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INTRODUCTION

The advent of high-throughput technologies and the concurrent advances in in-
formation sciences have led to a data revolution in biology. This revolution is
most significant in molecular biology, with an increase in the number and scale of
the “omics” projects over the last decade. Genomics projects, for example, have
produced impressive advances in our knowledge of the information concealed into
genomes, from the many genes that encode for the proteins that are responsible
for most if not all cellular functions, to the noncoding regions that are now known
to provide regulatory functions. Proteomics initiatives help to decipher the role
of post-translation modifications on the protein structures and provide maps of
protein-protein interactions, while functional genomics is the field that attempts to
make use of the data produced by these projects to understand protein functions.
The biggest challenge today is to assimilate the wealth of information provided by
these initiatives into a conceptual framework that will help us decipher life. For ex-
ample, the current views of the relationship between protein structure and function
remain fragmented. We know of their sequences, more and more about their struc-
tures, we have information on their biological activities, but we have difficulties
connecting this dotted line into an informed whole. We lack the experimental and
computational tools for directly studying protein structure, function, and dynam-
ics at the molecular and supra-molecular levels. In this chapter, we review some
of the current developments in building the computational tools that are needed,
focusing on the role that geometry and topology play in these efforts. One of our
goals is to raise the general awareness about the importance of geometric methods
in elucidating the mysterious foundations of our very existence. Another goal is
the broadening of what we consider a geometric algorithm. There is plenty of valu-
able no-man’s-land between combinatorial and numerical algorithms, and it seems
opportune to explore this land with a computational-geometric frame of mind.

65.1 BIOMOLECULES

GLOSSARY

DNA: Deoxyribo Nucleic Acid. A double-stranded molecule found in all cells
that is the support of genetic information. Each strand is a long polymer built
from four different building blocks, the nucleotides. The sequence in which these
nucleotides are arranged contains the entire information required to describe cells
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and their functions. The two strands are complementary to each other, allowing
for repair should one strand be damaged.

RNA: Ribo Nucleic Acid. A long polymer much akin to DNA, being also formed
as sequences of four types of nucleotides. RNAs can serve as either carrier of
information (in their linear sequences), or as active functional molecules whose
activities are related to their 3-dimensional shapes.

Protein: A long polymer, also called a polypeptide chain, built from twenty differ-
ent building blocks, the amino acids. Proteins are active molecules that perform
most activities required for cells to function.

Genome: Genetic material of a living organism. It consists of DNA, and in
some cases, of RNA (RNA viruses). For humans, it is physically divided into 23
chromosomes , each forming a long double-strand of DNA.

Gene: A gene is a segment of the genome that encodes a functional RNA or a
protein product. The transmission of genes from an organism to its offsprings is
the basis of the heredity.

Central dogma: The Central Dogma is a framework for understanding the trans-
fer of information between the genes in the genome and the proteins they encode
for. Schematically, it states that “DNA makes RNA and RNA makes protein.”

FIGURE 65.1.1

The DNA gets replicated as a whole.
Pieces of DNA referred to as genes are
transcribed into pieces of RNA, which are
then translated into proteins.

Protein
transcription translation

replication

RNADNA

Replication: Process of producing two identical replicas of DNA from one origi-
nal DNA molecule.

Transcription: First step of gene expression, in which a particular segment of
DNA (gene) is copied into an RNA molecule.

Translation: Process in which the messenger RNA produced by transcription
from DNA is decoded by a ribosome to produce a specific amino acid chain, or
protein.

Protein folding: Process in which a polypeptide chain of amino acid folds into
a usually unique globular shape. This 3D shape encodes for the function of the
protein.

Intrinsically disordered protein (IDP): A protein that lacks a fixed or or-
dered three-dimensional structure or shape. Despite their lack of stable structure,
they form a very large and functionally important class of proteins.

INFORMATION TRANSFER: FROM DNA TO PROTEIN

One of the key features of biological life is its ability to self-replicate. Self-replication
is the behavior of a system that yields manufacturing of an identical copy of itself.
Biological cells, given suitable environments, reproduce by cell division. During
cell division, the information defining the cell, namely its genome, is replicated and
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then transmitted to the daughter cells: this is the essence of heredity. Interestingly,
the entire machinery that performs the replication as well as the compendium
that defines the process of replication are both encoded into the genome itself.
Understanding the latter has been at the core of molecular biology. Research in
this domain has led to a fundamental hypothesis in biology: the Central Dogma.
We briefly describe it in the context of information transfer.

The genome is the genetic material of an organism. It consists of DNA, and in
a few rare cases (mostly some viruses), of RNA. The DNA is a long polymer whose
building blocks are nucleotides. Each nucleotide contains two parts, a backbone
consisting of a deoxyribose and a phosphate, and an aromatic base, of which there
are four types: adenine (A), thymine (T), guanine (G) and cytosine (C). The
nucleotides are linked together to form a long chain, called a strand. Cells contain
strands of DNA in pairs that are mirrors of each other. When correctly aligned,
A pairs with T, G pairs with C, and the two strands form a double helix [WC53].
The geometry of this helix is surprisingly uniform, with only small, albeit important
structural differences between regions of different sequences. The order in which
the nucleotides appear in one DNA strand defines its sequence. Some stretches
of the sequence contain information that can be transcribed first into an RNA
molecule and then translated into a protein (Central Dogma). These stretches are
called genes. It is estimated, for example, that the human genome contains around
20,000 genes [PS10], which represent 1-3% of the whole genome. For a long time, the
remainder was considered to be nonfunctional, and therefore dubbed to be “junk”
DNA. This view has changed, however, with the advent of the genomic projects. For
example, the international Encyclopedia of DNA Elements (ENCODE) project has
used biochemical approaches to uncover that at least 80% of human genomic DNA
has biochemical activity [ENC12]. While this number has been recently questioned
as being too high [Doo13, PG14], as biochemical activities may not imply function,
it remains that a large fraction of the noncoding DNA plays a role in regulation of
gene expression.

