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INTRODUCTION

Lattice polytopes arise naturally in algebraic geometry, analysis, combinatorics,
computer science, number theory, optimization, probability and representation the-
ory. They possess a rich structure arising from the interaction of algebraic, convex,
analytic, and combinatorial properties. In this chapter, we concentrate on the the-
ory of lattice polytopes and only sketch their numerous applications. We briefly
discuss their role in optimization and polyhedral combinatorics (Section 7.1). In
Section 7.2 we discuss the decision problem, the problem of finding whether a given
polytope contains a lattice point. In Section 7.3 we address the counting problem,
the problem of counting all lattice points in a given polytope. The asymptotic
problem (Section 7.4) explores the behavior of the number of lattice points in a
varying polytope (for example, if a dilation is applied to the polytope). Finally,
in Section 7.5 we discuss problems with quantifiers. These problems are natural
generalizations of the decision and counting problems. Whenever appropriate we
address algorithmic issues. For general references in the area of computational
complexity/algorithms see [AB09]. We summarize the computational complexity
status of our problems in Table 7.0.1.

TABLE 7.0.1 Computational complexity of basic problems.

PROBLEM NAME BOUNDED DIMENSION UNBOUNDED DIMENSION

Decision problem polynomial NP-hard

Counting problem polynomial #P-hard

Asymptotic problem polynomial #P-hard∗

Problems with quantifiers unknown; polynomial for ∀∃
∗∗ NP-hard

∗ in bounded codimension, reduces polynomially to volume computation
∗∗ with no quantifier alternation, polynomial time

7.1 INTEGRAL POLYTOPES IN POLYHEDRAL
COMBINATORICS

We describe some combinatorial and computational properties of integral polytopes.
General references are [GLS88], [GW93], [Sch86], [Lag95], [DL97] and [Zie00].

GLOSSARY

Rd: Euclidean d-dimensional space with scalar product 〈x, y〉 = x1y1+ . . .+xdyd,
where x = (x1, . . . , xd) and y = (y1, . . . , yd).

Z
d: The subset of Rd consisting of the points with integral coordinates.
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Polytope: The convex hull of finitely many points in R
d.

Face of a polytope P: The intersection of P and the boundary hyperplane of a
halfspace containing P .

Facet: A face of codimension 1.

Vertex: A face of dimension 0; the set of vertices of P is denoted by Vert P .

H-description of a polytope (H-polytope): A representation of the polytope
as the set of solutions of finitely many linear inequalities.

V-description of a polytope (V-polytope): The representation of the polytope
by the set of its vertices.

Integral polytope: A polytope with all of its vertices in Zd.

(0, 1)-polytope: A polytope P such that each coordinate of every vertex of P is
either 0 or 1.

An integral polytope P ⊂ R
d can be given either by its H-description or by its

V-description or (somewhat implicitly) as the convex hull of integral points in some
other polytope Q, so P = conv{Q ∩ Z

d}. In most cases it is difficult to translate
one description into another. The following examples illustrate some typical kinds
of behavior.

INTEGRALITY OF H-POLYTOPES

It is an NP-hard problem to decide whether anH-polytope P ⊂ Rd is integral. How-
ever, if the dimension d is fixed then the straightforward procedure of generating
all the vertices of P and checking their integrality has polynomial time complexity.
A rare case where an H-polytope P is a priori integral is known under the general
name of “total unimodularity.” Let A be an n× d integral matrix such that every
minor of A is either 0 or 1 or −1. Such a matrix A is called totally unimodular.
If b ∈ Z

n is an integral vector then the set of solutions to the system of linear
inequalities Ax ≤ b, when bounded, is an integral polytope in R

d. Examples of
totally unimodular matrices include matrices of vertex-edge incidences of oriented
graphs and of bipartite graphs. A complete characterization of totally unimodu-
lar matrices and a polynomial time algorithm for recognizing a totally unimodular
matrix is provided by a theorem of P. Seymour (see [Sch86]). A family of integral
polytopes, called transportation polytopes, are much studied in the literature
(see [EKK84] and [DLK14]). An example of a transportation polytope is provided
by the set of m × n nonnegative matrices x = (xij) whose row and column sums
are given positive integers. Integral points in this polytope are called contingency
tables; they play an important role in statistics. A particular transportation poly-
tope, called the Birkhoff polytope, is the set Bn of n × n nonnegative matrices
with all row and column sums equal to 1. Alternatively, it may be described as the
convex hull of the n! permutation matrices π(σ)ij = δiσ(j) for all permutations σ
of the set {1, . . . , n}.

The notion of total unimodularity has been generalized in various directions,
thus leading to new classes of integral polytopes (see [Cor01] and [Sch03]).

Reflexive polytopes, that is, integral polytopes whose polar dual are also inte-
gral polytopes play an important role in mirror symmetry in algebraic geometry
[Bat94].
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COMBINATORIALLY DEFINED V-POLYTOPES

There are several important situations where the explicit V-description of an inte-
gral polytope is too long and a shorter description is desirable although not always
available. For example, a (0, 1)-polytope may be given as the convex hull of the
characteristic vectors

χS(i) =

{

1 if i ∈ S,

0 otherwise

for some combinatorially interesting family S of subsets S ⊂ {1, . . . , d} (see [GLS88]
for various examples). One of the most famous example is the traveling salesman
polytope, the convex hull TSPn of the (n−1)! permutation matrices π(σ) where σ is
a permutation of the set {1, . . . , n} consisting of precisely one cycle (cf. the Birkhoff
polytope Bn above). The problem of the H-description of the traveling salesman
polytope has attracted a lot of attention (see [GW93], [EKK84] and [Sch03] for
some references) because of its relevance to combinatorial optimization. C.H. Pa-
padimitriou proved that it is a co-NP-complete problem to establish whether two
given vertices of TSPn are adjacent, i.e., connected by an edge [Pap78]. L. Billera
and A. Sarangarajan proved that every (0, 1)-polytope can be realized as a face of
TSPn for sufficiently large n [BS96]. Thus the combinatorics of TSPn contrasts
with the combinatorics of the Birkhoff polytope Bn.

Another important polytope arising in this way is the cut polytope, the famous
counterexample to the Borsuk conjecture (see [DL97]). It is defined as the convex
hull of the set of n× n matrices xS , where

xS(i, j) =

{

1 if |{i, j} ∩ S| = 1 and i 6= j,

0 otherwise,

where S ranges over all subsets of the set {1, . . . , n}.

CONVEX HULL OF INTEGRAL POINTS

Let P ⊂ Rd be a polytope. Then the convex hull PI of the set P ∩Zd, if nonempty,
is an integral polytope. Generally, the number of facets or vertices of PI depends
not only on the number of facets or vertices of P but also on the actual numerical
size of the description of P (see [CHKM92]). Furthermore, it is an NP-complete
problem to check whether a given point belongs to PI , where P is given by its H-
description. If, however, the dimension d is fixed then the complexity of the facial
description of the polytope PI is polynomial in the complexity of the description
of P . In particular, the number of vertices of PI is bounded by a polynomial of
degree d− 1 in the input size of P [CHKM92].

Integrality imposes some restrictions on the combinatorial structure of a poly-
tope. It is known that the combinatorial type of any 2- or 3-dimensional poly-
tope can be realized by an integral polytope. J. Richter-Gebert constructed a
4-dimensional polytope with a nonintegral (and, therefore, nonrational) combina-
torial type [Ric96]. Earlier, N. Mnëv had shown that for all sufficiently large d there
exist nonrational d-polytopes with d + 4 vertices [Mnë83]. The number Nd(V ) of
classes of integral d-polytopes having volume V and nonisomorphic with respect to
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affine transformations of Rd preserving the integral lattice Zd has logarithmic order

c1(d)V
d−1

d+1 ≤ logNd(V ) ≤ c2(d)V
d−1

d+1

for some c1(d), c2(d) > 0 [BV92].

