
64 CRYSTALS, PERIODIC AND APERIODIC

Marjorie Senechal

INTRODUCTION

Are you looking for the chapter on “Crystals and Quasicrystals”? Look no further:
you have found it. Today the word “crystal” spans the periodic and the aperiodic
alike. Just as in the nineteenth century “pseudogeometry”1 soon became “non-
Euclidean geometry,” we speak of aperiodic crystals now.

64.1 CLASSICAL CRYSTALLOGRAPHY

At the turn of the 19th century a French mineralogist, R.J. Haüy, accidentally
dropped a friend’s fine specimen of calcite. It shattered into shards but, fortunately,
chance favors the prepared mind. The hapless Haüy did not wail “tout est perdu!,”
he shouted “tout est trouvé!” instead. For, sweeping up the shards, he noticed that
they were rhombohedra of different sizes but with the same interfacial angles. He’d
found the answer to the problem he’d been pondering: why do some crystals of
the same species have different external forms? Why, for example, are some pyrite
crystals cubes, and others irregular pentagonal dodecahedra? Every crystal, Haüy
quickly surmised, is a stack of countless identical, subvisible, building blocks, laid
face to face, row after row, layer upon layer. The polyhedral forms we see are the
stacks, which can be finished off in different ways.

Haüy’s theory took hold, and with it the periodicity paradigm, which held
(until the late 1970s) that the atoms in crystals are arranged in three-dimensional
periodic patterns. Representing his blocks by the points at their centers, Haüy’s
building blocks became lattices. In this section we review the achievements of 19th

century mathematical crystallography from that point forward.

GLOSSARY

Lattice: A group of translations of Rn generated by n linearly independent vec-
tors.

Point lattice: The orbit of a point x ∈ R
n under the action of a lattice.

Basis for a lattice L: A set of n linearly independent vectors that generate L.

Dual lattice L∗ of a lattice L: L∗ = {~y ∈ R
n : ~y · ~x ∈ Z, ~x ∈ L}, where ·

denotes the usual scalar product.

Crystallographic group: A group of isometries that acts transitively on an in-
finite, discrete, point set.

1A term used by Poincaré and others
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Unit cell (of a point lattice): A parallelepiped whose edges are a (vector) basis
for the lattice.

Point group (of a lattice L): A group of isometries that fix a point of L.

Voronoi cell (of a point x ∈ L): The polytope VL(x) ⊂ R
n whose points are

at least as close to x as to any other point of L. (See also Chapters 3 and 22.)
By construction, VL(x) is invariant under the point group of x, whereas the unit
cell of L may not be.

Voronoi tiling (of a lattice L): The tiling whose tiles are the Voronoi cells of
the points of L.

FIGURE 64.1.1

The five combinatorial types of Voronoi cells for lat-
tices in R

3 are, from the upper left clockwise, the
truncated octahedron, the rhombic dodecahedron, the
elongated rhombic dodecahedron, the cube, and the
hexagonal prism.

MAIN RESULTS

1. L∗∗ = L.

2. Lattices are classified by their symmetry groups and the combinatorial structure
of their Voronoi cells. There are five lattices in R

2; the fourteen lattices in R
3 are

called Bravais lattices after Auguste Bravais (1811–1863) who first enumerated
them [Bra49].

3. By construction, the Voronoi cells of a lattice are congruent convex polytopes
that fit together face-to-face, and the lattice acts transitively on the tiling.
Every convex polytope that tiles in this fashion is centrally symmetric, its
facets—its (n−1)-dimensional faces—are centrally symmetric, and each belt—
set of parallel (n − 2)-dimensional faces—has size four or six. The converse is
also true [McM80].

4. Corollaries: (a) Easy: the Voronoi cell of a point lattice in R
2 is a centrosym-

metric quadrilateral or hexagon. (b) Not at all easy: in R
3 there are five

combinatorial types of lattice Voronoi cells (see Figure 64.1.1).

