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INTRODUCTION

Over the past decades, two major software libraries that support a wide range of ge-
ometric computing have been developed: Leda, the Library of Efficient Data Types
and Algorithms, and Cgal, the Computational Geometry Algorithms Library. We
start with an introduction of common aspects of both libraries and major differ-
ences. We continue with sections that describe each library in detail.

Both libraries are written in C++. Leda is based on the object-oriented par-
adigm and Cgal is based on the generic programming paradigm. They provide a
collection of flexible, efficient, and correct software components for computational
geometry. Users should be able to easily include existing functionality into their
programs. Additionally, both libraries have been designed to serve as platforms for
the implementation of new algorithms.

Correctness is of crucial importance for a library, even more so in the case of
geometric algorithms where correctness is harder to achieve than in other areas of
software construction. Two well-known reasons are the exact arithmetic assumption
and the nondegeneracy assumption that are often used in geometric algorithms.
However, both assumptions usually do not hold: floating-point arithmetic is not
exact and inputs are frequently degenerate. See Chapter 45 for details.

EXACT ARITHMETIC

There are basically two scientific approaches to the exact arithmetic problem. One
can either design new algorithms that can cope with inexact arithmetic or one can
use exact arithmetic. Instead of requiring the arithmetic itself to be exact, one can
guarantee correct computations if the so-called geometric primitives are exact. So,
for instance, the predicate for testing whether three points are collinear must always
give the right answer. Such an exact primitive can be efficiently implemented using
floating-point filters or lazy evaluation techniques.

This approach is known as the exact geometric computing paradigm and both
libraries, Leda and Cgal, adhere to this paradigm. However, they also offer
straight floating-point implementations.

DEGENERACY HANDLING

An elegant (theoretical) approach to the degeneracy problem is symbolic per-
turbation. But this method of forcing input data into general position can cause
serious problems in practice. In many cases, it increases the complexity of (interme-
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diate) results considerably; and furthermore, the final limit process turns out to be
difficult in particular in the presence of combinatorial structures. For this reason,
both libraries follow a different approach. They cope with degeneracies directly
by treating the degenerate case as the “normal” case. This approach proved to be
effective for many geometric problems.

However, symbolic perturbation is used in some places. For example, in Cgal
the 3D Delaunay triangulation uses it to realize consistent point insert and removal
functions in the degenerate case of more than four points on a sphere [DT11].

GEOMETRIC PROGRAMMING

Both Cgal and Leda advocate geometric programming. This is a style of higher-
level programming that deals with geometric objects and their corresponding prim-
itives rather than working directly on coordinates or numerical representations. In
this way, for instance, the machinery for the exact arithmetic can be encapsulated
in the implementation of the geometric primitives.

COMMON ROOTS AND DIFFERENCES

Leda is a general-purpose library of algorithms and data structures, whereas Cgal
is focused on geometry. They have a different look and feel and different design
principles, but they are compatible with each other and can be used together. A
Leda user can benefit from more geometry algorithms in Cgal, and a Cgal user
can benefit from the exact number types and graph algorithms in Leda, as will be
detailed in the individual sections on Leda and Cgal.

Cgal started six years after Leda. Cgal learned from the successful decisions
and know-how in Leda (also supported by the fact that Leda’s founding institute is
a partner in developing Cgal). The later start allowed Cgal to rely on better C++
language support, e.g., with templates and traits classes, which led the developers
to adopt the generic programming paradigm and shift the design focus more toward
flexibility.

Successful spin-off companies have been created around both Leda1 and Cgal2.
After an initial free licensing for academic institutions, all Leda licenses are now
fee-based. In contrast, Cgal is freely available under the GPL/LGPL [GPL07]
since release 4.0 (March 2012). Users who consider the open source license to be
too restrictive can also obtain a commercial license.

GLOSSARY

Exact arithmetic: The foundation layer of the exact computation paradigm in
computational geometry software that builds correct software layer by layer.
Exact arithmetic can be as simple as a built-in integer type as long as its pre-
cision is not exceeded or can involve more complex number types represent-
ing expression DAGs, such as, leda::real from Leda [BFMS00] or Expr from
Core [KLPY99].

1Algorithmic Solutions Software GmbH <www.algorithmic-solutions.com>.
2GeometryFactory Sarl <www.geometryfactory.com>.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.



Chapter 68: Two computational geometry libraries 1801

Floating-point filter: A technique that speeds up exact computations for com-
mon easy cases; a fast floating-point interval arithmetic is used unless the error
intervals overlap, in which case the computation is repeated with exact arith-
metic.

Coordinate representation: Cartesian and homogeneous coordinates are sup-
ported by both libraries. Homogeneous coordinates are used to optimize exact
rational arithmetic with a common denominator, not for projective geometry.

Geometric object: The atomic part of a geometric kernel. Examples are points,
segments, lines, and circles in 2D, planes, tetrahedra, and spheres in 3D, and
hyperplanes in dD. The corresponding data types have value semantics; variants
with and without reference-counted representations exist.

Predicate: Geometric primitive returning a value from a finite domain that ex-
presses a geometric property of the arguments (geometric objects), for example,
CGAL::do intersect(p,q) returning a Boolean or leda::orientation(p,q,r)
returning the sign of the area of the triangle (p, q, r). A filtered predicate uses
a floating-point filter to speed up computations.

Construction: Geometric primitive constructing a new object, such as the point
of intersection of two non-parallel straight lines.

Geometric kernel: The collection of geometric objects together with the related
predicates and constructions. A filtered kernel uses filtered predicates.

Program checkers: Technique for writing programs that check the correctness of
their output. A checker for a program computing a function f takes an instance
x and an output y. It returns true if y = f(x), and false otherwise.

68.1 LEDA

Leda aims at being a comprehensive software platform for the entire area of com-
binatorial and geometric computing. It provides a sizable collection of data types
and algorithms. This collection includes most of the data types and algorithms
described in the textbooks of the area ([AHU74, CLR90, Kin90, Meh84, NH93,
O’R94, Tar83, Sed91, Wyk88, Woo93]).

A large number of academic and industrial projects from almost every area of
combinatorial and geometric computing have been enabled by Leda. Examples
are graph drawing, algorithm visualization, geographic information systems, loca-
tion problems, visibility algorithms, DNA sequencing, dynamic graph algorithms,
map labeling, covering problems, railway optimization, route planning, compu-
tational biology and many more. See <www.algorithmic-solutions.com/leda/

projects/index.html> for a list of industrial projects based on Leda.
The Leda project was started in the fall of 1988 by Kurt Mehlhorn and Stefan

Näher. The first six months were devoted to the specification of different data types
and selecting the implementation language. At that time the item concept arose as
an abstraction of the notion “pointer into a data structure.” Items provide direct
and efficient access to data and are similar to iterators in the standard template
library. The item concept worked successfully for all test cases and is now used for
most data types in Leda. Concurrently with searching for the correct specifica-
tions, existing programming languages were investigated for their suitability as an
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implementation platform. The language had to support abstract data types and
type parameters (genericity) and should be widely available. Based on the experi-
ences with different example programs, C++ was selected because of its flexibility,
expressive power, and availability.