7.2 DECISION PROBLEM

We consider the following general decision problem: Given a polytope P ⊂ R
d and

a lattice Λ ⊂ Rd, decide whether P ∩Λ = ∅ and, if the intersection is nonempty, find
a point in P ∩ Λ. We describe the main structural and algorithmic results for this
problem. General references are [GL87], [GLS88], [GW93], [Sch86], and [Lag95].

GLOSSARY

Lattice: A discrete additive subgroup Λ of Rd, i.e., x − y ∈ Λ for any x, y ∈ Λ
and Λ does not contain limit points.

Basis of a lattice: A set of linearly independent vectors u1, . . . , uk such that
every vector y ∈ Λ can be (uniquely) represented in the form y = m1u1 + . . .+
mkuk for some integers m1, . . . ,mk.

Rank of a lattice: The cardinality of any basis of the lattice. If Λ ⊂ R
d has

rank d, Λ is said to be of full rank.

Determinant of a lattice: For a lattice of rank k the k-volume of the paral-
lelepiped spanned by any basis of the lattice.

Reciprocal lattice: For a full rank lattice Λ ⊂ Rd, the lattice Λ∗ =
{

x ∈ Rd |
〈x, y〉 ∈ Z for all y ∈ Λ

}

.

Polyhedron: An intersection of finitely many halfspaces in R
d.

Convex body: A compact convex set in R
d with nonempty interior.

Lattice Polytope: For a given lattice Λ, a polytope with all of its vertices in Λ.

Applying a suitable linear transformation one can reduce the decision problem
to the case in which Λ = Z

k and P ⊂ R
k is a full-dimensional polytope, k = rank Λ.

The decision problem is known to be NP-complete for H-polytopes as well as
for V-polytopes, although some special cases admit a polynomial time algorithm.
In particular, if one fixes the dimension d then the decision problem becomes poly-
nomially solvable. The main tool is provided by the so-called “flatness results.”

FLATNESS THEOREMS

Let P ⊂ R
d be a convex body and let l ∈ R

d be a nonzero vector. The number

max
{

〈l, x〉 | x ∈ P
}

−min
{

〈l, x〉 | x ∈ P
}

is called the width of P with respect to l. For a full rank lattice Λ ⊂ R
d, the

minimum width of P with respect to a nonzero vector l ∈ Λ∗ is called the lattice
width of P .
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Chapter 7: Lattice points and lattice polytopes 189

The following general result is known under the unifying name of “flatness
theorem.”

THEOREM 7.2.1

There is a function f : N → R such that for any full rank lattice Λ ⊂ R
d and any

convex body P ⊂ Rd with P ∩ Λ = ∅, the lattice width of P does not exceed f(d).

There are two types of results relating to the flatness theorem.
First, one may be interested in making f(d) as small as possible. One can

observe that f(d) ≥ d: for some small ǫ > 0, consider Λ = Zd and the polytope P
defined by the inequalities x1 + . . .+xd ≤ d− ǫ, xi ≥ ǫ for i = 1, . . . , d. It is known
that one can choose f(d) = O(d3/2) and it is conjectured that one can choose f(d)
as small as O(d). W. Banaszczyk proved that if P is centrally symmetric, then one
can choose f(d) = O(d log d), which is optimal up to a logarithmic factor. For these
and related results, see [BLPS99]. There are results regarding the lattice width of
some interesting classes of convex sets. Thus, if P ⊂ R

d is an ellipsoid that does
not contain lattice points, then the lattice width of P is O(d) [BLPS99]. A lattice
polytope with no lattice points other than its vertices is called sometimes empty
polytope. J.-M. Kantor [Kan99] showed that the lattice width of a d-dimensional
empty simplex can grow linearly in d and then A. Sebő [Seb99] constructed explicit
examples of d-dimensional empty simplices of width d− 2. If P is a 3-dimensional
empty polytope, then the lattice width of P is 1 (see [Sca85] and Section 16.6.1 of
this Handbook for more on lattice width).

Second, one may be interested in the best width bound for which the corre-
sponding vector l ∈ Λ∗ can be computed in polynomial time. The best bound
known is 2O(d), where l is polynomially computable even if the dimension d varies;
see [GLS88]. For the computational complexity of lattice problems, such as finding
the shortest non-zero lattice vector or the nearest lattice vector to a given point,
see [MG02].

ALGORITHMS FOR THE DECISION PROBLEMS

Flatness theorems allow one to reduce the dimension in the decision problem: As-
suming that Λ = Z

d and that the body P does not contain an integral point,
one constructs a vector l ∈ Zd for which P has a small width and reduces the
d-dimensional decision problem to a family of (d−1)-dimensional decision prob-
lems Pi =

{

x ∈ P | 〈l, x〉 = i
}

, where i ranges between min{〈l, x〉 | x ∈ P} and
max{〈l, x〉 | x ∈ P}. This reduction is the main idea of polynomial time algorithms
in fixed dimension. The best complexity known for the decision problem in terms
of the dimension d is dO(d), see [Dad14] for recent advances.

Constructing l efficiently relies on two major components (see [GLS88]). First,
a linear transformation T is computed, such that the image T (P ) is “almost round,”
meaning that T (P ) is sandwiched between a pair of concentric balls with the ratio
of their radii bounded by some small constant depending only on the dimension d.
At this stage, a linear programming algorithm is used. Second, a reasonably short
nonzero vector u is constructed in the lattice Λ∗ reciprocal to Λ = T (Zd). A basis
reduction algorithm is used at this stage. Then we let l = (T ∗)−1u.

One can streamline the process by using the generalized lattice reduction [LS92]
tailored to a given polytope. A polynomial time algorithm based on counting lattice
points in the polytope and not using the flatness argument is sketched in [BP99].

Preliminary version (July 16, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.



190 A. Barvinok

MINKOWSKI’S CONVEX BODY THEOREM

The following classical result, known as “Minkowski’s convex body theorem,” pro-
vides a very useful criterion.

THEOREM 7.2.2

Suppose that B ⊂ Rd is a convex body, centrally symmetric about the origin 0, and
Λ ⊂ R

d is a lattice of full rank. If vol B ≥ 2d detΛ then B contains a nonzero
point of Λ.

For the proof and various generalizations see, for example, [GL87]. An im-
portant generalization (Minkowski’s Second Theorem) concerns the existence of i
linearly independent lattice points in a convex body. Namely, if

λi = inf
{

λ > 0 | λB ∩ Λ contains i linearly independent points
}

is the “ith successive minimum,” then λ1 . . . λd ≤ (2d detΛ)/(volB).
If B is a symmetric convex body such that vol B = 2d detΛ but B does not

contain a nonzero lattice point in its interior, then B is called extremal. Every
extremal body is necessarily a polytope. Moreover, this polytope contains at most
2(2d − 1) facets, and therefore, for every dimension d, there exist only finitely
many combinatorially different extremal polytopes. The contracted polytope P =
{x/2 | x ∈ B} has the property that its lattice translates P + x, x ∈ Λ, tile the
space Rd. Such a tiling polytope is called a parallelohedron. Similarly, for every
dimension d there exist only finitely many combinatorially different parallelohedra.
Parallelohedra can be characterized intrinsically: a polytope is a parallelohedron
if and only if it is centrally symmetric, every facet of it is centrally symmetric,
and every class of parallel ridges ((d−2)-dimensional faces) consists of four or six
ridges. If q : Rd −→ R is a positive definite quadratic form, then the Dirichlet-
Voronoi cell Pq =

{

x | q(x) ≤ q(x − λ) for any λ ∈ Λ
}

is a parallelohedron.
The problem of deciding whether a centrally symmetric polyhedron P contains a
nonzero point from a given lattice Λ is known to be NP-complete even in the case
of the standard cube P = {(x1, . . . , xd) | −1 ≤ xi ≤ 1}. For fixed dimension d
there exists a polynomial time algorithm since the problem obviously reduces to
the decision problem (one can add the extra inequality x1 + . . .+ xd ≥ 1).