DNA replication is the biological process of generating two identical copies of
DNA from one original DNA molecule. This process occurs in all living organisms;
it is the basis for heredity. As DNA is made up of two complementary strands
wound into a double helix, each strand serves as a template for the production of
the complementary strand. This mechanism was first suggested by Watson and
Crick based on their model of the structure for DNA [WC53]. As replication is the
mechanism that ensures transfer of information from one generation to the other,
most species have developed control systems to ensure its fidelity. Replication is
performed by DNA polymerases. The function of these molecular machines is not
quite perfect, making about one mistake for every ten million base pairs copied
[MK08]. Error correction is a property of most of the DNA polymerases. When an
incorrect base pair is recognized, DNA polymerase moves backwards by one base
pair of DNA, excises the incorrect nucleotide and replaces it with the correct one.
This process is known as proofreading. It is noteworthy that geometry plays an
important role here. Incorporation of the wrong nucleotide leads to changes in the
shape of the DNA, and it is this change in geometry that the polymerase detects. In
addition to the proofreading process, most cells rely on post-replication mismatch
repair mechanisms to monitor the DNA for errors and correct them. The combina-
tion of the intrinsic error rates of polymerases, proofreading, and post-replication
mismatch repair usually enables replication fidelity of less than one mistake for
every billion nucleotides added [MK08]. We do note that this level of fidelity may
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vary between species. Unicellular organisms that rely on fast adaptation to sur-
vive, such as bacteria, usually have polymerases with much lower levels of fidelity
[Kun04].

Transcription is the first step in the transfer of information from DNA to its end
product, the protein. During this step, a particular segment of DNA is copied into
RNA by the enzyme RNA polymerase. RNA molecules are very similar to DNA,
being formed as sequences of four types of nucleotides, namely A, G, C, and uracil
(U), which is a derivative of thymine. In contrast to the double-stranded DNA,
RNA is mostly found to be singled-stranded. This way, it can adopt a large variety
of conformations, which remain difficult to predict based on the RNA sequence
[SM12]. Interestingly, RNA is considered an essential molecule in the early steps of
the origin of life [Gil86, Cec93].

Translation is the last step in gene expression. In translation, the messenger
RNA produced by transcription from DNA is decoded by a ribosome to produce
a specific amino acid chain, or polypeptide. There are 20 types of amino acids,
which share a common backbone and are distinguished by their chemically diverse
side-chains, which range in size from a single hydrogen atom to large aromatic rings
and can be charged or include only nonpolar saturated hydrocarbons. The order
in which amino acids appear defines the primary sequence, also referred to as the
primary structure, of the polypeptide. In its native environment, the polypeptide
chain adopts a unique 3-dimensional shape, in which case it is referred to as a
protein. The shape defines the tertiary or native structure of the protein. In this
structure, nonpolar amino acids have a tendency to re-group and form the core,
while polar amino acids remain accessible to the solvent.

We note that the scenario “DNA makes RNA and RNA makes protein” cap-
tured by the Central Dogma is reminiscent of the Turing machine model of com-
puting, in which information is read from an input tape and the results of the
computations are printed on an output tape.

FROM SEQUENCE TO FUNCTION

Proteins, the end products of the information encoded in the genome of any or-
ganism, play a central role in defining the life of this organism as they catalyze
most biochemical reactions within cells and are responsible, among other functions,
for the transport of nutrients and for signal transmission within and between cells.
Proteins become functional only when they adopt a 3-dimensional shape, the so-
called tertiary, or native structure of the protein. This is by no means different from
the macroscopic world: most proteins serve as tools in the cell and as such either
have a defined or adaptive shape to function, much like the shapes of the tools we
use are defined according to the functions they need to perform. Understanding
the shape (the geometry) of a protein is therefore at the core of understanding
how cells function. From the seminal work of Anfinsen [Anf73], we know that the
sequence fully determines the 3-dimensional structure of the protein, which itself
defines its function. While the key to the decoding of the information contained
in genes was found more than fifty years ago (the genetic code), we have not yet
found the rules that relate a protein sequence to its structure [KL99, BS01]. Our
knowledge of protein structure therefore comes from years of experimental studies,
either using X-ray crystallography or NMR spectroscopy. The first protein struc-
tures to be solved were those of hemoglobin and myoglobin [KDS+60, PRC+60].
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As of June 2016, there are more than 110,000 protein structures in the database
of biomolecular structures [BWF+00]; see http://www.rcsb.org. This number
remains small compared to the number of existing proteins. There is therefore a lot
of effort put into predicting the structure of a protein from the knowledge of its se-
quence: one of the “holy grails” in molecular biology, namely the protein structure
prediction problem [Dil07, EH07, DB07, Zha08, Zha09]. Efforts to solve this prob-
lem currently focus on protein sequence analysis, as a consequence of the wealth of
sequence data resulting from various genome-sequencing projects, either completed
or ongoing. As of May 2016, there were more than 550,000 protein sequences
deposited in SwissProt-Uniprot version 2016-05, the fully annotated repository of
protein sequences. Data produced by these projects have already led to signifi-
cant improvements in predictions of both protein 3D structures and functions; see
for example [MHS11]. However, we still stand at the dawn of understanding the
information encoded in the sequence of a protein.

It is worth noting that if the paradigm shape-defines-function is the rule in
biology, intrinsically disordered proteins form a significant class of exceptions, as
they lack stable structures [DW05, DSUS08]. Shape, however, remains important
for those proteins, although it is its flexibility and plasticity that is of essence, as
shown for example in the case of P53 [OMY+09].

65.2 GEOMETRIC MODELS

The shape of a protein and its chemical reactivity are highly correlated as the latter
depends on the positions of the nuclei and electrons within the protein: this correla-
tion is the rationale for high-resolution experimental and computational studies of
the structures and shapes of proteins. Early crystallographers who studied proteins
could not rely (as it is common nowadays) on computers and computer graphics
programs for representation and analysis of their structures. They had developed
a large array of finely crafted physical models that allowed them to have a feel-
ing for the shapes of these molecules. These models, usually made out of painted
wood, plastic, rubber, and/or metal, were designed to highlight different properties
of the protein under study. The current models in computer graphics programs
mimic those early models. The cartoon diagrams, also called ribbon diagrams or
Richardson diagrams [Ric85] show the overall path and organization of the protein
backbone in 3D. Cartoon diagrams are generated by interpolating a smooth curve
through the polypeptide backbone. In the stick models, atoms are represented as
points (sometimes as small balls) attached together by sticks that represent the
chemical bonds. These models capture the stereochemistry of the protein. In the
space-filling models, such as those of Corey-Pauling-Koltun (CPK) [CP53, Kol65],
atoms are represented as balls, whose sizes are set to capture the volumes occupied
by the atoms. The radii of those balls are set to the van der Waals radii of the
atoms. The CPK model has now become standard in the field of macromolecular
modeling: a protein is represented as the union of a set of balls, whose centers
match with the atomic centers and radii defined by van der Waals radii. The struc-
ture of a protein is then fully defined by the coordinates of these centers, and the
radii values. The macromolecular surface is the geometric surface or boundary of
these unions of balls. Note that other definitions are possible; this will be discussed
in more detail below.
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GLOSSARY