We next discuss some of the general aspects of the Leda system.

EASE OF USE

The Leda library is easy to use. In fact, only a small fraction of the users are
algorithm experts and many users are not even computer scientists. For these
users the broad scope of the library, its ease of use, and the correctness and effi-
ciency of the algorithms in the library are crucial. The Leda manual [MNSU] gives
precise and readable specifications for the data types and algorithms mentioned
above. The specifications are short (typically not more than a page), general (so
as to allow several implementations) and abstract (so as to hide all details of the
implementation).

EXTENSIBILITY

Combinatorial and geometric computing is a diverse area and hence it is impossible
for a library to provide ready-made solutions for all application problems. For this
reason it is important that Leda is easily extensible and can be used as a platform
for further software development. In many cases Leda programs are very close to
the typical textbook presentation of the underlying algorithms. The goal is the
equation: Algorithm + LEDA = Program.

Leda extension packages (LEPs) extend Leda into particular application do-
mains and areas of algorithmics not covered by the core system. Leda extension
packages satisfy requirements, which guarantee compatibility with the Leda philos-
ophy. LEPs have a Leda-style documentation, they are implemented as platform
independent as possible, and the installation process permits a close integration
into the Leda core library. Currently, the following LEPs are available: PQ-trees,
dynamic graph algorithms, a homogeneous d-dimensional geometry kernel, and a
library for graph drawing.

CORRECTNESS

Geometric algorithms are frequently formulated under two unrealistic assumptions:
computers are assumed to use exact real arithmetic (in the sense of mathematics)
and inputs are assumed to be in general position. The naive use of floating-point
arithmetic as an approximation to exact real arithmetic very rarely leads to cor-
rect implementations. In a sequence of papers [BMS94b, See94, MN94b, BMS94a,
FGK+00], these degeneracy and precision issues were investigated and Leda was
extended based on this theoretical work. It now provides exact geometric kernels
for 2D and higher-dimensional computational geometry [MMN+98], and also cor-
rect implementations for basic geometric tasks, e.g., 2D convex hulls, Delaunay
diagrams, Voronoi diagrams, point location, line segment intersection, and higher-
dimensional convex hulls and Delaunay triangulations.

Programming is a notoriously error-prone task; this is even true when pro-
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gramming is interpreted in a narrow sense: translating a (correct) algorithm into
a program. The standard way to guard against coding errors is program testing.
The program is exercised on inputs for which the output is known by other means,
typically as the output of an alternative program for the same task. Program test-
ing has severe limitations. It is usually only performed during the testing phase of
a program. Also, it is difficult to determine the “correct” suite of test inputs. Even
if appropriate test inputs are known it is usually difficult to determine the correct
outputs for these inputs: alternative programs may have different input and output
conventions or may be too inefficient to solve the test cases.

Given that program verification—i.e., formal proof of correctness of an im-
plementation—will not be available on a practical scale for some years to come,
program checking has been proposed as an extension to testing [BK95, BLR93].
The cited papers explored program checking in the area of algebraic, numerical,
and combinatorial computing. In [MNS+99, MM96, HMN96] program checkers are
presented for planarity testing and a variety of geometric tasks. Leda uses program
checkers for many of its implementations. A more general approach (Certifying
Algorithms) was introduced in [MMNS11].

68.1.1 THE STRUCTURE OF LEDA

Leda uses templates for the implementation of parameterized data types and for
generic algorithms. However, it is not a pure template library and therefore is based
on an object code library of precompiled code. Programs using Leda data types or
algorithms have to include the appropriate Leda header files in their source code
and must link to this library (libleda). See the Leda user manual ([MNSU] or the
Leda book ([MN00]) for details.

68.1.2 GEOMETRY KERNELS

Leda offers kernels for 2D and 3D geometry, a kernel of arbitrary dimension is
available as an extension package. In either case there exists a version of the kernel
based on floating-point Cartesian coordinates (called float-kernel) as well as a kernel
based on rational homogeneous coordinates (called rat-kernel). All kernels provide
a complete collection of geometric objects (points, segments, rays, lines, circles,
simplices, polygons, planes, etc.) together with a large set of geometric primi-
tives and predicates (orientation of points, side-of-circle tests, side-of-hyperplane,
intersection tests and computation, etc.). For a detailed discussion and the precise
specification, see Chapter 9 of the Leda book ([MN00]). Note that only for the
rational kernel, which is based on exact arithmetic and floating-point filters, all
operations and primitives are guaranteed to compute the correct result.

68.1.3 DATA STRUCTURES

In addition to the basic kernel data structures Leda provides many advanced data
types for computational geometry. Examples include:

• A general polygon type (gen polygon or rat gen polygon) with a complete
set of Boolean operations. Its implementation is based on efficient and robust
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plane sweep algorithms for the construction of the arrangement of a set of
straight line segments (see [MN94a] and [MN00, Ch. 10.7]).

• Two- and higher-dimensional geometric tree structures, such as range, seg-
ment, interval and priority search trees.

• Partially and fully persistent search trees.

• Different kinds of geometric graphs (triangulations, Voronoi diagrams, and
arrangements).

• A dynamic point set data type supporting update, search, closest point, and
different types of range query operations on one single representation based
on a dynamic Delaunay triangulation (see [MN00, Ch. 10.6]).

68.1.4 ALGORITHMS

The Leda project never had the goal of providing a complete collection of the algo-
rithms from computational geometry (nor for other areas of algorithms). Rather, it
was designed and implemented to establish a platform for combinatorial and geo-
metric computing enabling programmers to implement these algorithms themselves
more easily and customized to their particular needs. But of course the library al-
ready contains a considerable number of basic geometric algorithms. Here we give a
brief overview and refer the reader to the user manual for precise specifications and
to Chapter 10 of the Leda-book ([MN00]) for detailed descriptions and analyses
of the corresponding implementations. The current version of Leda offers different
implementation of algorithms for the following 2D geometric problems:

• convex hull algorithms (also 3D)

• halfplane intersection

• (constraint) triangulations

• closest and farthest Delaunay and Voronoi diagrams

• Euclidean minimum spanning trees

• closest pairs

• Boolean operations on generalized polygons

• segment intersection and construction of line arrangements

• Minkowski sums and differences

• nearest neighbors and closest points

• minimum enclosing circles and annuli

• curve reconstruction

68.1.5 VISUALIZATION (GeoWin)

In computational geometry, visualization and animation of programs are important
for the understanding, presentation, and debugging of algorithms. Furthermore, the
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animation of geometric algorithms is cited as among the strategic research directions
in this area. GeoWin [BN02] is a generic tool for the interactive visualization of
geometric algorithms. GeoWin is implemented as a C++ data type. Its design
and implementation was influenced by Leda’s graph editor GraphWin ([MN00,
Ch. 12]). Both data types support a number of programming styles which have
been shown to be very useful for the visualization and animation of algorithms.
The animations use smooth transitions to show the result of geometric algorithms
on dynamic user-manipulated input objects, e.g., the Voronoi diagram of a set of
moving points or the result of a sweep algorithm that is controlled by dragging the
sweep line with the mouse (see Figure 68.1.1).

