you need to invest today?
 - \(PV = $150,000 / (1.08)^{17} = $40,540.34 \)

Present Values – Example 3

- Your parents set up a trust fund for you 10 years ago that is now worth $19,671.51. If the fund earned 7% per year, how much did your parents invest?
 - \(PV = $19,671.51 / (1.07)^{10} = $10,000 \)
PV – Important Relationship I
• For a given interest rate – the longer the time period, the lower the present value (ceteris paribus: all else equal)
 – What is the present value of $500 to be received in 5 years? 10 years? The discount rate is 10%
 – 5 years: PV = $500 / (1.1)^5 = $310.46
 – 10 years: PV = $500 / (1.1)^10 = $192.77

PV – Important Relationship II
• For a given time period – the higher the interest rate, the smaller the present value (ceteris paribus)
 – What is the present value of $500 received in 5 years if the interest rate is 10%? 15%?
 • Rate = 10%: PV = $500 / (1.1)^5 = $310.46
 • Rate = 15%; PV = $500 / (1.15)^5 = $248.59

The Basic PV Equation - Refresher
• PV = FV / (1 + r)^t
• There are four parts to this equation
 – PV, FV, r, and t
 – If we know any three, we can solve for the fourth
• If you are using a financial calculator, be sure to remember the sign convention or you will receive an error when solving for r or t

Discount Rate
• Often, we will want to know what the implied interest rate is in an investment
• Rearrange the basic PV equation and solve for r
 • FV = PV(1 + r)^t
 • r = (FV / PV)^t - 1
• If you are using formulas, you will want to make use of both the y^x and the 1/x keys

Quick Quiz: Part 2
• What is the relationship between present value and future value?
• Suppose you need $15,000 in 3 years. If you can earn 6% annually, how much do you need to invest today?
• If you could invest the money at 8%, would you have to invest more or less than at 6%? How much?
Discount Rate – Example 1

- You are looking at an investment that will pay $1,200 in 5 years if you invest $1,000 today. What is the implied rate of interest?
 - \[r = \left(\frac{1,200}{1,000} \right)^{1/5} - 1 = 0.03714 = 3.714\% \]
 - Calculator – the sign convention matters!!!
 - \(N = 5 \)
 - \(PV = -1,000 \) (you pay $1,000 today)
 - \(FV = 1,200 \) (you receive $1,200 in 5 years)
 - CPT I/Y = 3.714%

Discount Rate – Example 2

- Suppose you are offered an investment that will allow you to double your money in 6 years. You have $10,000 to invest. What is the implied rate of interest?
 - \[r = \left(\frac{20,000}{10,000} \right)^{1/6} - 1 = 0.122462 = 12.25\% \]

Discount Rate – Example 3

- Suppose you have a 1-year old son and you want to provide $75,000 in 17 years toward his college education. You currently have $5,000 to invest. What interest rate must you earn to have the $75,000 when you need it?
 - \[r = \left(\frac{75,000}{5,000} \right)^{1/17} - 1 = 0.172686 = 17.27\% \]

Quick Quiz: Part 3

- What are some situations in which you might want to compute the implied interest rate?
- Suppose you are offered the following investment choices:
 - You can invest $500 today and receive $600 in 5 years. The investment is considered low risk.
 - You can invest the $500 in a bank account paying 4% annually.
 - What is the implied interest rate for the first choice and which investment should you choose?

Finding the Number of Periods

- Start with basic equation and solve for \(t \) (remember your logs)
 - \(FV = PV(1 + r)^t \)
 - \(t = \ln(FV / PV) / \ln(1 + r) \)
- You can use the financial keys on the calculator as well. Just remember the sign convention.

Number of Periods – Example 1

- You want to purchase a new car and you are willing to pay $20,000. If you can invest at 10% per year and you currently have $15,000, how long will it be before you have enough money to pay cash for the car?
 - \[t = \ln(20,000 / 15,000) / \ln(1.1) = 3.02 \] years
Number of Periods – Example 2

- Suppose you want to buy a new house. You currently have $15,000 and you figure you need to have a 10% down payment plus an additional 5% in closing costs. If the type of house you want costs about $150,000 and you can earn 7.5% per year, how long will it be before you have enough money for the down payment and closing costs?

Example 2 Continued

- How much do you need to have in the future?
 - Down payment = .1($150,000) = $15,000
 - Closing costs = .05($150,000 – 15,000) = $6,750
 - Total needed = $15,000 + 6,750 = $21,750

- Compute the number of periods
 - PV = -15,000
 - FV = 21,750
 - I/Y = 7.5
 - CPT N = 5.14 years

- Using the formula
 - \(t = \frac{\ln\left(\frac{21,750}{15,000}\right)}{\ln(1.075)} = 5.14 \text{ years} \)

Table 4.4

- Quick Quiz: Part 4
 - When might you want to compute the number of periods?
 - Suppose you want to buy some new furniture for your family room. You currently have $500 and the furniture you want costs $600. If you can earn 6%, how long will you have to wait if you don’t add any additional money?

Comprehensive Problem

- You have $10,000 to invest for five years.
- How much additional interest will you earn if the investment provides a 5% annual return, when compared to a 4.5% annual return?
- How long will it take your $10,000 to double in value if it earns 5% annually?
- What annual rate has been earned if $1,000 grows into $4,000 in 20 years?