FIGURE 65.2.1

Three representations (diagrams) of the same protein, the HIV-1 protease (Protein Data Bank
[BWF+00], identifier: 3MXE). The cartoon diagram on the left characterizes the geometry of the
backbone of the protein, the stick diagram in the middle shows the chemical bonds, and the space-
filling diagram highlights the space occupied by the protein. The three diagrams complement each
other in their representation of relevant information.

stick diagramcartoon diagram space-filling diagram

Cartoon diagram: Model that represents the overall path and organization of
the protein backbone in 3D. The cartoon diagram is generated by interpolating
a smooth curve through the protein backbone.

Stick diagram: Model that represents the chemical connectivity in a protein
by displaying chemical bonds as sticks (edges). Atoms are usually just vertices
where the edges meet. Some stick diagrams use balls to represent those vertices,
the ball-and-stick models.

Space-filling diagram: Model that represents a protein by the space it occupies.
Most commonly, each atom is represented by a ball (a solid sphere), and the
protein is the union of these balls.

FIGURE 65.2.2

Three most common molecular surface models for representing proteins (2D examples). Dashed,
red circles represent the probe solvent spheres.

vdW surface accessible surface molecular surface

Van der Waals surface: Boundary of space-filling diagram defined as the union
of balls with van der Waals radii. The sizes of these balls are chosen to reflect
the transition from an attractive to a repulsive van der Waals force.

Solvent-accessible surface: Boundary of space-filling diagram in which each
van der Waals ball is enlarged by the radius of the solvent sphere. Alternatively,
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it is the set of centers of solvent spheres that touch but do not otherwise intersect
the van der Waals surface.

Molecular surface: Boundary of the portion of space inaccessible to the solvent.
It is obtained by rolling the solvent sphere about the van der Waals surface.

Power distance: Square length of tangent line segment from a point x to a
sphere with center z and radius r. It is also referred to as the weighted square

distance and formally defined as ‖x− z‖2 − r2.

Voronoi diagram: Decomposition of space into convex polyhedra. Each poly-
hedron corresponds to a sphere in a given collection and consists of all points
for which this sphere minimizes the power distance. This decomposition is also
known as the power diagram and the weighted Voronoi diagram.

Delaunay triangulation: Dual to the Voronoi diagram. For generic collections
of spheres, it is a simplicial complex consisting of tetrahedra, triangles, edges, and
vertices. This complex is also known as the regular triangulation, the coherent

triangulation, and the weighted Delaunay triangulation.

Dual complex: Dual to the Voronoi decomposition of a union of balls. It is a
subcomplex of the Delaunay triangulation.

FIGURE 65.2.3

Each Voronoi polygon intersects the union of disks in
a convex set, which is the intersection with its defining
disk. The drawing shows the Voronoi decomposition of
the union and the dual complex superimposed.

Growth model: Rule for growing all spheres in a collection continuously and
simultaneously. The rule that increases the square radius r2 to r2 + t at time t
keeps the Voronoi diagram invariant at all times.

Alpha complex: The dual complex at time t = α for a collection of spheres
that grow while keeping the Voronoi diagram invariant. The alpha shape is the
underlying space of the alpha complex.

Filtration: Nested sequence of complexes. The prime example here is the se-
quence of alpha complexes.

ALTERNATIVE SURFACE REPRESENTATIONS

While geometric models for the molecular surface provide a deterministic descrip-
tion of the boundary for the shape of a biomolecule, models using implicit or para-
metric surfaces may be favorable for certain applications [Bli82, ZBX11]. The
implicit molecular surface models use a level set of a scalar function f : R3 → R

that maps each point from the 3-dimensional space to a real value [OF03, CCW06,
CP13]. The most common scalar function used for macromolecular surfaces is a
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summation of Gaussian functions [GP95]. Other scalar functions, such as polyno-
mial and Fermi-Dirac switching functions, have been used as well [LFSB03]. Bates
et al. [BWZ08] proposed the minimal molecular surface as a level set of a scalar
function that is the output from a numerical minimization procedure. Paramet-

ric surface models specify each point on the macromolecular surface by a pair of
real value variables. Piecewise polynomials such as Non-Uniform Rational B-spline
(NURBS) and Bernstein-Bézier have been proposed to generate parametric rep-
resentations for molecular surfaces [BLMP97, ZBX11]. Spherical harmonics and
their extensions parametrize the macromolecular surface using spherical coordi-
nates and provide a compact analytical representation of macromolecular shapes
[MG88, DO93a, DO93b].

We note that neither implicit nor parametric macromolecular surface models
are independent from the geometric models based on the union of balls, as they
usually have a set of parameters that are tuned such that they provide a reasonable
approximation of the surface of the latter.

SPACE-FILLING DIAGRAMS

Our starting point is the van der Waals force. These forces capture interactions
between atoms and molecules and mostly include attraction and repulsion. At short
range up to a few Angstrom, this force is attractive but significantly weaker than
covalent or ionic bonds. At very short range, the force is strongly repulsive. We can
assign van der Waals radii to the atoms so that the force changes from attractive to
repulsive when the corresponding spheres touch [GR01]. The van der Waals surface

is the boundary of the space-filling diagram made up of the balls with van der Waals
radii. In the 1970s, Richards and collaborators extended this idea to capture the
interaction of a protein with the surrounding solvent [LR71, Ric77]. The solvent-

accessible surface is the boundary of the space-filling diagram in which the balls are
grown by the radius of the sphere that models a single solvent molecule. Usually
the solvent is water, represented by a sphere of radius 1.4 Angstrom. The molecular

surface is obtained by rolling the solvent sphere over the van der Waals surface and
filling in the inaccessible crevices and cusps. This surface is sometimes referred to as
the Connolly surface, after the creator of the first software representing this surface
by a collection of dots [Con83]. We mention that this surface may have sharp edges,
namely when the solvent sphere cannot quite squeeze through an opening of the
protein and thus forms a circular or similar curve feature on the surface.