VOLUME BOUNDS

An integral simplex in Rd containing no integral points other than its vertices has
volume 1/2 if d = 2 but already for d = 3 can have an arbitrarily large volume (the
smallest possible volume of such a simplex is 1/d!). On the other hand, D. Hensley
proved if an integral polytope P contains precisely k > 0 integral points then its
volume is bounded by a function of k and d. J.C. Lagarias and G.M. Ziegler proved

that vol P ≤ k(7(k + 1))2
d+1

, see [Lag95] and also [Pik01] for some sharpening.
G. Averkov, J. Krümpelmann and B. Nill found the maximum volume of an

integral simplex that contains exactly one integer point in its interior [AKN15],
thus proving a conjecture of D. Hensley. Namely, let s1, . . . , sd be the Sylvester
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sequence, defined recursively by

s1 = 2 and si = 1 +

i−1
∏

j=1

sj for i ≥ 2.

The volume of an integral simplex in R
d with precisely one interior point does not

exceed 2(sd − 1)2/d! and the bound is attained for the simplex with vertices at
0, s1e1, . . . , sd−1ed−1 and 2(sd − 1)ed, where e1, . . . , ed is the standard basis of Rd.

7.3 COUNTING PROBLEM

We consider the following problem: Given a polytope P ⊂ R
d, compute exactly or

approximately the number of integral points |P ∩ Z
d| in P .

For counting in general convex bodies see [CHKM92]. For applications in the
combinatorics of generating functions, see [Sta86]. For applications in represen-
tation theory, see [BZ88], [CDW12] and [PP17]. For applications in statistical
physics (computing permanents) and statistics (counting contingency tables), see
[JS97]. For applications in social sciences, see [GL11]. For general information see
surveys [GW93] and [BP99] and books [BR07] and [Bar08].

GLOSSARY

Rational polyhedron: The set

P =
{

x ∈ Rd | 〈ai, x〉 ≤ βi, i = 1, . . . ,m
}

,

where ai ∈ Zd and βi ∈ Z for i = 1, . . . ,m. Generally, for a rational polyhedron
with respect to lattice Λ ⊂ R

d of full rank, we have ai ∈ Λ∗ and βi ∈ Z for
i = 1, . . . ,m.

Polyhedral cone: A set K ⊂ R
d of the form K =

{
∑k

i=1 λiui | λi ≥ 0, i =

1, . . . , k
}

for some vectors u1, . . . , uk ∈ R
d. The vectors u1, . . . uk are called

generators of K.

Rational cone: A polyhedral cone having a set of generators belonging to Z
d.

Generally, a rational cone with respect to lattice Λ is a cone generated by
vectors from Λ. A rational cone is a rational polyhedron.

Simple cone: A polyhedral cone generated by linearly independent vectors.

Cone of feasible directions at a point: The cone

Kv =
{

x | v + ǫx ∈ P for all sufficiently small ǫ > 0
}

for a point v of a polytope P . If v is a vertex, then the cone Kv is generated by
the vectors ui = vi − v, where [vi, v] is an edge of P .

Unimodular cone: A rational simple cone K ⊂ R
d generated by a basis of Zd.

Generally, a unimodular cone with respect to lattice Λ ⊂ R
d is a cone

generated by a basis of Λ.

Simple polytope: A polytope P such that the cone Kv of feasible directions is
simple for every vertex v of P .
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Totally unimodular polytope: An integral polytope P such that the cone Kv

of feasible directions is unimodular for every vertex v of P .

GENERAL INFORMATION

The counting problem is known to be #P -hard even for an integral H- or V-
polytope. However, if the dimension d is fixed, one can solve the counting problem
in polynomial time (see [BP99] and [Bar08]).

SOME EXPLICIT FORMULAS IN LOW DIMENSIONS

The classical Pick formula expresses the number of integral points in a convex
integral polygon P ⊂ R2 in terms of its area and the number of integral points on
the boundary ∂P :

|P ∩ Z
2| = area(P ) +

1

2
· |∂P ∩ Z

2|+ 1

(see, for example, [Mor93b], [GW93] and [BR07]). This formula almost immediately
gives rise to a polynomial time algorithm for counting integral points in integral
polygons.

An important explicit formula for the number of integral points in a lattice
tetrahedron of a special kind was proven by L. Mordell, see [BR07]. Let a, b, c
be pairwise coprime positive integers and ∆(a, b, c) ⊂ R

3 be the tetrahedron with
vertices (0, 0, 0), (a, 0, 0), (0, b, 0), and (0, 0, c). Then

|∆(a, b, c) ∩ Z
3| = abc

6
+
ab+ ac+ bc+ a+ b+ c

4
+

1

12

(ac

b
+
bc

a
+
ab

c
+

1

abc

)

− s(bc, a)− s(ac, b)− s(ab, c) + 2. (7.3.1)

Here

s(p, q) =

q
∑

i=1

(( i

q

))((pi

q

))

, where ((x)) = x− 0.5(⌊x⌋+ ⌈x⌉),

is the Dedekind sum. A similar formula was found in dimension 4. The reciprocity
relation s(p, q) + s(q, p) = (p/q + q/p + 1/pq − 3)/12 allows one to compute the
Dedekind sum s(p, q) in polynomial time. A version of formula (7.3.1) was used
by M. Dyer to construct polynomial time algorithms for the counting problem in
dimensions 3 and 4. Formula (7.3.1) was generalized to an arbitrary tetrahedron
by J. Pommersheim (see [BP99] and [BR07]).

Computationally efficient formulas for the number of lattice points are known
for some particular polytopes, most notably zonotopes. Given integral points
v1, . . . , vn in R

d, a zonotope spanned by v1, . . . , vn is the polytope

P =
{

λ1v1 + . . .+ λnvn | 0 ≤ λi ≤ 1 for i = 1, . . . , n
}

.

For each subset S ⊂ {v1, . . . , vn} of linearly independent points, let aS be the index
of the sublattice generated by S in the lattice Zd ∩ span(S), where a∅ = 1. Then
|P ∩ Z

d| = ∑

S aS (see Chapter 4, Problem 31 of [Sta86]).
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EXPONENTIAL SUMS

A powerful tool for solving the counting problem exactly is provided by exponen-
tial sums.

Let P ⊂ R
d be a polytope and c ∈ R

d be a vector. We consider the exponen-
tial sum

∑

x∈P∩Zd

exp{〈c, x〉}.

If c = 0 we get the number of integral points in P . The reason for introducing
the parameter c is that for a “generic” c exponential sums reveal some nontrivial
algebraic properties that remain invisible when c = 0. To describe these properties
we need to consider exponential sums over rational polyhedra and, in particular,
over cones.

EXPONENTIAL SUMS OVER RATIONAL POLYHEDRA

Let K ⊂ Rd be a rational cone without lines generated by vectors u1, . . . , uk in Zd.