5. There are 17 crystallographic groups in R
2, 230 in R

3, and 4894 in R
4 (see

[BBN+78]).

6. Bieberbach’s Theorem. A crystallographic group G in any dimension is
a product of a translation group T and a finite group of isometries, where T

is the maximal abelian subgroup of G. Thus an orbit of G is a union of a
finite number of congruent lattices (Figure 64.1.2). This theorem solved part
of Hilbert’s 18th problem. See [Yan01] and [Sen96] for further discussion and
references.
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7. The order of the rotation subgroup of a point group of a lattice in R
2 and R

3 is
2, 3, 4, or 6. This theorem, which concerns lattices, not (material) crystals, was
nevertheless called The Crystallographic Restriction before aperiodic crystals
were discovered. (See [Sen96].)

FIGURE 64.1.2

An orbit of a crystallographic group is a union of congru-
ent lattices.

Table 64.1.1 shows the possible orders m, 2 ≤ m ≤ 13, of rotational symmetries for
point groups of lattices, and the lowest dimension d(m) in which they can occur. We
see that five-fold rotations, as well as n-fold rotations with n > 6, are “forbidden”
in R

2 and R
3. (This table is easily computed from the formula in [Sen96, p. 51].)

TABLE 64.1.1 m-fold rotational symmetries.

m d(m) m d(m) m d(m) m d(m)

2 1 5 4 8 4 11 12

3 2 6 2 9 6 12 4

4 2 7 6 10 4 13 12

REMARK: LATTICES AND CRYSTAL FORMS

Like Haüy, Bravais tried to link crystal form to crystal growth. “Bravais’ Law” (see
[Aut13]) states:

The faces that appear on a crystal are parallel to the lattice planes of
greatest density.

For a brief discussion of this “law” and the physical assumptions behind it, see
[Sen90]. It follows from those assumptions that the visible, polyhedral shape of
the grown crystal is the Voronoi cell of its dual lattice. For periodic crystals with
relatively simple structures, agreement with reality is reasonably good.
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OPEN PROBLEM

Voronoi’s conjecture that every polytope that tiles Rn by translation is an affine im-
age of the Voronoi cell of a lattice in R

n has been proved for zonotopes ([Erd99] and
certain other special cases) but the general case remains open for n > 4 ([Mag15].

64.2 DELAUNAY SETS

Classical mathematical crystallography, outlined above, developed symbiotically
with group theory and focused on atomic patterns as wholes. In the 1930s B.N.
Delaunay and A.D. Aleksandrov, together with the crystallographer N.N. Padurov,
took a local approach, beginning with very general point sets [DAP34]. Delauany
sets, as these sets are called today, can be (and are being) used to model gases,
liquids and liquid crystals, as well as solid materials.

GLOSSARY

Delaunay set: A Delaunay set is a point set Λ ⊂ R
n that is uniformly discrete

and relatively dense. That is, Λ satisfies two conditions:

1. There is a real number r > 0 such that every open ball of radius r contains
at most one point of Λ;

2. There is a real number R > 0 such that every closed ball of radius greater
than R contains at least one point of Λ.

q-Star St(x, q) of x ∈ Λ: St(x, q) := Λ ∩ B(x, q), where B(x, q) is the ball of
radius q and center x.

q-Atlas of Λ: A set of representatives of the translation classes of the q-stars of
Λ.

Star of x ∈ Λ: limq→∞ St(x, q).

Patch-counting function NΛ(q): The size of the q-atlas of Λ.

Regular system of points: A Delaunay set whose stars are congruent; equiva-
lently, an orbit of an infinite group of isometries. The union of a finite number
of regular systems is said to be multiregular.

EXAMPLES

• Any bi-infinite set of points on a line with a finite set of distinct interpoint
spacings ℓ1, . . . , ℓk is a Delaunay set, with r = min(ℓi) and R = max(ℓi).