DUAL STRUCTURES

We complement the space-filling representations of proteins with geometrically dual
structures. A major advantage of these dual structures is their computational
convenience. We begin by introducing the Voronoi diagram of a collection of balls
or spheres, which decomposes the space into convex polyhedra [Vor07]. Next we
intersect the union of balls with the Voronoi diagram and obtain a decomposition of
the space-filling diagram into convex cells. Indeed, these cells are the intersections
of the balls with their corresponding Voronoi polyhedra. The dual complex is the
collection of simplices that express the intersection pattern between the cells: we
have a vertex for every cell, an edge for every pair of cells that share a common facet,
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a triangle for every triplet of cells that share a common edge, and a tetrahedron
for every quadruplet of cells that share a common point [EKS83, EM94]. This
exhausts all possible intersection patterns in the assumed generic case. We get a
natural embedding if we use the sphere centers as the vertices of the dual complex.

GROWTH MODEL

One and the same Voronoi diagram corresponds to more than just one collection of
spheres. For example, if we grow the square radius r2

i
of the ith sphere to r2

i
+ t,

for every i, we get the same Voronoi diagram. Think of t as time parametrizing
this particular growth model of the spheres. While the Voronoi diagram remains
fixed, the dual complex changes. The cells in which the balls intersect the Voronoi
polyhedra grow monotonically with time, which implies that the dual complex can
acquire but not lose simplices. We thus get a nested sequence of dual complexes,

∅ = K0 ⊆ K1 ⊆ . . . ⊆ Km = D,

which begins with the empty complex at time t = −∞ and ends with the Delaunay
triangulation [Del34] at time t = ∞. We refer to this sequence as a filtration of the
Delaunay triangulation and think of it as the dual representation of the protein at
all scale levels.

ALPHA SHAPE THEORY

The dual structures and the growth model introduced above form the basis of the
alpha shape theory and its applications to molecular shapes. Alpha shapes have a
technical definition that was originally introduced to formalize the notion of ‘shape’
for a set of points [EKS83]. It can be seen as a generalization of the convex hull
of this set. One alpha complex is a subcomplex of the Delaunay triangulation, and
the corresponding alpha shape is the union of the simplices in the alpha complex.
Such an alpha shape is characterized by a parameter, α, that corresponds to the
parameter t defined above. This parameter controls the level of detail that is
desired: the set of all alpha values leads to a family of shapes capturing the intuitive
notion of ‘crude’ versus ‘fine’ shape of the set.

In its applications to structural biology, the set of points corresponds to the
collection of atoms of the molecule of interest, with each atom assigned a weight
corresponding to its van der Waals radius. The Delaunay triangulation of this
set of weighted points is computed. Most applications require the alpha complex
corresponding to α = 0, as the corresponding alpha shape best represents the space-
filling diagram (either delimited by the vdW surface or by the solvent accessible
surface). The alpha complex, K0, can then be used to measure the molecular shape.
The complete filtration can also be used to characterize the topology of the bio-
molecule, as captured by the simplices of the dual complexes and of the Delaunay
triangulation. This will be discussed below.

65.3 MOLECULAR SKIN OF A PROTEIN

We introduce yet another surface bounding a space-filling diagram of sorts. The
molecular skin is the boundary of the union of infinitely many balls. Besides
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the balls with van der Waals radii representing the atoms, we have balls inter-
polating between them that give rise to blending patches and, all together, to a
tangent-continuous surface. The molecular skin is rather similar in appearance to
the molecular surface but uses hyperboloids instead of tori to blend between the
spheres [Ede99]. The smoothness of the surface permits a mesh whose triangles
are all approximately equiangular [CDES01]. Applications of this mesh include the
representation of proteins for visualization purposes and the solution of differential
equations defined over the surface by finite-element and other numerical methods.

GLOSSARY

Molecular skin: Surface of a molecule that is geometrically similar to the molec-
ular surface but uses hyperboloid instead of torus patches for blending. In math-
ematical terms, it is the boundary of the union of interpolated spheres, which
we construct from the set of given spheres as follows. Supposing we have two
spheres with centers a1, a2 and radii r1, r2 such that the distance between the
two centers is smaller than

√
2(r1 + r2). For each real number 0 ≤ λ ≤ 1, the

corresponding interpolated sphere is obtained by first increasing the radii to
√
2r1

and
√
2r2, second fixing the new center to a3 = (1− λ)a1 + λa2, third choosing

the new radius such that the sphere passes through the circle in which the given
two spheres intersect, and fourth shrinking to radius r3/

√
2. If the distance be-

tween the centers is larger than
√
2(r1 + r2), then we extend the construction

to include spheres with imaginary radii, which correspond to empty balls and
therefore do not contribute to the surface we construct.

FIGURE 65.3.1

Cutaway view of the skin of a small molecule. We see a blend
of sphere and hyperboloid patches. The surface is inside-outside
symmetric: it can be defined by a collection of spheres on either
of its two sides.

Mixed complex: Decomposition of space into shrunken Voronoi polyhedra,
shrunken Delaunay tetrahedra, and shrunken products of corresponding Voronoi
polygons and Delaunay edges as well as Voronoi edges and Delaunay triangles.
It decomposes the skin surface into sphere and hyperboloid patches.

Maximum normal curvature: The larger absolute value κ(x) of the two prin-
cipal curvatures at a point x of the surface.

ε-sample: A collection S of points on the molecular skin M such that every point
x ∈ M has a point u ∈ S at distance ‖x− u‖ ≤ ε/κ(x).

Restricted Delaunay triangulation: Dual to the restriction of the (3-dimensio-
nal) Voronoi diagram of S to the molecular skin M.

Shape space: Locally parametrized space of shapes. The prime example here is
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the (k−1)-dimensional space generated by k shapes, each specified by a collection
of spheres in R

3.

FIGURE 65.3.2

The skin curve defined by four circles in the plane.
The mixed complex decomposes the curve into pieces
of circles and hyperbolas.

TRIANGULATED MOLECULAR SKIN

The molecular skin has geometric properties that can be exploited to construct
a numerically high-quality mesh and to maintain that mesh during deformation.
The most important of these is the continuity of the maximum normal curvature

function κ : M → R. To define it, consider the 1-parameter family of geodesics
passing through x, and let κ(x) be the maximum of their curvatures at x. We use
this function to guide the local density of the points distributed over M that are
used as vertices of the mesh. Given such a collection S of points, we construct a
mesh using its Voronoi diagram restricted to M. The polyhedra decompose the
surface into patches, and the mesh is constructed as the dual of this decomposition
[Che93]. As proved in [ES97], the mesh is homeomorphic to the surface if the pieces
of the restricted Voronoi diagram are topologically simple sets of the appropriate
dimensions. In other words, the intersection of each Voronoi polyhedron, polygon,
or edge with M is either empty or a topological disk, interval, or single point.
Because of the smoothness of M, this topological property is implied if the points
form an ε-sampling, with ε = 0.279 or smaller [CDES01]. An alternative approach
to triangulating the molecular skin can be found in [KV07].