Then the series
∑

x∈K∩Zd

exp{〈c, x〉} converges for any c such that 〈c, ui〉 < 0 for all

i = 1, . . . , k and defines a meromorphic function of c, which we denote by fK(c).
In particular, if K is unimodular then

fK(c) =

k
∏

i=1

1

1− exp{〈c, ui〉}
,

since the corresponding sum is just the multiple geometric series. Generally speak-
ing, the farther a given cone is from being unimodular, the more complicated the
formula for fK(c) will be.

These results are known in many different forms (see, for example, [Sta86,
Section 4.6]). Furthermore, the function fK(c) can be extended to a finitely additive
measure, defined on rational polyhedra in R

d and taking its values in the space of
meromorphic functions in d variables, so that the measure of a rational polyhedron
with a line is equal to 0. To state the result precisely, let us associate with every
set A ∈ R

d its indicator function [A] : Rd −→ R, given by

[A](x) =

{

1 if x ∈ A,

0 otherwise.

The following result was proved by A.G. Khovanskii and A. Pukhlikov and, inde-
pendently, by J. Lawrence, see [Bar08] for an exposition.

THEOREM 7.3.1 Lawrence-Khovanskii-Pukhlikov Theorem

There exists a map that associates, to every rational polyhedron P ⊂ R
d, a mero-

morphic function fP (c), c ∈ Cd, with the following properties:
The correspondence P 7−→ fP preserves linear dependencies among indicator

functions of rational polyhedra:

m
∑

i=1

αi[Pi] = 0 implies

m
∑

i=1

αifPi
(c) = 0
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for rational polyhedra Pi and integers αi.
If P does not contain lines, then

fP (c) =
∑

x∈P∩Zd

exp{〈c, x〉}

for all c such that the series converges absolutely.
If P contains a line then fP (c) ≡ 0.
If P +m is a translation of P by an integral vector m then

fP+m(c) = exp{〈c,m〉}fP (c).

For example, suppose that d = 1 and let us choose P+ = [0,+∞), P− =
(−∞, 0], P0 = {0}, and P = (−∞,+∞). Then

fP+
(c) =

+∞
∑

x=0

exp{cx} =
1

1− exp{c} and fP
−

(c) =

−∞
∑

x=0

exp{cx} =
1

1− exp{−c} .

Moreover, fP0
= 1 and fP = 0 since P contains a line. We see that [P ] = [P+] +

[P−]− [P0] and that fP = fP+
+ fP

−

− fP0
.

Let P ⊂ R
d be a rational polytope and let v ∈ P be its vertex. Let us consider

the translation v + Kv of the cone Kv of feasible directions at v. The following
crucial result was proved by M. Brion, see [BR07] and [Bar08].

THEOREM 7.3.2 Brion’s Theorem

Let P ⊂ R
d be a rational polytope. Then

∑

x∈P∩Zd

exp{〈c, x〉} =
∑

v∈Vert P

fv+Kv
(c).

If the polytope is integral, we have fv+Kv
(c) = exp{〈c, v〉}fKv

(c). We note that
if K is a unimodular cone and v is a rational vector then fK+v = exp{〈c, w〉}fK(c),
where w ∈ Zd is a certain “rounding” of v with respect to K. Namely, assume
that K is the conic hull of some integral vectors u1, . . . , ud that constitute a basis
of Zd. Let u∗1, . . . , u

∗
d be the biorthogonal basis such that 〈u∗i , uj〉 = δij . Then

w =
∑d

i=1⌈〈v, u∗i 〉⌉ui.
Essentially, Theorem 7.3.2 can be deduced from Theorem 7.3.1 by noticing that

the indicator function of every (rational) polyhedron P can be written as the sum of
the indicator functions [v+Kv] modulo indicator functions of (rational) polyhedra
with lines, see [BP99] and [Bar08].

Brion’s formula allows one to reduce the counting of integral points in poly-
topes to the counting of points in polyhedral cones, a much easier problem. Below
we discuss two instances where the application of exponential sums and Brion’s
identities leads to an efficient computational solution of the counting problem.

COUNTING IN FIXED DIMENSION

The following result was obtained by A. Barvinok (see [BP99] and [Bar08] for an
exposition).
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THEOREM 7.3.3

Let us fix the dimension d. Then there exists a polynomial time algorithm that, for
any given rational polytope P ⊂ Rd, computes the number |P ∩Zd| of integral points
in P .

THE IDEA OF THE ALGORITHM

We assume that the polytope is given by its V-description. Let us choose a “generic”
c ∈ Q

d. We can compute the number |P ∩ Z
d| as the limit of the exponential sum

lim
t−→0

∑

x∈P∩Zd

exp{〈tc, x〉},

where t is a real parameter. Using Brion’s Theorem 7.3.2, we reduce the problem to
the computation of the constant term in the Laurent expansion of the meromorphic
function fv(t) = fv+Kv

(tc), where v is a vertex of P and Kv is the cone of feasible
directions at v. IfKv is a unimodular cone, we have an explicit formula for fv+Kv

(c)
(see above) and thus can easily compute the desired term. However, for d > 1 the
cone Kv does not have to be unimodular. It turns out, nevertheless, that for any
given rational cone K one can construct in polynomial time a decomposition

[K] =
∑

i∈I

ǫi[Ki] where ǫi ∈ {−1, 1},

of the “inclusion-exclusion” type, where the cones Ki are unimodular (see below).
Thus one can get an explicit expression

fv+Kv
(c) =

∑

i∈I

ǫi · fv+Ki
(c)

and then compute the constant term of the Laurent expansion of fv(t). The com-
plexity of the algorithm in terms of the dimension d is dO(d). The algorithm
have been implemented in packages LattE by J.A. De Loera et al. [DLH+04] and
barvinok by S. Verdoolaege et al. [VSB+07].

COUNTING IN TOTALLY UNIMODULAR POLYTOPES

One can efficiently count the number of integral points in a totally unimodular
polytope given by its vertex description even in varying dimension.

THEOREM 7.3.4 [BP99]

There exists an algorithm that, for any d and any given integral vertices v1, . . . , vm
∈ Z

d such that the polytope P = conv{v1, . . . , vm} is totally unimodular, computes
the number of integral points of P in time linear in the number m of vertices.

Moreover, the same result holds for rational polytopes with unimodular cones
of feasible directions at the vertices. The algorithm uses Brion’s formulas (Theo-
rem 7.3.2) and the explicit formula above for the exponential sum over a unimodular
cone.
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EXAMPLE: COUNTING CONTINGENCY TABLES

Suppose A is an n × d totally unimodular matrix (see Section 7.1). Let us choose
b ∈ Zn such that the set Pb of solutions to the system Ax ≤ b of linear inequalities
is a simple polytope. Then Pb is totally unimodular.

For example, if we know all the vertices of a simple transportation polytope P ,
we can compute the number of integral points of P in time linear in the number of
vertices of P .

One can construct an efficient algorithm for counting integral points in a poly-
tope that is somewhat “close” to totally unimodular and for which the explicit
formulas for fKv

(c) are therefore not too long.
One particular application is counting contingency tables (see Section 7.1), see

[DLH+04].