• Figure 64.2.1 shows a portion of a Delaunay set in R
2 and, for an arbitrarily

chosen value of q, the q-stars of several of its points.

MAIN RESULTS

1. A Delaunay set Λ ⊂ R
n is countably infinite.
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2. For any x, y ∈ Λ, the distance |x− y| is at least r.

3. The distance from x ∈ Λ to any vertex of V (x) is at most R.

4. For every x ∈ Λ, B(x, r) ⊂ V (x) ⊂ B(x, 2R). Thus the Voronoi tiling is normal
(see Chapter 3).

5. The Local Theorem: There is a real number k such that if NΛ(2Rk) = 1, then
Λ is a regular system of points [DDSG76].

6. If an orbit of a group of isometries of Rn is a Delaunay set, then the group is
crystallographic [DLS98].

The first four results above are easy exercises.

FIGURE 64.2.1

Left: a portion of a Delaunay set in R
2. Right: q-stars of seven of its points. Note that, in this

example, q > R.

r

R

A CLASSIFICATION OF DELAUNAY SETS

The discovery of aperiodic crystals ([Wol74],[JJ77], [SBG+84] brought Delaunay
sets renewed attention. We present here a classification proposed by J. Lagarias in
[Lag99], [Lag00], and [LP02]. As above, Λ is a Delaunay set in R

n.

GLOSSARY

Difference set of Λ: The vector set Λ− Λ = {x− y;x, y ∈ Λ}.

Finite type: The patch-counting function NΛ(q) is finite for every positive real
number q.

Repetitive: For every q > 0, the stars of the q-atlas are relatively dense in R
n.

That is, for each star St(x, q) there is an Rs > 0 such that every ball of radius
Rs contains a copy of the star.

Linearly repetitive: NΛ(q) = O(q).

Complexity function MΛ(q) of Λ: MΛ(q) is the minimal radius of a ball in R
n

such that every ball of that radius contains the center of a copy of every q-star
([LP02]).

Meyer set: A point set Λ for which Λ− Λ is a Delaunay set [Mey95].
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MAIN RESULTS

Like the classification of Delaunay sets, these results are due to J. Lagarias [Lag99].

1. If Λ has m = n + k generators, each of its points can be associated to an
integral m-tuple. This defines an injection Φ from Λ to a lattice L ⊂ R

m

(crystallographers refer to L as “superspace”).

2. Λ is of finite type if and only if Λ−Λ is finitely generated, closed and discrete.

3. If Λ is of finite type, then |Φ(x) − Φ(x′)| < C|x − x′|; that is, the distance
between points in Λ is proportional to the distance between their addresses in
R

m.

4. If Λ is linearly repetitive, then there is a linear map L̃(x) such that |Φ(x) −
L̃(x)| = o(|x|).

5. If Λ is a Meyer set, then |Φ(x)− L̃(x)| ≤ C; that is, the addresses of the points
of Λ lie in a bounded strip in R

m.

The last result above suggests that, for Meyer sets, we can reverse the process:
instead of lifting a Delaunay set from R

n to a lattice in a higher-dimensional space
R

m, we can construct Delaunay sets in R
n by projecting bounded strips in Rm onto

an n-dimensional subspace.
More precisely, let L be a lattice of rank m = k+n in R

m; let p‖ and p⊥ be the
orthogonal projections into a n-dimensional subspace E = R

n and its orthogonal
complement E⊥ = R

k, respectively. Assume that p‖, restricted to L, is one-to-one

and p⊥(L) is everywhere dense in R
k. Let Ω be a bounded subset of R

k with
nonempty interior. The points of L for which p⊥(x) ∈ Ω lie in such a strip, and
their projection onto E is a Meyer set. Equivalently, we can place a copy of the
window Ω at every point of L; the Meyer set is the projection onto E of the lattice
points whose windows it cuts. (In this latter construction the window is often called
a “density.”)