FIGURE 68.1.1
GeoWin animating Fortune’s sweep algorithm.

A GeoWin maintains one or more geometric scenes. A geometric scene is a
collection of geometric objects of the same type. A collection is simply either a
standard C++ list (STL-list) or a Leda-list of objects. GeoWin requires that the
objects provide a certain functionality, such as stream input and output, basic geo-
metric transformations, drawing and input in a Leda window. A precise definition
of the required operations can be found in the manual pages [MNSU]. GeoWin
can be used for any collection of basic geometric objects (geometry kernel) fulfill-
ing these requirements. Currently, it is used to visualize geometric objects and
algorithms from both the Cgal and Leda libraries.
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The visualization of a scene is controlled by a number of attributes, such as
color, line width, line style, etc. A scene can be subject to user interaction and it
may be defined from other scenes by means of an algorithm (a C++ function). In
the latter case the scene (also called the result scene) may be recomputed whenever
one of the scenes on which it depends is modified. There are three main modes for
recomputation: user-driven, continuous, and event-driven.

GeoWin has both an interactive and a programming interface. The interac-
tive interface supports the interactive manipulation of input scenes, the change of
geometric attributes, and the selection of scenes for visualization.

68.1.6 PROGRAM EXAMPLES

We now give two programming examples showing how Leda can be used to imple-
ment basic geometric algorithms in an elegant and readable way. The first example
is the computation of the upper convex hull of a point set in the plane. It uses
points and the orientation predicate and lists from the basic library. The second
example shows how the Leda graph data type is used to represent triangulations
in the implementation of a function that turns an arbitrary triangulation into a De-
launay triangulation by edge flips. It uses points, lists, graphs, and the side-of-circle
predicate.

UPPER CONVEX HULL

In our first example we show how to use Leda for computing the upper convex hull
of a given set of points. We assume that we are in LEDA’s namespace, otherwise all
LEDA names would have to be used with the prefix leda::. Function UPPER HULL

takes a list L of rational points (type rat point) as input and returns the list of
points of the upper convex hull of L in clockwise ordering from left to right. The
algorithm is a variant of Graham’s Scan [Gra72].

First we sort L according to the lexicographic ordering of the Cartesian coor-
dinates and remove multiple points. If the list contains not more than two points
after this step we stop. Before starting the actual Graham Scan we first skip all
initial points lying on or below the line connecting the two extreme points. Then
we scan the remaining points from left to right and maintain the upper hull of all
points seen so far in a list called hull. Note however that the last point of the hull
is not stored in this list but in a separate variable p. This makes it easier to access
the last two hull points as required by the algorithm. Note also that we use the
rightmost point as a sentinel avoiding the special case that hull becomes empty.

list<rat_point> UPPER HULL(list<rat_point> L) {

L.sort();

L.unique();

if (L.length() <= 2) return L;

rat_point p_min = L.front(); // leftmost point
rat_point p_max = L.back(); // rightmost point

list<rat_point> hull; // result list
hull.append(p_max); // use rightmost point as sentinel
hull.append(p_min); // first hull point

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.



Chapter 68: Two computational geometry libraries 1807

// goto first point p above (p min,p max)
while (! L.empty() && ! left_turn(p_min, p_max, L.front())) L.pop();

if (L.empty()) { // upper hull consists of only 2 points
hull.reverse();

return hull;

}

rat_point p = L.pop(); // second (potential) hull point
rat_point q;

forall(q,L) {

while (! right_turn(hull.back(), p, q)) p = hull.pop_back();

hull.append(p);

p = q;

}

hull.append(p); // add last hull point
hull.pop(); // remove sentinel
return hull;

}

DELAUNAY FLIPPING

Leda represents triangulations by bidirected plane graphs (from the graph library)
whose nodes are labeled with points and whose edges may carry additional infor-
mation, e.g., integer flags indicating the type of edge (hull edge, triangulation edge,
etc.). All edges incident to a node v are ordered in counterclockwise ordering and
every edge has a reversal edge. In this way the faces of the graph represent the
triangles of the triangulation. The graph type offers methods for iterating over the
nodes, edges, and adjacency lists of the graph. In the case of plane graphs there
are also operations for retrieving the reverse edge and for iterating over the edges
of a face. Furthermore, edges can be moved to new nodes. This graph operation is
used in the following program to implement edge flips.

Function DELAUNAY FLIPPING takes as input an arbitrary triangulation and
turns it into a Delaunay triangulation by the well-known flipping algorithm. This
algorithm performs a sequence of local transformations as shown in Figure 68.1.2 to
establish the Delaunay property: for every triangle the circumscribing circle does
not contain any vertex of the triangulation in its interior. The test whether an
edge has to be flipped or not can be realized by a so-called side of circle test. This
test takes four points a, b, c, d and decides on which side of the oriented circle
through the first three points a,b, and c the last point d lies. The result is positive
or negative if d lies on the left or on the right side of the circle, respectively, and
the result is zero if all four points lie on one common circle. The algorithm uses a
list of candidates which might have to be flipped (initially all edges). After a flip
the four edges of the corresponding quadrilateral are pushed onto this candidate
list. Note that G[v] returns the position of node v in the triangulation graph G.
A detailed description of the algorithm and its implementation can be found in the
Leda book ([MN00]).
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FIGURE 68.1.2
Flipping to establish the Delaunay property.

flip(a,c)
 b

 c

 a

d d  b
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void DELAUNAY FLIPPING(GRAPH<rat_point, int>& G) {

list<edge> S = G.all_edges();

while (! S.empty()) {

edge e = S.pop();

edge r = G.rev_edge(e);

edge e1 = G.face_cycle_succ(r); // e1,e2,e3,e4: edges of quadrilateral
edge e2 = G.face_cycle_succ(e1); // with diagonal e
edge e3 = G.face_cycle_succ(e);

edge e4 = G.face_cycle_succ(e3);

rat_point a = G[G.source(e1)]; // a,b,c,d: corners of quadrilateral
rat_point b = G[G.target(e1)];

rat_point c = G[G.source(e3)];

rat_point d = G[G.target(e3)];

if (side_of_circle(a,b,c,d) > 0) {

S.push(e1); S.push(e2); S.push(e3); S.push(e4);

G.move_edge(e,e2,source(e4)); // flip diagonal
G.move_edge(r,e4,source(e2));

}

}

}
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68.2 CGAL

The development of Cgal, the Computational Geometry Algorithms Library, star-
ted in 1995 by a consortium of seven sites from Europe and Israel, funded by
European research programs. The central goal of Cgal is to

make the large body of geometric algorithms developed in the field of
computational geometry available for industrial application.

The main design goals are correctness, flexibility, efficiency, and ease of use. The
focus is on a broad foundation in computational geometry. Important related issues,
for example visualization, are supported with standard formats and interfaces.