CONNECTIONS WITH TORIC VARIETIES

It has been known since the 1970s that the number of integral points in an integral
polytope is related to some algebro-geometric invariants of the associated toric
variety (see [Oda88]). Naturally, for smooth toric varieties (they correspond to
totally unimodular polytopes) computation is much easier. Various formulas for the
number of integral points in polytopes were first obtained for totally unimodular
polytopes and then, by the use of resolution of singularities, generalized to arbitrary
integral polytopes (see, for example, [BP99]). Resolution of singularities of toric
varieties reduces to dissection of a polyhedral cone into unimodular cones. However,
as one can see, it is impossible to subdivide a rational cone into polynomially (in
the input) many unimodular cones even in dimension d = 2. For example (see
Figure 8.3.1), the plane cone K generated by the points (1, 0) and (1, n) cannot be
subdivided into fewer than 2n − 1 unimodular cones, whereas a polynomial time
subdivision would give a polynomial in logn cones. On the other hand, if we allow
a signed linear combination of the inclusion-exclusion type, then one can easily
represent this cone as a combination of 3 unimodular cones: [K] = [K1]−[K2]+[K3],
where K1 is generated by the basis (1, 0) and (0, 1), K2 is generated by (0, 1) and
(1, n), and K3 is generated by (1, n). Moreover, modulo rational cones with lines
(cf. Theorem 7.3.1), we need to use only two unimodular cones: [K] = [K3] + [K4]
modulo rational cones with lines, where K3 is the cone generated by (1, n) and
(0,−1) and K4 is the cone generated by (0, 1) and (1, 0). Consequently, from
Theorem 7.3.1,

fK(c) =
1

(1− ec1+nc2)(1 − e−c2)
+

1

(1 − ec1)(1 − ec2)
for c = (c1, c2).

As we have mentioned above, once we allow “signed” combinations, any rational
polyhedral cone can be decomposed into unimodular cones in polynomial time,
provided the dimension is fixed. Moreover, if we allow decompositions modulo
rational cones with lines, the algorithm can be sped up further; roughly from 2O(d2)

to 2O(d ln d) (see [BP99] and [Bar08]).
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FIGURE 7.3.1

Decomposition of a cone
into unimodular cones.
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CONNECTIONS WITH VALUATIONS

The number of integral points ν(P ) = |P ∩Zd| in an integral polytope P ⊂ Rd is a
valuation, that is, it preserves linear relations among indicator functions of poly-
topes; and it is lattice-translation-invariant, i.e., ν(P + l) = ν(P ) for any l ∈ Z

d.
General properties of valuations and the related notion of the “polytope algebra”
have been intensively studied (see, for example, [McM93] and [Mor93a]). Vari-
ous identities discovered in this area might prove useful in dealing with particular
counting problems (see [BP99] and [Bar08]). For example, if the transportation
polytope Pb is not simple, one can apply the following recipe. First, triangulating
the normal cone at the vertex, we represent it as a combination of unimodular
cones (we discard lower-dimensional cones). Then, passing to the dual cones, we
get the desired representation of the cone of feasible directions (we discard cones
with lines).

Exponential sums can be considered as a way to extend the counting valuation
(the number of integer points in a polytope) from rational polytopes to rational
polyhedra, possibly unbounded. Similarly, one can extend volume (which is ob-
viously a valuation) from polytopes to possibly unbounded polyhedra by using
exponential integrals

∫

P

exp {〈c, x〉} dx

and prove the corresponding version of Theorem 7.3.1, see [Bar08]. In [Bar06] a
family of intermediate valuations interpolating between discrete (integer points) and
continuous (volumes) valuations was introduced: for a given k-dimensional lattice
subspace L ⊂ R

d (subspace spanned by lattice points), with a polytope P ⊂ R
d,

we associate the sum of k-dimensional volumes of sections P ∩ A, where A ranges
over different lattice translates of L. The corresponding theory of intermediate
exponential valuations was developed by V. Baldoni, N. Berline, J.A. De Loera,
M. Köppe, M. Vergne, see [BBD+12], [BBK+13] and references therein. These
valuations turn out to be useful for efficient asymptotic counting of integer points
in polytopes of varying dimension, see Section 7.4 below.

ANALYTIC METHODS

In [BH10], the following approach to approximate counting was suggested. Suppose
that the polytope P ⊂ R

d is the intersection of an affine subspace of Rd defined by
the system of linear equations Ax = b, where A is a k × d integer matrix of rank
k < d and the non-negative orthant Rd

+. Suppose further that the relative interior
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of P is non-empty. Then the strictly concave function g : Rd
+ −→ R,

g(x) =

d
∑

i=1

(

(xi + 1) ln (xi + 1)− xi lnxi

)

for x = (x1, . . . , xd)

attains its maximum on P at a (necessarily unique) point z = (z1, . . . , zn), which
can be easily computed by interior point methods. Suppose that ξ1, . . . , ξd are
independent geometric random variables with expectations z1, . . . , zd respectively.
In other words, each random variable ξi accepts non-negative integer values and

P (ξi = k) = piq
k
i for pi =

1

1 + zi
, qi =

zi
1 + zi

and k = 0, 1, 2, . . . .

Let ξ = (ξ1, . . . , ξd) be the corresponding random vector. It is shown in [BH10]
that

P(ξ = m) = e−g(z) for all m ∈ P ∩ Z
d

and hence one can express the number of integer points in P as

∣

∣

∣
P ∩ Zd

∣

∣

∣
= eg(z)P(Aξ = b). (7.3.2)

In fact, the random vector ξ has the largest entropy among all random vectors
supported on the set Z

d
+ of non-negative integer vectors and with expectation in

the affine subspace Ax = b while g(x) is the entropy of the vector of independent
geometric random variables with expectation x. The random k-dimensional vector
Aξ is a linear combination of the d columns of matrix A with independent random
coefficients and E(Aξ) = Az = b. If k ≪ d, one can hope that in the spirit of
the Local Central Limit Theorem, the distribution of Aξ is close to a multivariate
Gaussian distribution, so the right-hand side of (7.3.2) can be estimated via the
covariance matrix of Aξ. Computing the covariance matrix, we obtain a heuristic
formula

∣

∣

∣
P ∩ Z

d
∣

∣

∣
≈ eg(z) (detΛ)

(2π)k/2
√

det (BBT )
, (7.3.3)

where Λ ⊂ Z
k is the lattice spanned by the columns of matrix A and B is the

matrix obtained from A by multiplying the i-th column of A onto
√

z2i + zi for
i = 1, . . . , d. It is shown in [BH10] that for many classes of polytopes P for-
mula (7.3.3) indeed provides an asymptotically tight approximation for the number
of integer points. J.A. De Loera reported encouraging results of some numerical
experiments. For example, the exact number of 4 × 4 non-negative integer matri-
ces with row sums 220, 215, 93 and 64 and column sums 108, 286, 71 and 127 is
1, 225, 914, 276, 768, 514, while (7.3.3) gives a 6% error (we approximate the sum
of 16 independent 7-dimensional vectors by the Gaussian distribution). The exact
number of 3×3×3 arrays of non-negative integers with sums [31, 22, 87], [50, 13, 77]
and [42, 87, 11] along the coordinate hyperplane “slices” is 8, 846, 838, 772, 161, 591,
while (7.3.3) gives a 0.19% error (we approximate the sum of 27 independent 7-
dimensional vectors by the Gaussian distribution). It is shown in [Ben14] that
(7.3.3) is asymptotically exact for multiway contingency tables (3- and higher-
dimensional arrays of non-negative integers with prescribed sums along the co-
ordinate hyperplane slices). In [BH12], it is shown that in the case of classical
contingency tables (non-negative integer matrices with prescribed row and column
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sums) to obtain an asymptotically exact formula, one needs to introduce a correc-
tion to (7.3.3) (the so-called Edgeworth correction), which is an explicit, efficiently
computable factor based on the third and fourth moments of the random vector
Aξ.