DEFORMATION AND SHAPE SPACE

The variation of the maximum normal curvature function can be bounded by the
one-sided Lipschitz condition |1/κ(x)− 1/κ(y)| ≤ ‖x− y‖, in which the distance is
measured in R

3. The continuity overR3 and not just overM is crucial when it comes
to maintaining the mesh while changing the surface. This leads us to the topic of
deformations and shape space. The latter is constructed as a parametrization of
the deformation process. The deformation from a shape A0 to another shape A1

can be written as λ0A0 + λ1A1, with λ1 = 1 − λ0. Accordingly, we may think of
the unit interval as a 1-dimensional shape space. We can generalize this to a k-
dimensional shape space as long as the different ways of arriving at (λ0, λ1, . . . , λk),
with

∑
λi = 1 and λi ≥ 0 for all i, all give the same shape A =

∑
λiAi. How to

define deformations so that this is indeed the case is explained in [CEF01].
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65.4 CONNECTIVITY AND SHAPE FEATURES

Protein connectivity is often understood in terms of its covalent bonds, in partic-
ular along the backbone. In this section, we discuss a different notion, namely
the topological connectivity of the space assigned to a protein by its space-filling
diagram. We mention homeomorphisms, homotopies, homology groups and Euler

characteristics, which are common topological concepts used to define and talk
about connectivity. Of particular importance are the homology groups and their
ranks, the Betti numbers, as they lend themselves to efficient algorithms. In addi-
tion to computing the connectivity of a single space-filling diagram, we study how
the connectivity changes when the balls grow. The sequence of space-filling dia-
grams obtained this way corresponds to the filtration of dual complexes introduced
earlier. We use this filtration to define basic shape features, such as pockets in
proteins and interfaces between complexed proteins and molecules.

GLOSSARY

Topological equivalence: Equivalence relation between topological spaces de-
fined by homeomorphisms , which are continuous bijections with continuous in-
verses.

Homotopy equivalence: Weaker equivalence relation between topological spaces
X and Y defined by maps f : X → Y and g : Y → X whose compositions g ◦ f
and f ◦ g are homotopic to the identities on X and on Y.

Deformation retraction: A homotopy between the identity on X and a retrac-
tion of X to Y ⊆ X that leaves Y fixed. The existence of the deformation implies
that X and Y are homotopy equivalent.

FIGURE 65.4.1

Snapshot during the deformation retraction of
the space-filling representation of gramicidin to
its dual complex. The spheres shrink to ver-
tices while the intersection circles become cylin-
ders that eventually turn into edges.

Homology groups: Quotients of cycle groups and their boundary subgroups.
There is one group per dimension. The kth Betti number , βk, is the rank of the
k th homology group.
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Euler characteristic: The alternating sum of Betti numbers: χ =
∑

k≥0
(−1)kβk.

Voids: Bounded connected components of the complement. Here, we are primar-
ily interested in voids of space-filling diagrams embedded in R

3.

Pockets: Maximal regions in the complement of a space-filling diagram that be-
come voids before they disappear. Here, we assume the growth model that
preserves the Voronoi diagram of the spheres.

Persistent homology groups: Quotients of the cycle groups at some time t and
their boundary subgroups a later time t+ p. The ranks of these groups are the
persistent Betti numbers .

Protein complex: Two or more docked proteins. A complex can be represented
by a single space-filling diagram of colored balls.

Molecular interface: Surface consisting of bichromatic Voronoi polygons that
separate the proteins in the complex. The surface is retracted to the region in
which the proteins are in close contact.

FIGURE 65.4.2

Molecular interface of the neurotoxic vipoxin com-
plex. The surface has nonzero genus, which is un-
usual. In this case, we have genus equal to three,
which implies the existence of three loops from each
protein that are linked with each other. The linking
might explain the unusually high stability of the com-
plex, which remains for years in solution. The piece-
wise linear surface has been smoothed to improve vis-
ibility.

CLASSIFICATION

The connectivity of topological spaces is commonly discussed by forming equiva-
lence classes of spaces that are connected the same way. Sameness may be defined
as being homeomorphic, being homotopy equivalent, having isomorphic homology
groups, or having the same Euler characteristic. In this sequence, the classification
gets progressively coarser but also easier to compute. Homology groups seem to
be a good compromise as they capture a great deal of connectivity information
and have fast algorithms. The classic approach to computing homology groups is
algebraic and considers the incidence matrices of adjacent dimensions. Each matrix
is reduced to Smith normal form using a Gaussian-elimination-like reduction algo-
rithm. The ranks and torsion coefficients of the homology groups can be read off
directly from the reduced matrices [Mun84]. Depending on which coefficients we
use and exactly how we reduce, the running time can be anywhere between cubic
in the number of simplices and exponential or worse.
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INCREMENTAL ALGORITHM

Space-filling diagrams are embedded in R
3 and enjoy properties that permit much

faster algorithms. To get started, we use the existence of a deformation retraction
from the space-filling diagram to the dual complex, which implies that the two
have isomorphic homology groups [Ede95]. The embedding in R

3 prohibits nonzero
torsion coefficients [AH35]. We therefore limit ourselves to Betti numbers, which
we compute incrementally, by adding one simplex at a time in an order that agrees
with the filtration of the dual complexes. When we add a k-dimensional simplex,
σ, the k th Betti number goes up by one if σ belongs to a k-cycle, and the (k−1)st
Betti number goes down by one if σ does not belong to a k-cycle. The two cases can
be distinguished in a time that, for all practical purposes, is constant per operation,
leading to an essentially linear time algorithm for computing the Betti numbers of
all complexes in the filtration [DE95].