GLOSSARY

Cut and project set : Let L, p‖, p⊥, and Ω be as above. The set

Λ(Ω) = {p‖(x) |x ∈ L, p⊥(x) ∈ Ω} (64.2.1)

is called a cut-and-project set.

Window: The bounded set Ω ⊂ E⊥ is the window of the projection. When Ω is
a translate of p⊥(VΛ), the window is said to be canonical.

The window of a cut-and-project set contains detailed information about the q-stars
of the set.

The ingredients for a one-dimensional cut-and-project set are shown in Fig-
ure 64.2.2. Here m = 2, n = k = 1, and L is a square lattice. The subspace E
is a solid line of positive slope which, we assume, is irrational (to guarantee that
the projections meet our requirements). The window Ω is the thick line segment in
E⊥. To construct the model set we project onto E those lattice points x for which
p⊥(x) ∈ Ω (equivalently, x lies in the cylinder bounded by the dotted lines). Note
that the window in Figure 64.2.2 is not canonical.
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FIGURE 64.2.2

Ingredients for a one-dimensional model set. The
subspace E is the solid line; the window Ω is the
thick line segment in E

⊥.

OPEN PROBLEMS

1. For R2, the value of k in the local theorem is 2. For R3, it is at most 10 [Dol17].
Find k for each n > 2.

2. State and prove the local theorem for Delaunay sets in other spaces (e.g.,
spherical, hyperbolic). (A local theorem for multiregular system of points is
discussed in [DLS98].)

3. Formulate and prove appropriate “local theorems” for repetitive and model
sets.

64.3 WHAT IS A CRYSTAL?

The relation between a point set representing the atomic pattern of a crystal and
the crystal’s diffraction pattern can be summarized in a commutative (“Wiener”)
diagram [Sen96]. Here l denotes Fourier transformation and ρ(x) is the tempered
distribution ρ(x) =

∑
x∈X δx, with δx the Dirac delta at x.

ρ(x)
autocorrelation

−→ ρ(x) ∗ ρ(−x)

l l

ρ̂(s)
squaring

−→ |ρ̂(s)|2

In crystallography, the x-ray intensities |ρ̂(s)|2 are observed (photographically
or, today, detected digitally) and the task is to deduce ρ(s) from it. This is not
a straightforward exercise: ρ(s) cannot be determined directly, since it is com-
plex and |ρ̂(s)|2 is not, nor is the mapping |ρ̂(s)|2 → ρ(s) unique. Nevertheless
crystallographers have developed techniques to “solve” periodic crystal structures
and their constituent molecules, even such complex molecules as proteins and DNA.
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This work has revolutionized biology and materials science, and earned many Nobel
prizes.2

Aperiodic crystals “satisfy” the Wiener diagram too, but their solution de-
mands new definitions, technologies, and mathematical tools. Soon after their dis-
covery, the International Union of Crystallography (IUCr) appointed a Commission
of Aperiodic Crystals to define “crystal” more broadly. The Commission proposed
a working definition to stimulate research [IUCr92]:

A crystal is a solid with an essentially discrete diffraction pattern.

But which atomic arrangements (or point sets) produce such patterns?
Note: In this section we denote point sets by X because the working definition

does not require that X is Delaunay (or that X −X be finitely generated).

GLOSSARY

Diffractive point set: A point set for which the autocorrelation measure γX =
ρ(x) ∗ ρ(−x) is uniquely defined (see [Hof95], [Lag00]).

Diffraction measure of a diffractive point set: The Fourier transform γ̂X
of γX . By Lebesgue’s decomposition theorem, γ̂X can be uniquely written as a
sum of discrete, singular continuous, and absolutely continuous measures:

γ̂ = γ̂d + γ̂sc + γ̂ac.

Bragg peaks: The crystallographers’ term for the discrete component γ̂d, which
is a countable sum of weighted Dirac deltas.

Crystal (IUCr working definition): Any discrete point set X ⊂ R
3 such that

γ̂d is relatively dense in R
3.