The number of m×n non-negative integer matrices with equal row sums s and
equal column sums t (and hence the total sum N = ms = tn of entries) was earlier
computed by E.R. Canfield and B.D. McKay [CM10]. Asymptotically, this number
is

(

n+s−1
s

)m(

m+t−1
t

)n

(

mn+N−1
N

) exp

{

1

2

}

,

provided n and m grow roughly proportionately, see [CM10] for details. In [Sha10],
non-trivial upper bounds for the number of integer points in polytopes are obtained
via anti-concentration inequalities. In particular, by bounding the right-hand side
of (7.3.2), the following simple and useful bound is obtained in [Sha10]:

∣

∣

∣
P ∩ Z

d
∣

∣

∣
≤ eg(z) min

j1,...,jk

k
∏

i=1

1

1 + zji
,

where the minimum is taken over all collections j1, . . . , jk of linearly independent
columns of matrix A.

The following simple observation often leads to practically efficient (although
theoretically exponential time) algorithms. Suppose that the polytope P is defined
as above as the intersection of the non-negative orthant in R

d with a k-dimensional
affine subspace defined by the system Ax = b, where A = (aij) is a k × d integer
matrix. Let z1, . . . , zk be (complex) variables and let

fA(z1, . . . , zk) =
d
∏

j=1

+∞
∑

m=0

z
a1jm
1 z

a2jm
2 · · · zakjm

k =
d
∏

j=1

1

1− z
a1j

1 z
a2j

2 · · · zakj

k

.

Thus |P∩Zd| is equal to the coefficient of zb11 · · · zbkk in the expansion of fA(z1, . . . , zk)
in a neighborhood of z1 = . . . = zk = 0. This coefficient may be extracted by nu-
merical differentiation, or by (repeated) application of the residue formula. M. Beck
and D. Pixton [BP03] report results on numerical computation for the problem of
counting contingency tables using repeated application of the residue formula.

As discussed in [BV97], various identities relating functions fA mirror corre-
sponding identities among indicator functions of rational polyhedra. In particular,
decompositions of fA into “simple fractions” correspond to decompositions of P
into simple cones.

Quite a few useful inequalities for the number of lattice points can be found in
[GW93], [Lag95], and [GL87]. Blichfeldt’s inequality states that

|B ∩ Λ| ≤ d!

det Λ
vol B + d ,

where B is a convex body containing at least d + 1 affinely independent lattice
points. Davenport’s inequality implies that

|B ∩ Z
d| ≤

d
∑

i=0

(

d

i

)

Vi(B),
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where the Vi are the intrinsic volumes. A conjectured stronger inequality,
|B ∩ Z

d| ≤ V0(K) + . . . + Vd(K), was shown to be false in dimensions d ≥ 207,
although it is correct for d = 2, 3. Furthermore, H. Hadwiger proved that

|B ∩ Z
d| ≥

d
∑

i=0

(−1)d−iVi(B),

provided B ⊂ R
d is a convex body having a nonempty interior (see [Lag95]).

For applications of harmonic analysis, see [BR07].

PROBABILISTIC METHODS

Often, we need the number of integral points only approximately. Probabilistic
methods based on Monte-Carlo methods have turned out to be quite successful. The
main idea can be described as follows (see [JS97]). Suppose we want to approximate
the cardinality of a finite set X (for example, X may be the set of lattice points
in a polytope). Suppose, further, that we can present a “filtration” X0 ⊂ X1 ⊂
. . . ⊂ Xn = X , where |X0| = 1 (in general, we require |X0| to be small) and
|Xi+1|/|Xi| ≤ 2 (in general, we require the ratio |Xi+1|/|Xi| to be reasonably
small). Finally, suppose that we have an efficient procedure for sampling an element
x ∈ Xi uniformly at random (in practice, we settle for “almost uniform” sampling).
Given an ǫ > 0 and a δ > 0, with probability at least 1 − δ one can estimate the
ratio |Xi+1|/|Xi|, within a relative error ǫ/n, by sampling O(nǫ−1 ln δ−1) points at
random from Xi+1 and counting how many times the points end up in Xi. Then,
by “telescoping,” with probability at least (1 − δ)n, we estimate

|X | = |Xn| =
|Xn|

|Xn−1|
· · · |Xi+1|

|Xi|
· · · |X2|

|X1|
within relative error ǫ.

The bottleneck of the method is the ability to sample a point x ∈ Xi uniformly
at random. To achieve that, a Markov chain on Xi is designed, which converges
fast (“mixes rapidly”) to the uniform distribution. Usually, there are some natural
candidates for such Markov chains and the main difficulty is to establish whether
they indeed mix rapidly.

Counting various combinatorial structures can be interpreted as counting ver-
tices in a certain (0, 1)-polytope. For example, computing the number of perfect
matchings in a given bipartite graph on n+ n vertices, or, equivalently, computing
the permanent of a given n × n matrix of 0’s and 1’s, can be viewed as counting
the number of vertices in a particular face of the Birkhoff polytope Bn. M. Jerrum,
A. Sinclair, and E. Vigoda [JSV04] have constructed a polynomial-time proba-
bilistic algorithm to approximate the permanent of any given nonnegative matrix.
B. Morris and A. Sinclair [MS99] have presented a polynomial-time probabilistic
algorithm to compute the number of (0, 1)-vectors (x1, . . . , xn) satisfying the in-
equality a1x1 + . . . + anxn ≤ bn, where ai and b are given positive integers, see
also [Dye03] for a deterministic algorithm and [CDR10] for further applications of
dynamic programming in derandomization.

R. Kannan and S. Vempala proved [KV99] that if a polytope P ⊂ R
d with

m facets contains a ball of radius d
√
lnm then the number of integer points in

P is well approximated by the volume of P and, moreover, sampling a random
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point from the uniform (or almost uniform) distribution P ∩Z
d can be achieved by

sampling a random point from the uniform (or almost uniform) distribution in P
(which is an easier problem, see [JS97] and [Vem10]), rounding the obtained point
to an integer point and accepting it if the resulting integer point lies in P . This
leads to a polynomial time algorithm for sampling and counting of integer points
in such polytopes P .

7.4 ASYMPTOTIC PROBLEMS

If P ⊂ R
d is an integral polytope then the number of integral points in the di-

lated polytope nP = {nx | x ∈ P} for a natural number n is a polynomial in
n, known as the Ehrhart polynomial. We review several results concerning the
Ehrhart polynomial and its generalizations.

GLOSSARY

Cone of feasible directions at a face of a polytope: The cone KF of feasible
directions at any point in the relative interior of the face F ⊂ P .

Tangent cone at a face of a polytope: The translation x+KF of the cone of
feasible directions KF by any point x in the face F ⊂ P .

Apex of a cone: The largest linear subspace contained in the cone.

Dual cone: The cone K∗ =
{

x ∈ R
d | 〈x, y〉 ≤ 0 for all y ∈ K

}

, where K ⊂ R
d

is a given cone.

volk: The normalized k-volume of a k-dimensional rational polytope P ⊂ Rd

computed as follows. Let L ⊂ R
d be the k-dimensional linear subspace parallel

to the affine span of P . Then volk(P ) is the Euclidean k-dimensional volume of
P in the affine span of P divided by the determinant of the lattice Λ = Zd ∩ L.

Lattice subspace: A subspace spanned by lattice points.

EHRHART POLYNOMIALS

The following fundamental result was suggested by Ehrhart.

THEOREM 7.4.1

Let P ⊂ R
d be an integral polytope. For a natural number n we denote by nP =

{nx | x ∈ P} the n-fold dilation of P . Then the number of integral points in nP
is a polynomial in n:

|nP ∩ Z
d| = EP (n) for some polynomial EP (x) =

d
∑

i=0

ei(P ) · xi.