The first public release 0.9 appeared in June 1997. Since 2009 a biannual
release cycle has been established and since 2015 the current development version
is publicly available at <github.com/CGAL>. About 30 developers work on Cgal,
though many of them part-time only. A release provides 4–5 new major features
on average, such as new packages or significant updates to existing packages. With
release 3.0 in 2003, Cgal became an open source project inviting everybody to join
and has since successfully attracted more than 20 feature submissions from outside
the founding institutes.

Nowadays Cgal is a standard tool in the area. More than 200 commercial
customers work with Cgal and a list of more than 100 projects from diverse areas
using Cgal can be found at <www.cgal.org/projects.html>. The presentation
here is based on Cgal release 4.7 from October 2015, available from Cgal’s home
page <www.cgal.org>.

LIBRARY STRUCTURE

Cgal is structured in three layers: the layer of algorithms and data structures,
which builds on the geometric traits layer with representations for geometric objects
and primitive operations on these representations. The geometric traits layer in turn
builds on the layer of arithmetic and algebra with concepts for algebraic structures
and number types modeling these structures. Orthogonally, there is a support
library layer with geometric object generators, file I/O, visualization, and other
nongeometric functionality.

GENERIC PROGRAMMING IDIOMS

Concept: A formal hierarchy of polymorphic abstract requirements on data types.

Model for a concept: A type that fulfils all requirements of that concept and
can therefore be used in places where the concept was requested.

Function object: An object that implements a function, e.g., as a C++ class
with an operator(). It is more efficient and type-safe compared to a C function
pointer or object-oriented class hierarchies.
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FLEXIBILITY

Following the generic programming paradigm, Cgal is highly modular and its
different parts are independent of each other. The algorithms and data structures
in Cgal are adaptable to already existing user code; see the geometric traits class
example on page 1815. The library is extendible, as users can add implementations
in the same style as Cgal. The library is open and supports important standards,
such as the C++ standard with its standard library, and other established libraries,
such as Boost [Sch14], Leda, Eigen [GJ+10], and Gmp [Gt14].

CORRECTNESS

Cgal addresses robustness problems by relying on exact arithmetic and explicit de-
generacy handling. There is a well-established software process and communication
channels set up for the distributed developer community, including a distributed
system for revision management, bug and feature tracking. Every night an auto-
matic test-suite is run on all supported platforms and compilers. An editorial board
reviews new submissions and supervises design homogeneity.

EASE OF USE

Users with a base knowledge of C++ and generic programming experience a smooth
learning curve with Cgal. Many concepts are familiar from the C++ standard
library, and the powerful flexibility is often hidden behind sensible defaults. A
novice reader should not be discouraged by some of the advanced examples illus-
trating Cgal’s power. Cgal has a uniform design, aims for minimal interfaces,
yet rich and complete functionality in computational geometry.

EFFICIENCY

Cgal uses C++ templates to realize most of its flexibility at compile time. That
enables flexibility at places normally not considered because of runtime costs, e.g.,
on the number-type level. Furthermore, choices such as tradeoffs between space
and time in some data structures, or between different number types of different
power and speed can be made at the application level rather than in the library.
This also encourages experimental research.

68.2.1 GEOMETRIC KERNELS

Cgal offers a wide variety of kernels. The linear kernels are mostly concerned with
linearly bounded objects, such as hyperplanes and simplices. The geometric objects
along with some of the available predicates and constructions—classified according
to dimension—are summarized in Table 68.2.1.

For circles and spheres an algebraic description involves polynomials of degree
two. Therefore, intersections involving circles and spheres do not admit an exact
rational representation in general. The circular 2D kernel [EKP+04, DFMT02]
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TABLE 68.2.1 Linear kernel objects with selected predicates and constructions.

DIM GEOMETRIC OBJECTS PREDICATES CONSTRUCTIONS

all Point, Vector, Direction, compare lexicographically, intersection, midpoint

Line, Ray, Segment, do intersect, orientation transform, squared distance

Aff transformation

2 Triangle, Iso rectangle, collinear, left turn, bbox, centroid, circumcenter,

Bbox, Circle side of oriented circle squared radius, rational -

rotation approximation

3 Plane, Tetrahedron, Triangle, coplanar, left turn, bbox, centroid, circumcenter,

Iso cuboid, Bbox, Sphere side of oriented sphere cross product, squared radius

d Hyperplane, Sphere side of oriented sphere center of sphere,

lift to paraboloid

extends the linear kernel to allow for an exact representation of such intersection
points, as well as for linear or circular arcs connecting such points. An analogous
toolset in 3D is provided by the spherical 3D kernel [CCLT09].

PREDEFINED KERNELS

To ease the choice of an appropriate kernel, Cgal offers three predefined linear
kernels for dimension two and three to cover the most common tradeoffs between
speed and exactness requirements. All three support initial exact constructions
from double values and guarantee exact predicate evaluation. They vary in their
support for exact geometric constructions and exact roots on the number type level.
As a rule of thumb, the less exact functionality a kernel provides, the faster it runs.

CGAL::Exact predicates inexact constructions kernel provides filtered exact
predicates, but constructions are performed with double and, therefore, subject
to possible roundoff errors.

CGAL::Exact predicates exact constructions kernel also provides filtered ex-
act predicates. Constructions are performed exactly, but using a lazy computa-
tion scheme [PF11] as a geometric filter. In this way, costly exact computations
are performed only as far as needed, if at all.

CGAL::Exact predicates exact constructions kernel with sqrt achieves ex-
actness via an algebraic number type (currently, either leda::real [MS01] or
CORE::Expr [KLPY99]).

GENERAL LINEAR KERNELS

The kernels available in Cgal can be classified along the following orthogonal
concepts:

Dimension: The dimension of the affine space. The specializations for 2D and
3D offer functionality that is not available in the dD kernel.
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Number type: The number type used to store coordinates and coefficients, and
to compute the expressions in predicates and constructions.

Cgal distinguishes different concepts to describe the underlying algebraic struc-
ture of a number type, along with a concept RealEmbeddable to describe an order
along the real axis. Most relevant here are the concepts IntegralDomainWith-
outDivision and Field, whose names speak for themselves.

Coordinate representation: The Cartesian representation requires a field type
(FT) as a number type (a model for Field and RealEmbeddable). The homoge-
neous representation requires a ring type (RT) as a number type (a model for
IntegralDomainWithoutDivision and RealEmbeddable).

Reference counting: Reference counting is used to optimize copying and assign-
ment of kernel objects. It is recommended for exact number types with larger
memory size. The kernel objects have value-semantics and cannot be modi-
fied, which simplifies reference counting. The nonreference counted kernels are
recommended for small and fast number types, such as the built-in double.

The corresponding linear kernels in Cgal are:

CGAL::Cartesian<FT> Cartesian, reference counted, 2D and 3D

CGAL::Simple cartesian<FT> Cartesian, nonreference counted, 2D and 3D

CGAL::Homogeneous<RT> homogeneous, reference counted, 2D and 3D

CGAL::Simple homogeneous<RT> homogeneous, nonreference counted, 2D and 3D

CGAL::Cartesian d<FT> Cartesian, reference counted, d-dimensional

CGAL::Homogeneous d<RT> homogeneous, reference counted, d-dimensional

FILTERED KERNELS

Cgal offers two general adaptors to create filtered kernels. The first adaptor op-
erates on the kernel level, the second one on the number type level.