PERSISTENCE

To get a handle on the stability of a homology class, we observe that the simplices
that create cycles can be paired with the simplices that destroy cycles. The persis-

tence is the time lag between the creation and the destruction [ELZ02]. The idea of
pairing lies also at the heart of two types of shape features relevant in the study of
protein interactions. A pocket in a space-filling diagram is a portion of the outside
space that becomes a void before it disappears [EFL98, Kun92]. It is represented
by a triangle-tetrahedron pair: the triangle creates a void and the tetrahedron is
the last piece that eventually fills that same void. The molecular interface consists
of all bichromatic Voronoi polygons of a protein complex. To identify the essen-
tial portions of this surface, we again observe how voids are formed and retain the
bichromatic polygons inside pockets while removing all others [BER06]. A different
geometric formalization of the same biochemical concept can be found in [VBR+95].

Preliminary experiments in the 1990s suggested that the combination of molec-
ular interfaces and the idea of persistence can be used to predict the hot-spot
residues in protein-protein interactions [Wel96]. In the 2000s, persistent homology
was used to characterize structural changes in membrane fusion over the course
of a simulation [KZP+07]. More recently, persistent homology has been used for
extracting molecular topological fingerprints (MTFs) of proteins, based on the per-
sistence of molecular topological invariants. These fingerprints have been used for
protein characterization, identification, and classification [XW14, XW15a], as well
as for cryo-EM data analysis [XW15b].

65.5 DENSITY MAPS IN STRUCTURAL BIOLOGY

Continuous maps over manifolds arise in a variety of settings within structural
molecular biology. One is X-ray crystallography, which is the most common method
for determining the 3-dimensional structure of proteins [BJ76, Rho00]. The key to
X-ray crystallography is to obtain first pure crystals of the protein of interest. The
crystalline atoms cause a beam of incident X-rays to diffract into many specific
directions. By measuring the angles and intensities of these diffracted beams, a
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crystallographer can produce a 3-dimensional picture of the density of electrons
within the crystal. From this electron density, the mean positions of the atoms can
be determined, the chemical bonds that connect them, as well as their disorder.
The first two protein structures to be solved using this technique were those of
hemoglobin and myoglobin [KDS+60, PRC+60]. Of the 110,000 protein structures
present in the database of biomolecular structures (PDB) as of June 2016, more
than 99,000 were determined using X-ray crystallography.

A second setting is molecular mechanics, whose central focus is to develop
insight on the forces that stabilize biomolecular structures. Describing the state of a
biomolecule in terms of its energy landscape, the native state corresponds to a large
basin, and it is mostly the structure of this basin that is of interest. Theoretically,
the laws of quantum mechanics completely determine the energy landscape of any
given molecule by solving Schrödinger’s equation. In practice, however, only the
simplest systems such as the hydrogen atom have an exact, explicit solution to this
equation and modelers of large molecular systems must rely on approximations.
Simulations are based on a space-filling representation of the molecule, in which
the atoms interact through empirical forces. There is increased interest in the field
of structure biology to map the results of those simulations onto the structures of
the molecules under study, to help visualize their properties. We may, for example,
be interested in the electrostatic potential induced by a protein and visualize it as
a density map over 3-dimensional space or over a surface embedded in that space.

As a third setting, we mention the protein docking problem. Given two proteins,
or a protein and a ligand, we try to fit protrusions of one into the cavities of the other
[Con86]. We make up continuous functions related to the shapes of the surfaces and
identify protrusions and cavities as local extremes of these functions. Morse theory
is the natural mathematical framework for studying these maps [Mil63, Mat02,
LLY+15].

GLOSSARY

FIGURE 65.5.1

Portion of the Morse-Smale complex of a
Morse-Smale function over a 2-manifold.
The solid stable 1-manifolds and the
dashed unstable 1-manifolds are shown to-
gether with two dotted level sets. Observe
that all 2-dimensional regions of the com-
plex are quadrangular. saddleminimum maximum

Morse function: Generic smooth map on a Riemannian manifold, f : M → R.
In particular, the genericity assumption includes the fact that all critical points
are nondegenerate and have different function values.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.



1724 H. Edelsbrunner and P. Koehl

Gradient, Hessian: The vector of first derivatives and the matrix of second
derivatives.

Critical point: Point at which the gradient of f vanishes. It is nondegenerate
if the Hessian is invertible. The index of a nondegenerate critical point is the
number of negative eigenvalues of the Hessian.

Integral line: Maximal curve whose velocity vectors agree with the gradient of
the Morse function. Two integral lines are either disjoint or the same.

Stable manifold: Union of integral lines that converge to the same critical point.
We get unstable manifolds if we negate f and thus effectively reverse the gradient.

Morse-Smale complex: Collection of cells obtained by intersecting stable with
unstable manifolds. We require f to be a Morse-Smale function satisfying the
additional genericity assumption that these intersections are transversal.

Cancellation: Local change of the Morse function that removes a pair of critical
points. Their indices are necessarily contiguous.

CRITICAL POINTS

Classic Morse theory applies only to generic smooth maps on manifolds, f : M → R.
Maps that arise in practice are rarely smooth and generic or, more precisely, the
information we are able to collect about maps is rarely enough to go beyond a
piecewise linear representation. This is however no reason to give up on applying the
underlying ideas of Morse theory. To illustrate this point, we discuss critical points,
which for smooth functions are characterized by a vanishing gradient: ∇f = 0. If
we draw a small circle around a noncritical point u on a 2-manifold, we get one arc
along which the function takes on values less than f(u) and a complementary arc
along which the function is greater than or equal to f(u). Call the former arc the
lower link of u. We get different lower links for critical points: the entire circle for
a minimum, two arcs for a saddle, and the empty set for a maximum. A typical
representation of a piecewise linear map is a triangulation with function values
specified at the vertices and linearly interpolated over the edges and triangles. The
lower link of a vertex can still be defined and the criticality of the vertex can be
determined from the topology of the lower link [Ban67].