Moreover, for positive integers n the value of (−1)degEPEP (−n) is equal to the
number of integral points in the relative interior of the polytope nP (the “reciprocity
law”).
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The polynomial EP is called the Ehrhart polynomial and its coefficients
ei(P ) are called Ehrhart coefficients. For various proofs of Theorem 7.4.1 see,
for example, [Sta83], [Sta86], [BR07] and [Bar08]. The existence of the Ehrhart
polynomials and the reciprocity law can be derived from the single fact that the
number of integral points in a polytope is a lattice-translation-invariant valuation
(see [McM93] and Section 7.3 above).

If P is a rational polytope, one can define ek(P ) = n−kek(P1), where n is a
positive integer such that P1 = nP is an integral polytope. For an integral polytope
P ⊂ Rd, one has |P ∩ Zd| = e0(P ) + e1(P ) + . . . + ed(P ). (This formula is no
longer true, however, if P is a general rational polytope.) The Ehrhart coefficients
constitute a basis of all additive functions (valuations) ν on rational polytopes that
are invariant under unimodular transformations (see [McM93] and [GW93]).

GENERAL PROPERTIES

It is known that e0(P ) = 1, ed(P ) = vold(P ), and ed−1(P ) =
1

2

∑

F

vold−1F , where

the sum is taken over all the facets of P . Thus, computation of the two highest
coefficients reduces to computation of the volume. In fact, the computation of
any fixed number of the highest Ehrhart coefficients of an H-polytope reduces in
polynomial time to the computation of the volumes of faces; see [BP99], [Bar08]
and also below.

EXISTENCE OF LOCAL FORMULAS

The Ehrhart coefficients can be decomposed into a sum of “local” summands. The
following theorem was proven by P. McMullen (see [McM93], [Mor93a], and [BP99]).

THEOREM 7.4.2

For any natural numbers k and d there exists a real valued function µk,d, defined

on the set of all rational polyhedral cones K ⊂ Rd, such that for every rational
full-dimensional polytope P ⊂ R

d we have

ek(P ) =
∑

F

µk,d(KF ) · volkF,

where the sum is taken over all k-dimensional faces F of P and KF is the cone
of feasible directions of P at the face F . Moreover, one can choose µk,d to be an
additive measure on polyhedral cones.

Different explicit and also computationally efficient constructions of µd,k were
described by R. Morelli [Mor93b], J. Pommersheim and H. Thomas [PT04] and by
N. Berline and M. Vergne [BV07].

In general, suppose V is a finite-dimensional real space and let Λ ⊂ V be
a lattice that spans V . Then we consider lattice polytopes in V and in every
lattice subspace L ⊂ V we define volume so that det(Λ ∩ L) = 1. Theorem 7.4.2
holds in this generality, though the function µk,d that satisfies the conditions of
Theorem 7.4.2 is not unique. To make a canonical choice one has to introduce
some additional structure, such as an inner product as in [Mor93b] and [BV07] or
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fix a flag of subspaces in V as in [PT04]. Essentially, one needs to be able to choose
canonically the complement to a given subspace.

For some specific values of k and d convenient choices of µk,d has long been
known.

EXAMPLE

For a cone K ⊂ Rd, let γ(K) be the spherical measure of K normalized in such
a way that γ(Rd) = 1. Thus γ(K) = 0.5 if K is a halfspace. One can choose
µd,d = µd−1,d = γ because of the formulas for ed(P ) and ed−1(P ) (see above).

On the other hand, one can choose µ0,d(K) = γ(K∗), where K∗ is the dual
cone, since it is known that e0(P ) = 1. We note that if µ(K) is an additive measure
on polyhedral cones then ν(K) = µ(K∗) is also an additive measure on polyhedral
cones, see, for example, [Bar08]. Moreover, for integral zonotopes (see Section 7.3),
one can always choose µk,d(KF ) = γ(K∗

F ) [BP99]. If F is a k-dimensional face of
P then K∗

F is a (d−k)-dimensional cone and γ(K∗
F ) is understood as the spherical

measure in the span of K∗
F .

BERLINE–VERGNE FORMULAS

We describe an elegant and computationally efficient choice of µk,d suggested by
N. Berline and M. Vergne in [BV07], see also [Bar08] of an exposition.

Let V be a real vector space endowed with scalar product 〈·, ·〉, let Λ ⊂ V be a
lattice that spans V and let K ⊂ V be a pointed rational polyhedral cone with non-
empty interior. Let d = dimV . Our immediate goal is to construct a meromorphic
function ψ(K; c) : V −→ C, which we define recursively for d = 0, 1, . . .. If dimV =
0, we define ψ(K; c) = 1. Suppose that d > 0 and let L ⊂ V be a lattice subspace.
We introduce the volume form dxL in L so that det(Λ ∩ L) = 1. Let V/L be the
orthogonal complement of L, let Λ/L ⊂ V/L be the orthogonal projection of Λ onto
V/L, which is necessarily a lattice there, and let K/L ⊂ V/L be the orthogonal
projection of K, which is necessarily a rational cone with non-empty interior. We
define ψ(K; c) so that the following identity holds:

∑

m∈K∩Λ

e〈c,m〉 =
∑

L

ψ(K/L; c)

∫

K∩L

e〈c,x〉dxL, (7.4.1)

where the sum is taken over all subspaces L spanned by the faces of K. We note
that unless L = {0}, we have dimV/L < d and hence ψ(K/L; c) has been already
defined. Since K is a pointed cone, there is a non-empty open set U ⊂ V for which
all the integrals in (7.4.1) converge absolutely, which allows us to define ψ(K; c).
Note that the identity (7.4.1) can be understood in terms of exponential valuations
(see Section 7.3), in which case one can formally consider the sum over all lattice
subspaces L: indeed, if dim(K ∩ L) < dimL then the corresponding integral is
0 and if L intersects the interior of K then K/L contains a line, in which case
ψ(K/L; c) ≡ 0. Thus only subspaces L spanned by faces of K contribute non-zero
terms in (7.4.1). It turns out that K 7−→ ψ(K; c) extends to a valuation with values
in the ring of meromorphic functions, that ψ(K; c) = 0 provided K contains a line
or has empty interior and that ψ(K; c) is regular at c = 0. We then define µk,d(KF )
in Theorem 7.4.2 as ψ(K; 0), where K = KF /LF and LF is the apex of KF .
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Using the technique of exponential sums, one can show that ψ(K; c) is com-
putable in polynomial time if dimK is fixed. Consequently, computation of any
fixed number of the highest Ehrhart coefficients reduces in polynomial time to
computation of the volumes of faces for an H-polytope (see [BP99] and [Bar08]).

THE h
∗-VECTOR

General properties of generating functions (see [Sta86]) imply that for every integral
d-dimensional polytope P there exist integers h∗0(P ), . . . , h

∗
d(P ) such that

∞
∑

n=0

EP (n)x
n =

h∗0(P ) + h∗1(P )x + . . .+ h∗d(P )x
d

(1 − x)d+1
.

The (d+1)-vector h∗(P ) =
(

h∗0(P ), . . . , h
∗
d(P )

)

is called the h
∗-vector of P . It is

clear that h∗(P ) is a (vector-valued) valuation on the set of integral polytopes and
that h∗(P ) is invariant under unimodular transformations of Zd. Moreover, the
functions h∗k(P ) constitute a basis of all valuations on integral polytopes that are
invariant under unimodular transformations. Unlike the Ehrhart coefficients ek(P ),
the numbers h∗k(P ) are not homogeneous. However, h∗k(P ) are monotone (and,
therefore, nonnegative): if Q ⊂ P are two integral polytopes then h∗k(P ) ≥ h∗k(Q)
[Sta93].