(1) CGAL::Filtered kernel<K> is an adaptor to build a new kernel based on a
given 2/3D kernel K. All predicates of the new kernel use double interval arithmetic
as a filter [BBP01] and resort to the original predicates from K only if that filter
fails. Selected predicates use a semi-static filter [MP07] in addition. Constructions
of the new kernel are those provided by K.

(2) CGAL::Lazy exact nt<NT> is an adaptor to build a new number type from
a given exact number type NT. The new number type uses filters based on interval
arithmetic and expression DAGs for evaluation. Only if this filter fails, evaluation is
done using NT instead. Due to the exactness of NT, also the new number type admits
exact constructions. Specialized predicates avoid the expression DAG construction
in some cases.

There is also a dD Version of the Exact predicates inexact constructions kernel
called CGAL::Epick d<D>: a Cartesian, reference counted kernel that supports exact
filtered predicates. The parameter D specifies the dimension, which can either
be fixed statically at compile-time or dynamically at runtime. Constructions are
performed with double and, therefore, subject to possible roundoff errors.
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68.2.2 GEOMETRIC TRAITS

Cgal follows the generic programming paradigm in the style of the Standard Tem-
plate Library [Aus98]; algorithms are parameterized with iterator ranges that de-
couple them from data structures. In addition, Cgal invented the circulator con-
cept to accommodate circular structures efficiently, such as the ring of edges around
a vertex in planar subdivisions [FGK+00]. Essential for Cgal’s flexibility is the
separation of algorithms and data structures from the underlying geometric kernel
with a geometric traits class.

GLOSSARY

Iterator: A concept for a pointer into a linear sequence; exists in different flavors:
input, output, forward, bidirectional, and random-access iterator.

Circulator: A concept similar to iterator but for circular sequences.

Range: A pair [b, e) of iterators (or circulators) describing a sequence of items in
a half-open interval notation, i.e., starting with b and ending before e.

Traits class: C++ programming technique [Mye95] to attach additional informa-
tion to a type or function, e.g., dependent types, functions, and values.

Geometric traits: Traits classes used in Cgal to decouple the algorithms and
data structures from the kernel of geometric representations and primitives. Ev-
ery algorithm and data structure defines a geometric traits concept and the
library provides various models. Often the geometric kernel is a valid model.

EXAMPLE OF UPPER CONVEX HULL ALGORITHM

We show two implementations of the upper convex hull algorithm following An-
drew’s variant of Graham’s scan [Gra72, And79] in Cgal. The first implementation
makes straightforward use of a sufficient Cgal default kernel and looks similar to
textbook presentations or the Leda example on page 1806.

typedef CGAL::Exact_predicates_inexact_constructions_kernel Kernel;

typedef Kernel::Point_2 Point_2;

Kernel kernel; // our instantiated kernel object

std::list<Point_2> upper hull( std::list<Point_2> L) {

L.sort( kernel.less_xy_2_object());

L.unique();

if (L.size() <= 2)

return L;

Point_2 pmin = L.front(); // leftmost point
Point_2 pmax = L.back(); // rightmost point
std::list< Point_2> hull;

hull.push_back(pmax); // use rightmost point as sentinel
hull.push_back(pmin); // first hull point
while (!L.empty() && !kernel.left_turn_2_object()(pmin,pmax,L.front()))

L.pop_front(); // goto first point p above (pmin,pmax)
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if (L.empty()) {

hull.reverse(); // fix orientation for this special case
return hull;

}

Point_2 p = L.front(); // keep last point on current hull separately
L.pop_front();

for (std::list< Point_2>::iterator i = L.begin(); i != L.end(); ++i) {

while (! kernel.left_turn_2_object()( hull.back(), *i, p)) {

p = hull.back(); // remove non-extreme points from current hull
hull.pop_back();

}

hull.push_back(p); // add new extreme point to current hull
p = *i;

}

hull.push_back(p); // add last hull point
hull.pop_front(); // remove sentinel
return hull;

}

The second implementation is more flexible because it separates the algorithm
from the geometry, similar to how generic algorithms are written in Cgal. As an
algorithmic building block, we place the core of the control flow—the two nested
loops at the end—into its own generic function with an interface of bidirectional
iterators and a single three-parameter predicate. We eliminate the additional data
structure for the hull by reusing the space that becomes available in the original
sequence as our stack. The result is thus returned in our original sequence and the
function just returns the past-the-end position. Instead of the sentinel, which does
not give measurable performance benefits, we explicitly test the boundary case.

template <class Iterator, class F> // bidirectional iterator, function object
Iterator backtrack remove if triple( Iterator first, Iterator beyond, F pred) {

if (first == beyond)

return first;

Iterator i = first, j = first;

if (++j == beyond) // i,j mark two elements on the top of the stack
return j;

Iterator k = j; // k marks the next candidate value in the sequence
while (++k != beyond) {

while (pred( *i, *j, *k)) {

j = i; // remove one element from stack, part 1
if (i == first) // explicit test for stack underflow

break;
--i; // remove one element from stack, part 2

}

i = j; ++j; *j = *k; // push next candidate value from k on stack
}

return ++j;

}

With this generic function, we implement in two lines an algorithm to compute
all points on the upper convex hull (rather than only the extreme points). All
degeneracies are handled correctly. For the sorting, random access iterators are
required. Note the geometric traits parameter and how predicates are extracted
from the traits class. Any Cgal kernel is a valid model for this traits parameter.
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template <class Iterator, class Traits> // random access iterator
Iterator upper hull( Iterator first, Iterator beyond, Traits traits) {

std::sort( first, beyond, traits.less_xy_2_object());

return backtrack remove if triple( first, beyond,

traits.left_turn_2_object());

}

EXAMPLE OF A USER TRAITS CLASS

Data structures and algorithms in Cgal can be easily adapted to work on user data
types by defining a custom geometric traits class. Consider the following custom
point class:

struct Point { // our point type
double x, y;

Point( double xx = 0.0, double yy = 0.0) : x(xx), y(yy) {}

// ... whatever else this class provides ...
};

To run the CGAL::ch graham andrew convex hull algorithm on points of this type,
the Cgal Reference Manual lists as requirements on its traits class a type Point 2,
and function objects Equal 2, Less xy 2, and Left turn 2. A possible geometric
traits class could look like this:

struct Geometric traits { // traits class for our point type
typedef double RT; // ring number type, for random points generator
typedef Point Point_2; // our point type
struct Equal 2 { // equality comparison

bool operator()( const Point& p, const Point& q) {

return (p.x == q.x) && (p.y == q.y);

}

};

struct Less xy 2 { // lexicographic order
bool operator()( const Point& p, const Point& q) {

return (p.x < q.x) || ((p.x == q.x) && (p.y < q.y));

}

};

struct Left turn 2 { // orientation test
bool operator()( const Point& p, const Point& q, const Point& r) {

return (q.x-p.x) * (r.y-p.y) > (q.y-p.y) * (r.x-p.x); // inexact!
}

};

// member functions to access function objects, here by default construction
Equal_2 equal 2 object() const { return Equal_2(); }

Less_xy_2 less xy 2 object() const { return Less_xy_2(); }

Left_turn_2 left turn 2 object() const { return Left_turn_2(); }

};

In order to let Cgal know that our traits class belongs to our point class, we
specialize Cgal’s kernel traits accordingly:
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namespace CGAL { // specialization that links our point type with our traits class
template <> struct Kernel_traits< ::Point> {

typedef ::Geometric_traits Kernel;

};

}

Now the CGAL::ch graham andrew function can be used with the custom point
class Point. The traits class also suffices for the random point generators in Cgal.
Here is a program to compute the convex hull of 20 points sampled uniformly from
a unit disk.