MORSE-SMALE COMPLEXES

In the smooth case, each critical point defines a stable manifold of points that
converge to it by following the gradient flow. Symmetrically, it defines an unstable

manifold of points that converge to it by following the reversed gradient flow.
These manifolds define decompositions of the manifold into simple cells [Tho49].
Extensions of these ideas to construct similar cell decompositions of manifolds with
piecewise linear continuous functions can be found in [EHZ03]. In practice, it is
essential to be able to simplify these decompositions, which can be done by canceling
critical points in pairs in the order of increasing persistence [ELZ02].
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65.6 MEASURING BIOMOLECULES

Protein dynamics is multi-scale: from the jiggling of atoms (pico-seconds), to the
domain reorganizations in proteins (micro to milliseconds), to protein folding and
diffusion (milli-second to seconds), and finally to binding and translocation (sec-
onds to minutes). Connecting these different scales is a central problem in polymer
physics that remains unsolved despite numerous theoretical and computational de-
velopments; see [Gue07, DP11]. Computer simulations play an essential role in
all corresponding multi-scale methods, as they provide information at the differ-
ent scales. Usually, computer simulations of protein dynamics start with a large
system containing the protein and many water molecules to mimic physiological
conditions. Given a model for the physical interactions between these molecules,
their space-time trajectories are computed by numerically solving the equations of
motion. These trajectories however are limited in scope. Current computing tech-
nologies limit the range of time-scales that can be simulated to the microsecond
level, for systems that contain up to hundred thousands of atoms [VD11]. There
are many directions that are currently explored to extend these limits, from hard-
ware solutions including the development of specialized computers [SDD+07], or
by harnessing the power of graphics processor units [SPF+07], to the development
of simplified models that are computationally tractable and remain physically ac-
curate. Among such models are those that treat the solvent implicitly, reducing
the solute-solvent interactions to their mean-field characteristics. These so-called
implicit solvent models are often applied to estimate free energy of solute-solvent
interactions in structural and chemical processes, folding or conformational tran-
sitions of proteins and nucleic acids, association of biological macromolecules with
ligands, or transport of drugs across biological membranes. The main advantage
of these models is that they express solute-solvent interactions as a function of the
solute degrees of freedom alone, more specifically of its volume and surface area.
Methods that compute the surface area and volume of a molecule, as well as their
derivatives with respect to the position of its atoms are therefore of great interest
for computational structural biology.

GLOSSARY

Indicator function: It maps a point x to 1 if x ∈ P and to 0 if x 6∈ P , in which
P is some fixed set. Here, we are interested in convex polyhedra P and can
therefore use the alternating sum of the number of faces of various dimensions
visible from x as an indicator; see [Ede95] for details.

Inclusion-exclusion: Principle used to compute the volume of a union of bodies
as the alternating sum of volumes of k-fold intersections, for k ≥ 1.

Stereographic projection: Mapping of a sphere minus a point to Euclidean
space. The map preserves spheres and angles. We are primarily interested in
the case in which both the sphere and the Euclidean space are 3-dimensional.

Atomic solvation parameters: Experimentally determined numbers that as-
sess the hydrophobicity of different atoms [EM86].

Weighted area: Area of the boundary of a space-filling diagram in which the
contribution of each individual ball is weighted by its atomic solvation parameter.
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FIGURE 65.6.1

Stereographic projection from the north pole. The
preimage of a circle in the plane is a circle on
the sphere, which is the intersection of the sphere
with a plane. By extension, the preimage of a
union of disks is the intersection of the sphere
with the complement of a convex polyhedron.

N

Also a function A : R3n → R obtained by parametrizing a space-filling diagram
by the coordinates of its n ball centers.

Weighted-area derivative: The linear map DAz : R
3n → R defined by DAz(t) =

〈a, t〉, in which z ∈ R
3n specifies the space-filling diagram, t ∈ R

3n lists the co-
ordinates of the motion vectors, and a = ∇A(z) is the gradient of A at z. It is
also the map DA : R3n → R

3n that maps z to a.

Weighted volume: Volume of a space-filling diagram in which the contribution
of each individual ball is weighted by its atomic solvation parameter. Also a
function V : R3n → R obtained by parametrizing a space-filling diagram by the
coordinates of its n ball centers.

Weighted-volume derivative: The linear map DVz : R
3n → R defined by DVz(t) =

〈v, t〉, in which z ∈ R
3n specifies the space-filling diagram, t ∈ R

3n lists the co-
ordinates of the motion vectors, and v = ∇V (z) is the gradient of V at z. It is
also the map DV : R3n → R

3n that maps z to v.

GEOMETRIC INCLUSION-EXCLUSION

Work on computing the volume and the area of a space-filling diagram F =
⋃

i
Bi

can be divided into approximate [Row63] and exact methods [Ric74]. According
to the principle of inclusion-exclusion, the volume of F can be expressed as an
alternating sum of volumes of intersections:

volF =
∑

Λ

(−1)cardΛ+1vol
⋂

i∈Λ

Bi,

in which Λ ranges over all nonempty subsets of the index set. The size of this
formula is exponential in the number of balls, and the individual terms can be
quite complicated. Most of the terms are redundant, however, and a much smaller
formula based on the dual complex K of the space-filling diagram F has been given
[Ede95]:

volF =
∑

σ∈K

(−1)dimσvol
⋂

σ,

in which
⋂
σ denotes the intersection of the dimσ + 1 balls whose centers are

the vertices of σ. The proof is based on the Euler formula for convex polyhedra
and uses stereographic projection to relate the space-filling diagram in R

3 with a
convex polyhedron in R

4. Precursors of this result include the existence proof of a
polynomial size inclusion-exclusion formula [Kra78] and the presentation of such a
formula using the simplices in the Delaunay triangulation [NW92]. We note that it
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is not difficult to modify the formula to get the weighted volume: decompose the
terms vol

⋂
σ into the portions within the Voronoi cells of the participating balls

and weight each portion accordingly.

DERIVATIVES

The relationship between the weighted- and unweighted-volume derivatives is less
direct than that between the weighted and unweighted volumes. Just to state
the formula for the weighted-volume derivative requires more notation than we
are willing to introduce here. Instead, we describe the two geometric ingredients,
both of which can be computed by geometric inclusion-exclusion [EK03]. The first
ingredient is the area of the portion of the disk spanned by the circle of two inter-
secting spheres that belongs to the Voronoi diagram. This facet is the intersection
of the disk with the corresponding Voronoi polygon. The second ingredient is the
weighted average vector from the center of the disk to the boundary of said facet.
The weight is the infinitesimal contribution to the area as we rotate the vector to
sweep out the facet. A similar approach allows for the computation of the weighted
area derivative [BEKL04].

VOIDS AND POCKETS

A void V is a maximal connected subset of space that is disjoint from and completely
surrounded by the union of balls. Its surface area is easily computed by identifying
the sphere patches on the boundary of the union that also bound the void. It helps
to know that there is a deformation retraction from the union of balls

⋃
i
Bi to the

dual complex K [Ede95]. Similarly, there is a corresponding void in K represented
by a connected set of simplices in the Delaunay triangulation, that do not belong
to K. This set U is open and its boundary (the simplices added by closure) forms
what one may call the dual complex of the boundary of V . The volume and surface
area of the void V are then computed based on U [Ede95].