Poisson comb: A crystal for which γ̂ = γ̂d.

Periodic crystal : A crystal whose symmetry group includes a maximal abelian
subgroup of translations.

Aperiodic crystal : A crystal whose symmetry group does not include transla-
tions. Aperiodic crystals include modulated crystals ([Wol74], [JJ77]) and so-
called quasicrystals (the crystals described below).

Icosahedral crystal : A crystal whose diffraction patterns exhibit 5-fold, 3-fold,
and 2-fold rotational symmetries (the rotations of the icosahedron). Icosahedral
crystals are aperiodic in three linearly independent directions.

Octagonal crystal, decagonal crystal, dodecagonal crystal : A crystal with
octagonal, decagonal, dodecagonal diffraction symmetry. Such crystals are ape-
riodic in two directions, periodic in the third.

MAIN RESULTS

1. Every lattice L is a Poisson comb and γ̂d = L∗.

2. Every regular system of points is a Poisson comb.

3. Every Meyer set (and thus every cut-and-project set) is a Poisson comb [Str05].

2See http://www.iucr.org/people/nobel-prize.
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4. There are Poisson combs which are not Delaunay sets ([BMP99]).

5. There are Poisson combs for which γ̂d is not finitely generated [Gri15].

The IUCr’s working definition of “crystal” has stimulated much research and much
has been learned, but we still do not have both necessary and sufficient conditions
for a point set to be a crystal.

OPEN PROBLEM

Find necessary and sufficient conditions on a Delaunay set Λ for γ̂d to be relatively
dense in R

n (see also [Sen06]).

64.4 MODELING REAL CRYSTALS

Since Haüy, crystallographers have used tilings to model both the growth and form
of crystals. The growth problem is: Why and how do crystals self-assemble from
fundamental units? The form problem is: How do these fundamental units link
together to form atomic patterns, and which patterns do they form? For aperiodic
crystals, there is no simple rule (like Bravais’ Law) that suggests the answer to either
question. To oversimplify, there are two approaches: tiling models and cluster
models, corresponding to the debate among physicists over the relative roles of
energy and entropy in crystal growth.

In tiling models, energy is assumed to be encoded in the tiles’ implicit or
explicit matching rules, such as “fit the tiles together face to face,” or the much
more complex rules for Penrose and other aperiodic tilings. But the latter are too
complex to model realistic interactions among atoms.

The alternate approach, which foregrounds entropy, begins with spontaneously-
formed nanoclusters and studies how they grow and link together. For physical
reasons, these initial nanoclusters are often icosahedral. Thus in entropy-driven
models, the icosahedron, famously banned from the crystal kingdom by the “crys-
tallographic restriction,” takes center stage. This requires new geometrical tools
([Man07], [Sen15]). Here we discuss two examples that seem to point the way.

EXAMPLE 1: The Yb-Cd “quasicrystal”

The first aperiodic crystal structure to be “solved” (in the sense of pinpointing the
positions of its atoms) was the “Yb-Cd quasicrystal” (ytterbium and cadmium).
The atomic pattern is not a tiling. Instead, its fundamental building unit, which the
authors call RTH complexes, overlap and pack together leaving gaps ([TGY+07]).

An RTH complex is a set of nested atomic clusters, where a “cluster” is “a set
of close atoms distributed on fully occupied high symmetry orbits” (see [GPQK00]).
The innermost cluster is a set of four cadmium atoms at the vertices of a regular
tetrahedron. This is surrounded by 12 ytterbium atoms at the vertices of a regular
icosahedron. Continuing outward, the next three clusters are comprised of cadmium
atoms at the vertices of a regular dodecahedron, a semi-regular icosidodecahedron,
and, outermost, a rhombic triacontahedron. Cadmium atoms are also situated at
or near the midpoints of the edges of the triacontahedron.