#include <CGAL/ch_graham_andrew.h>

#include <CGAL/point_generators_2.h>

int main() {

std::vector<Point> points, hull;

CGAL::Random_points_in_disc_2<Point> rnd_pts( 1.0);

std::copy_n( rnd_pts, 20, std::back_inserter( points));

CGAL::ch_graham_andrew( points.begin(), points.end(),

std::back_inserter( hull));

return 0;

}

The separation of algorithms and data structures from the geometric kernel pro-
vides flexibility, the fingerprint of generic programming. Such flexibility is not only
useful when interfacing with custom user data or other libraries but even within
Cgal itself. An example is the geometric traits class CGAL::Projection traits

xy 3 that models the orthogonal projection of 3D points onto the xy-plane, hence
treating them as 2D points. Such a model is useful, for instance, in the context of
terrain triangulations in GIS (cf. Chapter 59).

68.2.3 LIBRARY CONTENTS

The library is structured into packages that correspond to different chapters of the
reference manual. These packages in turn are grouped thematically.

CONVEX HULL

The 2D convex hull algorithms return the counterclockwise sequence of extreme
points. The 3D convex hull algorithms return the convex polytope of extreme
points or—in degenerate cases—a lower-dimensional simplex. The d-dimensional
convex hull algorithm is part of the d-dimensional triangulation package. It con-
structs a simplicial complex from which the facets of the hull can be extracted. See
Table 68.2.2 for an overview.
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TABLE 68.2.2 Convex hull algorithms on a set of n points with h extreme points.

DIM MODE ALGORITHM

2 Static Bykat, Eddy, and Jarvis march, all in O(nh) time

Static Akl & Toussaint, and Graham-Andrew scan, both in O(n logn) time [Sch99]

Polygon Melkman for points of a simple polygon in O(n) time

Others lower hull, upper hull, subsequences of the hull, extreme points, convexity test

3 Static quickhull [BDH96]

Incremental randomized incremental construction [CMS93, BMS94b]

Dynamic by-product of the dynamic 3D Delaunay triangulation

Test convexity test as program checker [MNS+99]

d Incremental random. incr. constr. [CMS93, BDH09] in O(n logn + ndd/2e) expected time

POLYGONS

A polygon is a closed chain of edges. Cgal provides a container class for polygons,
but all functions are generic with iterators and work on arbitrary sequences of
points. The functions available are polygon area, point location, tests for simplicity
and convexity of the polygon, and generation of random instances.

Cgal also provides container classes to represent simple polygons with holes
and collections of such polygons. Moreover, there are generalizations of these classes
where the boundary is formed by general x-monotone curves rather than line seg-
ments specifically. Besides intersection and containment tests, all of these classes
support regularized Boolean operations: intersection, union, complement, and dif-
ference. The implementation is based on arrangements. Regularization means that
lower-dimensional features such as isolated points or antennas are omitted.

Where regularization is undesirable, Nef polygons [Nef78, Bie95] provide an
alternative representation. A Nef polygon is a point set P ⊆ R2 generated from a
finite number of open halfspaces by set complement and set intersection operations.
It is therefore closed under Boolean set operations and topological operations, such
as closure, interior, boundary, regularization, etc. It captures features of mixed
dimension, e.g., antennas or isolated vertices, open and closed boundaries, and un-
bounded faces, lines, and rays. The potential unboundedness of Nef polygons is
addressed with infimaximal frames and an extended kernel [MS03]. The represen-
tation is based on the halfedge data structure [Ket98] (see below), extended with
face loops and isolated vertices [See01].

There are functions to compute the Minkowski sum of two simple polygons
or an offset polygon, i.e., the Minkowski sum of a simple polygon with a disk. In
both cases the result may not be simple and is, therefore, represented as a polygon
with holes. For offset polygons these are generalized polygons, where edges are line
segments or circular arcs. As an alternative to an exact representation of the offset,
one can obtain an approximation with a guaranteed error bound, specified as an
input. The implementation is based on the arrangement data structure and convex
decomposition and convolution methods [Wei06, Wei07, BFH+15].

Polygons can also be partitioned into y-monotone polygons or convex polygons.
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The y-monotone partitioning is a sweep-line algorithm [BCKO08]. For convex par-
titioning one algorithm finds the minimum number of convex pieces, and two fast
4-approximation algorithms are given: one is a sweep-line algorithm [Gre83], the
other is based on the constrained Delaunay triangulation [HM83].

The straight skeleton of a simple polygon [AAAG95] constructs a straight-line
graph. The implementation is based on [FO98] with additional vertex events [EE99]
and can also be used to compute a corresponding collection of offset polygons.

In polyline simplification the goal is to reduce the number of vertices in a collec-
tion of polylines while preserving their topology, i.e., not creating new intersections.
The input can be a single polygon or an arbitrary set of polylines, which may in-
tersect and even self-intersect. Parameters of the algorithm are: a measure for the
simplification cost of removing a single vertex and a stop criterion, such as a lower
bound for the number or percentage of vertices remaining or an upper bound for the
simplification cost. The algorithm [DDS09] is based on constrained triangulations.

2D visibility [BHH+14] provides algorithms to compute the visibility region of
a point in a polygonal domain. The input domain is represented as a bounded face
in an arrangement and, in particular, may have holes.

CELL COMPLEXES AND POLYHEDRA

The halfedge data structure a.k.a. doubly connected edge list (DCEL) is a general
purpose representation for planar structures. It is an edge-based representation
with two oppositely directed halfedges per edge [Ket98]. A polyhedral surface is a
mesh data structure based on the halfedge data structure. It embeds the halfedge
data structure in 3D space. The polyhedral surface provides various basic integrity-
preserving operations, the “Euler operations” [Ket98]. As an alternative, Cgal
provides a surface mesh structure that is index rather than pointer based [SB11],
which saves memory on 64-bit systems.

Most algorithms operate on models of MutableFaceGraph. This concept extends
the IncidenceGraph concept of the Boost Graph Library (BGL) [SLL02] by a notion
of halfedges, faces, and a cyclic order of halfedges around a face. Both polyhedral
surface and surface mesh are models of MutableFaceGraph, but also third-party
libraries such as OpenMesh [BSBK02] provide such models. Modeling a refinement
of IncidenceGraph, these data structures can directly be used with corresponding
BGL algorithms, e.g., for computing shortest paths.