The largest k such that h∗k(P ) 6= 0 is called the degree of P . Equivalently, k
is the smallest non-negative integer such that the dilated polytope (d − k)P has
no interior lattice points. C. Haase, B. Nill, and S. Payne proved a decomposition
theorem for polytopes of a fixed degree [HNP09], and, as a corollary, established
that the volume of P is bounded from above by a function of its degree k and the
value of h∗k(P ), independently of the dimension, thus confirming a conjecture of V.
Batyrev.

In principle, there is a combinatorial way to calculate h∗(P ). Namely, let ∆ be
a triangulation of P such that every d-dimensional simplex of ∆ is integral and has
volume 1/d! (see Section 7.2). Let fk(∆) be the number of k-dimensional faces of
the triangulation ∆. Then

h∗k(P ) =

k
∑

i=0

(−1)k−i

(

d− i

d− k

)

fi−1(∆),

where we let f−1(∆) = 1. Such a triangulation may not exist for the polytope P but
it exists for mP , where m is a sufficiently large integer [KKMS73]. Generally, this
triangulation ∆ would be too big, but for some special polytopes with nice structure
(for example, for the so-called poset polytopes) it may provide a reasonable way to
compute h∗(P ) and hence the Ehrhart polynomial EP .

Since the number of integral points in a polytope is a valuation, we get the
following result proved by P. McMullen (see [McM93]).

THEOREM 7.4.3

Let P1, . . . , Pm be integral polytopes in R
d. For an m-tuple of natural numbers

n = (n1, . . . , nm), let us define the polytope

P (n) = {n1x1 + . . .+ nmxm | x1 ∈ P1, . . . xm ∈ Pm}
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(using “+” for Minkowski addition one can also write P (n) = n1P1+ . . .+nmPm).
Then there exists a polynomial p(x1, . . . , xm) of degree at most d such that

|P (n) ∩ Zd| = p(n1, . . . , nm).

More generally, the existence of local formulas for the Ehrhart coefficients im-
plies that the number of integral points in an integral polytope Ph = {x ∈ R

d |
Ax ≤ b + h} is a polynomial in h provided Ph is an integral polytope combinato-
rially isomorphic to the integral polytope P0, see, for example, [Bar08]. In other
words, if we move the facets of an integral polytope parallel to themselves so that
it remains integral and has the same facial structure, then the number of integral
points varies polynomially.

INTEGRAL POINTS IN RATIONAL POLYTOPES

If P is a rational (not necessarily integral) polytope then |nP ∩Z
d| is not a polyno-

mial but a quasipolynomial (a function of n whose value cycles through the values
of a finite list of polynomials). The following result was independently proven by
P. McMullen and R. Stanley (see [McM93] and [Sta86]).

THEOREM 7.4.4

Let P ⊂ Rd be a rational polytope. For every r, 0 ≤ r ≤ d, let indr be the smallest
natural number k such that all r-dimensional faces of kP are integral polytopes.
Then, for every n ∈ N,

|nP ∩ Z
d| =

d
∑

r=0

er
(

P, n(mod indr)
)

· nr

for suitable rational numbers er(P, k), 0 ≤ k < indr.

P. McMullen also obtained a generalization of the “reciprocity law” (see [Sta86]
and [McM93]).

Let us fix an n×d integer matrix A such that the set Pb =
{

x | Ax ≤ b
}

, b ∈ Z
n,

if nonempty, is a rational polytope. Let B ⊂ Z
n be a set of right-hand-side vectors

b such that the combinatorial structure of Pb is the same for all b ∈ B. In [BP99]
it is shown that as long as the dimension d is fixed, one can find a polynomially
computable formula F (b) for the number |Pb ∩ Z

d|, where F is a polynomial of
degree d in integer parts of linear functions of b. It is based on Brion’s Theorem
(Theorem 7.3.2) and the “rounding” of rational translations of unimodular cones.

Theorem 7.4.2 and Berline-Vergne formulas extend to rational polytopes. In
Theorem 7.4.2, measures µk,d depend on the translation class of the tangent cone
x + KF modulo integer translations. Similarly, Berline-Vergne functions ψ(x +
K; c) are defined for translations of rational cones and also invariant under lattice
translations. Consequently, the computation of er(P, k) reduces in polynomial time
to the computation of the volume of faces of P as long as the codimension d −
r is fixed. A different approach to computing the coefficients er(P ; k) in fixed
codimension is via intermediate valuations, see [Bar06] and [BBD+12].

Interestingly, for a “typical” (and, therefore, nonrational) polytope P the dif-
ference |tP ∩ Z

d| − td vol P has order O
(

(ln t)d−1+ǫ
)

as t −→ +∞ [Skr98].
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7.5 PROBLEMS WITH QUANTIFIERS

A natural generalization of the decision problem (see Section 7.2) is a problem with
quantifiers. We describe some known results and formulate open questions for this
class of problems.

FROBENIUS PROBLEM

The most famous problem from this class is the Frobenius problem :

Given k coprime positive integers a1, . . . , ad, find the largest integer m that cannot
be represented as a non-negative integer combination a1n1 + . . .+ aknk.

The problem is known to be NP-hard in general, but a polynomial time algo-
rithm is known for fixed k [Kan92].

PROBLEM WITH QUANTIFIERS

A general problem with quantifiers can be formulated as follows. Suppose that
P is a Boolean combination of convex polyhedra: we start with some polyhedra
P1, . . . , Pk ⊂ Rd given by their facet descriptions and construct P by using the
set-theoretical operations of union, intersection, and complement. We want to find
out if the formula

∃x1∀x2∃x3 . . .∀xm : (x1, . . . , xm) ∈ P (7.5.1)

is true. Here xi is an integral vector from Z
di , and, naturally, d1 + . . . + dm =

d, di ≥ 0. The parameters that characterize the size of (8.5.1) can be divided
into two classes. The first class consists of the parameters characterizing the com-
binatorial size of the formula. These are the dimension d, the number m − 1 of
quantifier alternations, the number of linear inequalities and Boolean operations
that define the polyhedral set P . The parameters from the other class characterize
the numerical size of the formula. Those are the bit sizes of the numbers involved
in the inequalities that define P .

The following fundamental question remains open.

PROBLEM 7.5.1

Let us fix all the combinatorial parameters of the formula (8.5.1). Does there exist
a polynomial time algorithm that checks whether this formula is true?

Naturally, “polynomial time” means that the running time of the algorithm is
bounded by a polynomial in the numerical size of the formula. The answer to this
question is unknown. A polynomial time algorithm is known if the formula contains
not more than 1 quantifier alternation, i.e., if m ≤ 2 ([Kan90]).

Let P ⊂ R
n be a rational polytope, let pr : Rn −→ R

d be the projection on the
first d coordinates, and let S = pr (P ∩ Z

n) be the projection of the set of integer
points in P . For any fixed n, A. Barvinok and K. Woods [BW03] constructed a
polynomial time algorithm that, given P , computes the exponential sum over S in
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the form
∑

m∈S

e〈c,m〉 =
∑

i∈I

αi
e〈c,ai〉

(

1− e〈c,bi1〉
)

· · ·
(

1− e〈c,bik〉
) ,

where αi ∈ Q, ai ∈ Zd and bij ∈ Zd \ {0}. Besides, k depends only on n and d.
Such sets S can be defined by formulas with no quantifier alternations, see also
[Woo15] for some related developments. As a corollary, for any fixed d, we obtain a
polynomial time algorithm that, for any given coprime positive integers a1, . . . , ad,
computes the number of non-negative integers m that are not non-negative integer
combinations of a1, . . . , ad.
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