It would be interesting to generalize these ideas to pockets as defined in [EFL98].
In contrast to a void, a pocket is not completely surrounded by the balls but con-
nected to the outside through narrow channels. Again we have a corresponding set
of simplices in the Delaunay triangulation that do not belong to the dual complex,
but this set is partially closed at the places the pocket connects to the outside. The
inclusion-exclusion formulas still apply, but there are cases in which the cancellation
of terms near the connecting channel is not complete and leads to slightly incorrect
measurements.

65.7 SHAPE IN STRUCTURAL BIOLOGY

As bio-molecules are usually represented as unions of balls, it is not surprising to
see geometric algorithms being adapted to characterize the shapes of molecules.
We have discussed above the alpha shape theory [EM94], whose first applications
in biology focused on computing the volume and surface area of molecular shapes
[LEF+98] as well as on characterizing the cavities and pockets formed by a molecule
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[LEW98, EFL98]. While these applications of the alpha shape theory remain popu-
lar in structural biology — with new and improved software implementations being
released regularly, such as CASTp [DOT+06], Volume [CKL11], and UnionBall
[MK11] — many applications in new domains have been proposed. Here we review
a few of these applications.

GLOSSARY

Atom packing: A measure of how tight atoms are packed within a protein or
nucleic acid structure.

Binding site: Region of a protein in which a ligand can bind. These regions
often correspond to the cavities and pockets of the protein, though there are
examples of binding sites that sit at the surface of the protein.

Structure alignment: Collection of monotonically increasing maps to the inte-
gers, one per chain of points modeling a protein backbone.

Protein docking: Process in which a protein forms a complex with another
molecule. The complex usually exists only temporarily and facilitates an in-
teraction between the molecules.

STATISTICS OF PROTEIN STRUCTURE GEOMETRY

The experimental determination of a protein structure at the atomic level remains a
difficult problem. There is hope however that theoretical and computational tech-
niques will supplement experimental methods and enable protein structure pre-
diction at the near atomic level [KL99]. Many of these techniques rely on the
knowledge derived from the analysis of the geometry of known protein structures.
Such an analysis requires an objective definition of atomic packing within a molec-
ular structure. The alpha shape theory has proved a useful approach for deriving
such a definition. For example, Singh et al. [STV96] used the Delaunay complex
to define nearest neighbors in protein structures and to derive a four-body statisti-
cal potential. This potential has been used successfully for fold recognition, decoy
structure determination, mutant analysis, and other studies; see [Vai12] for a full
review. The potentials considered in these studies rely on the tetrahedra defined
by the Delaunay triangulation of the points representing the atoms. In parallel,
Zomorodian and colleagues have shown that it is possible to use the alpha shape
theory to filter the list of pairwise interactions to generate a much smaller subset
of pairs that retains most of the structural information contained in a proteins
[ZGK06]. The alpha shape theory has also been used to compute descriptors for
the shapes [WBKC09] and surfaces [TDCL09, TL12] of proteins.

SIMILARITY AND COMPLEMENTARITY

The alpha shape theory allows for the detection of simplices characterizing the
geometry of a protein structure. Those simplices include points, edges, triangles,
and tetrahedra connecting atoms of this protein structure. It is worth mentioning
that it is possible to use those simplices to compare two protein structures and even
to derive a structural alignment between them [RSKC05].
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As the function of a protein is related to its geometry and as function usually
involves binding to a partner protein, significant efforts have been put into char-
acterizing the geometry of protein-ligand interactions, where ligands include small
molecules, nucleic acids, and other proteins. Among these efforts, a few relate to
the applications of the alpha shape theory. They have recently been extended to
characterize binding sites at the surface of proteins [TDCL09, TL12]. The alpha
shape theory has also been used to characterize the interfaces in protein-protein
complexes [BER06] as well as protein-DNA interactions [ZY10].

We mention a geometric parallel between finding a structural alignment be-
tween two proteins and predicting the structure of their interactions. While the
former is based on the identification of similar geometric patterns between the two
structures, the latter is based on the identification of complementary patterns be-
tween the surfaces of the two structures. As mentioned above, geometric patterns
based on the Delaunay triangulation have been used for structural alignment. In
parallel, similar patterns have recently been used to predict protein-protein inter-
actions [EZ12].

CHARACTERIZING MOLECULAR DYNAMICS

All the applications described above relate to the static geometry of molecules.
Bio-molecules however are dynamics. A molecular dynamics simulation is designed
to capture this dynamics: it follows the Newtonian dynamics of the molecule as a
function of time, generating millions of snapshots over the course of its trajectory.
The alpha shape theory has proved useful to characterize the geometric changes
that occur during such a trajectory. For example, using the concept of topological
persistence [ELZ02], Kasson et al. characterized structural changes in membrane
fusion over the course of a simulation [KZP+07].

65.8 SOURCES AND RELATED MATERIAL

FURTHER READING

For background reading in algorithms we recommend: [CLR90], which is a com-
prehensive introduction to combinatorial algorithms; [Gus97], which is an algo-
rithms text specializing in bioinformatics; [Str93], which is an introduction to linear
algebra; and [Sch02], which is a numerical algorithms text in molecular modeling.

For background reading in geometry we recommend: [Ped88], which is a ge-
ometry text focusing on spheres; [Nee97], which is a lucid introduction to geometric
transformations; [Fej72], which studies packing and covering in two and three di-
mensions; and [Ede01], which is an introduction to computational geometry and
topology, focusing on Delaunay triangulations and mesh generation.

For background reading in topology we recommend: [Ale61], which is a com-
pilation of three classical texts in combinatorial topology; [Gib77], which is a very
readable introduction to homology groups; [Mun84], which is a comprehensive text
in algebraic topology; and [Mat02], which is a recent introduction to Morse theory.

For background reading in biology we recommend: [ABL+94], which is a basic
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introduction to molecular biology on the cell level; [Str88], which is a fundamental
text in biochemistry; and [Cre93], which is an introduction to protein sequences,
structures, and shapes.

RELATED CHAPTERS

Chapter 2: Packing and covering
Chapter 24: Persistent homology
Chapter 27: Voronoi diagrams and Delaunay triangulations
Chapter 29: Triangulations and mesh generation
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