A generalization to d-dimensional space is provided by the combinatorial map
data structure [DT14]. It implements an edge-based representation for an abstract
d-dimensional cell complex. The role of halfedges is taken by darts, which represent
an edge together with its incident cells of any dimension. The linear cell complex
adds a linear geometric embedding to the combinatorial structure, where every
vertex of the combinatorial map is associated with a point.

3D Nef polyhedra are the natural generalization of Nef polygons to 3D. They
provide a boundary representation of objects that can be obtained by Boolean
operations on open halfspaces [HKM07]. In addition to Boolean operations, there
are also algorithms [Hac09] to construct the Minkowski sum of two Nef polyhedra,
and to decompose a given Nef polyhedron P into O(r2) convex pieces, where r is
the number of reflex edges in P .
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ARRANGEMENTS

Planar Arrangements are represented using an extended halfedge data structure
that supports inner and outer face boundaries with several connected components.
The geometry of edges is specified via a traits class, for which many different mod-
els exist, such as line segments, polylines, conic arcs, rational functions [SHRH11],
Bézier curves, or general algebraic curves. Edges may be unbounded but are as-
sumed to be x-monotone. In order to support general curves, the corresponding
traits classes specify a method to split a given curve into x-monotone pieces. The
point location strategy can also be specified via the traits class. Available are,
among others, a trapezoidal decomposition using randomized incremental construc-
tion [HKH12] and a landmark strategy that uses a set of landmark points to guide
the search [HH09]. Other supported operations include vertical ray shooting queries
and batched point location using a plane sweep.

Using a sweep in an arrangement, one can also compute all pairwise inter-
sections for a set of n curves in O((n + k) log n) time, where k is the number of
intersection points of two curves. Upper and lower envelopes of x-monotone curves
in 2D or surfaces in 3D can be constructed using a divide-and-conquer approach.
Finally, Snap rounding converts a given arrangement of line segments into a fixed
precision representation, while providing some topological guarantees. The package
also provides a direct algorithm to construct an iterated snap rounding [HP02]. The
book by Fogel, Halperin and Wein [FHW12] gives many examples and applications
using Cgal arrangements.

TRIANGULATIONS AND VORONOI DIAGRAMS

Triangulations use a triangle-based data structure in 2D, which is more memory ef-
ficient than an edge-based structure. Similarly, the representation in 3D is based on
tetrahedra. Both data structures act as container classes with an iterator interface
and topologically represent a sphere using a symbolic infinite vertex. The con-
struction is randomized incremental and efficient vertex removal [BDP+02, DT11]
is supported. Where not mentioned otherwise explicitly, the following structures
are available in both 2D and 3D.

Delaunay triangulations also implicitly represent the dual Voronoi diagram.
But there is also an adaptor that simulates an explicit representation. Point location
is the walk method by default. From 10,000 points on, it is recommended [DPT02]
to use the Delaunay hierarchy [Dev02] instead. Batched insertion (including con-
struction from a given range of points) spatially sorts the points in a preprocessing
step to reduce the time spent for point location.

Regular triangulations are the dual of power diagrams, the Voronoi diagram
of weighted points under the power-distance [ES96]. Both Delaunay and regular
triangulations in 3D support parallel computation using a lock data structure.

For a constrained triangulation (cf. Chapter 29) one can define a set of con-
straining segments, which are required edges in the triangulation. Constrained
(Delaunay) triangulations are available in 2D only. There is optional support for
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intersecting constraints, which are handled by subdividing segments at intersection
points.

For a periodic triangulation the underlying space is a torus rather than a sphere.
The space is represented using a half-open cube as an original domain, which con-
tains exactly one representative for each equivalence class of points. Points outside
of the original domain are addressed using integral offset vectors. Not all point sets
admit a triangulation on the torus, but a grid of a constant number of identical
copies of the point set always does [CT09].

An alpha shape is a sub-complex of a Delaunay triangulation that contains only
those simplices whose empty circumsphere has radius bounded by a given α. Alpha
shapes are available both for unweighted and for weighted points under the power
distance [EM94].

Apollonius graphs are the dual of additively weighted Voronoi diagrams (a.k.a.
Apollonius diagrams). They are available in 2D only, and support dynamic vertex
insertion, deletion, and fast point location [KY02].

A segment Delaunay graph is dual to a Voronoi diagram for a set of line seg-
ments. It is available in 2D only but for both the Euclidean [Kar04] and the L∞
metric [CDGP14]. Intersecting segments are supported. Geometric primitives use
a combination of geometric and arithmetic filtering.

A d-dimensional triangulation is combinatorially represented as an abstract
pure simplicial complex without boundary. The data structure supports specifica-
tion of the dimension at either compile time or runtime. Both general triangulations
and Delaunay triangulations are available.

Cgal also provides a generic framework [RKG07] for kinetic data structures
where points move along polynomial trajectories. Specifically it implements kinetic
Delaunay triangulations in 2D and 3D and kinetic regular triangulations in 3D.

MESH GENERATION

In Delaunay refinement meshing, the goal is to obtain a Delaunay triangulation for
a given domain that (1) respects certain features and (2) whose simplices satisfy
certain shape criteria (e.g., avoid small angles). To this end, Steiner points are
added to subdivide constraint features or to destroy bad simplices.

The 3D mesh generator [JAYB15] computes an isotropic simplicial mesh rep-
resented as a subcomplex of a 3D Delaunay triangulation. The concept to describe
the input domain is very general: The only requirement is an oracle that can an-
swer certain queries about the domain. For instance, does a query point belong
to the domain and—if so—to which part of the domain? Domain models include
isosurfaces defined by implicit functions, polyhedral surfaces, and segmented 3D
images (for instance, from CT scans). The algorithm can handle lower-dimensional
features in the input domain using restricted Delaunay triangulations [BO05] and
protecting balls [CDR10]. Several different optimization procedures can option-
ally be used to remove slivers from the resulting mesh: Lloyd smoothing [DW03],
odt-smoothing [ACYD05], a perturber [TSA09] and/or an exuder [CDE+00].

The 3D surface mesher [RY07] handles an input domain that is a surface in 3D,
represented as an oracle. The resulting mesh is represented as a two-dimensional
subcomplex of a 3D Delaunay triangulation. Theoretical guarantees [BO05] regard-
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ing the topology depend on the local feature size. But the algorithm can also be
run to guarantee a manifold when allowed to relax the shape criteria.

A given 2D constrained triangulation can be transformed into a conforming
Delaunay or conforming Gabriel triangulation using Shewchuk’s algorithm [She00].
3D skin surfaces provides an algorithm [KV07] to construct the skin surface [Ede99]
for a given set of weighted points (i.e., balls) and a given shrink factor.

GEOMETRY PROCESSING

Cgal provides three algorithms to reconstruct a surface from a set of sample points.
Poisson reconstruction [KBH06] computes an implicit function from a given set of
points with oriented normal vectors. A corresponding surface can then be obtained
using the surface mesher. Scale-space reconstruction [DMSL11] computes a surface
that interpolates the input points by filtering an alpha shape depending on a scale
variable. The scale-space method tends to be more robust with respect to outliers
and noise. Advancing Front Surface Reconstruction [CD04] greedily adds Delau-
nay triangles subject to topological constraints, so as to maintain an orientable
2-manifold, possibly with boundary.

3D surface subdivision implements four subdivision methods (cf. [WW02]) that
operate on a polyhedron: Catmull-Clark, Loop, Doo-Sabin, and

√
3-subdivision.

In the opposite direction, surface mesh simplification aims to reduce the size of a
given mesh while preserving the shape’s characteristics as much as possible. The
implementation collapses at every step an edge of minimum cost. The cost function
appears as a parameter, with the Lindstrom-Turk model [LT99] as a default.

Surface subdivision decomposes a given mesh based on a shape diameter func-
tion (SDF) [SSC08], which aims to estimate the local object diameter. The de-
composition is computed using a graph cut algorithm [BVZ01] that minimizes an
energy function based on the SDF values.

In surface deformation we are given a mesh and a subset of vertices that are to
be moved to given target positions. The goal is to deform the mesh and maintain
its shape subject to these movement constraints. The implementation operates on
a polyhedron and uses the as-rigid-as-possible algorithm [SA07] with an alternative
energy function [CPSS10].

Planar parameterization operates on a polyhedron and aims to find a one-to-one
mapping between the surface of the polyhedron and a planar domain. There are
different desiderata regarding this mapping such as a small angle or area distortion
or that the planar domain is convex. Several different methods are provided, such
as Tutte barycentric mapping [Tut63], discrete conformal map [EDD+95], Floater
mean value coordinates [Flo03], discrete authalic [DMA02], and least squares con-
formal maps [LPRM02], possibly in combination with boundary conditions.

Geodesic shortest paths on a triangulated surface mesh can be obtained using
an algorithm by Xin and Wang [XW09]. Triangulated surface mesh skeletonization
builds a 1D mean curvature skeleton [TAOZ12] for a given surface mesh. This
skeleton is a curvilinear graph that aims to capture the topology of the mesh. Both
algorithms work with a model of a generic FaceListGraph concept as an input.

Approximation of ridges and umbilics approximately determines regions of ex-
tremal curvature [CP05] on a given mesh, interpreted as a discretization of a smooth
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surface. The algorithm [CP05] needs the local differential properties of the mesh to
be provided, which can be obtained using a companion package [CP08].

Point set processing provides tools to analyze and process 3D point sets, for
instance, compute the average spacing, remove outliers, simplify, upsample, regu-
larize or smooth the point set, or estimate the normals. The shape of a given point
set with unoriented normals can be detected using a RANSAC (random sample
consensus) algorithm [SWK07]. Supported shapes include plane, sphere, cylinder,
cone and torus.

2D placement of streamlines generates streamlines (everywhere tangent to the
field) for a given vector field, using a farthest point seeding strategy [MAD05].

OPTIMIZATION

Geometric optimization algorithms in Cgal fall into three categories: Bounding
Volumes, Inscribed Areas, and Optimal Distances; see Table 68.2.3. In addition,
Principal Component Analysis provides the computation of axis-aligned bounding
boxes, centroids, and a linear least squares fitting in 2D and 3D.

As for combinatorial algorithms, there is a Linear and Quadratic Programming
Solver to compute exact solutions for linear programs and convex quadratic pro-
grams. The solver uses a simplex-like algorithm, which is efficient if either the
number of variables or the number of constraints is small [GS00]. Cgal also pro-
vides generic implementations of monotone [AKM+87] and sorted [FJ84] matrix
search.

TABLE 68.2.3 Geometric optimization.

DIM ALGORITHM

2,3,d Smallest enclosing disk/sphere of a point set [Wel91, GS98b, Gär99]

2,3,d Smallest enclosing sphere of a set of spheres [FG04]

2 Smallest enclosing ellipse of a point set [Wel91, GS98a, GS98c]

2 Smallest enclosing rectangle [Tou83], parallelogram [STV+95], and strip [Tou83] of a point set

d Smallest enclosing spherical annulus of a point set [GS00]

d Smallest enclosing ellipsoid of a point set (approximation using Khachyian’s algorithm [Kha96])

2 Rectangular p-center, 2 ≤ p ≤ 4 [Hof05, SW96]

2 Maximum (area and perimeter) inscribed k-gon of a convex polygon [AKM+87]

2 Maximum area axis-aligned empty rectangle [Orl90]

d Distance between two convex polytopes (given as a convex hull of a point set) [GS00]

3 Width of a point set [GH01]

2 All furthest neighbors for the vertices of a convex polygon [AKM+87]
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SPATIAL SEARCHING AND SORTING

Generic range trees and segment trees [BCKO08] can be interchangeably nested
to form higher-dimensional search trees. A related structure in 1D is the interval
skip list, a fully dynamic data structure to find all intervals that overlap a given
point [Han91].

Spatial searching provides various queries based on k-d-trees: k-nearest and k-
furthest neighbor searching, incremental nearest and incremental furthest neighbor
searching [HS95]. All queries are available as exact and approximate searches.
Query items can be points and other spatial objects.

Spatial sorting organizes a sequence of points so as to increase spatial coherence.
In combination with carefully dosed randomness this is useful to speed up the
localization step of incremental algorithms [ACR03, Buc09].

2D Range and Neighbor Search provides an interface to the dynamic 2D Delau-
nay triangulation for nearest neighbor, k-nearest neighbors, and range searching in
the plane [MN00].

Fast Intersection and Distance Computation in 3D can be done using a hier-
archy of axis-aligned bounded boxes stored in an AABB tree. The data structure
supports intersection tests, intersection counting, and intersection reporting for a
single query object, and computing a closest point for a given query point.

Intersecting Sequences of dD Iso-oriented Boxes efficiently computes all inter-
secting pairs among a collection of axis-aligned bounded boxes [ZE02]. The algo-
rithm is also useful as a preprocessing heuristic for computing intersections among
more general objects.

68.3 SOURCES AND RELATED MATERIAL

FURTHER READING

The Leda user manual [MNSU] and the Leda book [MN00] discuss the architec-
ture, the implementation, and the use of the Leda system.

The most relevant and up-to-date resource about Cgal is its online reference
manual at <doc.cgal.org>. The design of Cgal and the reasons to use the C++
language are thoroughly covered in [FGK+00]. Generic programming aspects are
discussed in [BKSV00]. The design of the Cgal kernel is presented in [HHK+07,
PF11], the d-dimensional kernel in [MMN+98], the circular kernel in [EKP+04,
DFMT02], and the spherical kernel in [CCLT09]. Older descriptions of design and
motivation are in [Ove96, FGK+96, Vel97]. In particular, precision and robustness
aspects are discussed in [Sch96], and the influence of different kernels in [Sch99,
BBP01]. The most recent survey about Cgal is [Ber14].
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[MN94a] K. Mehlhorn and S. Näher. Implementation of a sweep line algorithm for the straight

line segment intersection problem. Technical Report MPI-I-94-160, Max-Planck-

Institut für Informatik, 1994.
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