RTH complexes overlap in well-defined ways: the convex hulls of the overlap
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FIGURE 64.4.1

Jean Taylor’s ZomeTool model of an RTH complex.
Photograph by Jean Taylor.

regions are identical oblate golden rhombohedra. Their packing is also well-defined:
the gaps between complexes are golden rhombohedra too (of both kinds). All “gap”
rhombohedra have “midpoint” atoms in their edges, and the acute rhombohedra
have two Yb atoms inside them. A full description of the intricate, interlinked,
pattern formed by this “soft packing” is beyond the scope of this chapter; for more
details of its geometry, see [ST13].

We note that overlapping nested clusters (of several types) have been proposed
as models for aperiodic crystal structure from the beginning; in addition to the
references cited above see, for example, [Els89] and [Bur92].

EXAMPLE 2: A simulation

Like the YbCd crystal of Example 1, the real aperiodic crystals found to date are
binary or ternary. This might suggest that the phenomenon depends upon a mix
of atoms. But at least theoretically this is not the case: the Glotzer group of
chemical engineers at the University of Michigan has simulated the self-assembly of
a single-component icosahedral crystal for a suitably chosen interatomic potential
[EDP15].

In this simulation, nearest-neighbor bonds point (approximately and statisti-
cally) in five-fold directions, indicating the formation of icosahedral clusters; diffrac-
tion shows the icosahedral symmetry of the structure as a whole. Thus the simu-
lated crystal closely matches a cut-and-project model. Writing b1, . . . , b6 for vectors
from the center to the five-fold vertices of an icosahedron, the investigators selected
bond vectors v closely aligned to them, i.e., those satisfying, for a suitable value of
ǫ,

|v · b| > (1− ǫ)||v|| ||bi||

and found six-dimensional addresses for their particles by an iterative process of
determining nearest-neighbor paths.

OPEN PROBLEMS

These examples suggest new problems in discrete geometry (the first task is to
formulate them rigorously).
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• Develop a theory of crystal growth by self-assembling nanoscale particles.
As noted in [KG07], this will not be the classical model of layer-upon-layer
outward from a “seed”: modeling the growth of aperiodic crystals requires a
new paradigm.

• Create a catalog of nested clusters (for examples see, e.g., [GPQK00] and
[SD12]).

• Develop a theory of “soft packings”—a suitable mix of tiling, packing, and
covering—that illuminates the linking of nested clusters in aperiodic crystals
[BL15]. This will entail new definitions of density, kissing number, and so on.

• Are we missing something? The cut-and-project construction is very general:
such sets can have rotational symmetry of any order. Yet the only rotational
symmetries found in aperiodic crystals (so far) are octagonal, decagonal, do-
decahedral, and icosahedral. Is there a real crystallographic restriction? What
is it, and why?

• The RTH complex is not rigid: The tetrahedron flips among its possible in-
scriptions in the dodecahedron, and the dodecahedron is distorted by the
flipping. (The three outer clusters have nearly undistorted icosahedral sym-
metry and their axes are aligned.) The flipping and the consequent distortions
of the surrounding dodecahedra apparently drive the formation of this crystal
in ways still not fully understood. Also in the simulation described above, the
particles are in constant motion. These examples suggest we study Delaunay
sets whose points vibrate and drift.

64.5 APERIODIC ORDER BEYOND CRYSTALS

In this chapter we have discussed concepts and techniques of discrete geometry that
seem useful today for understanding the growth and form of real, and in particular
aperiodic, crystals. Thus the fast-growing field of tiling dynamical systems has
been left aside, as have self-similar tilings and point sets. Nor have we attempted
to sketch the field of “aperiodic order” beyond crystals, which has burgeoned since
the last edition of this Handbook.

Aperiodic order includes, for example, point sets for which γ̂d = 0 or for which
γ̂ does not exist (i.e., point sets which are not diffractive). Indeed, the diffrac-
tion spectrum is inadequate for a deeper study of long-range order. The measure
γ is a function of Λ’s two-point correlations (hence the importance of Λ − Λ in
crystallogoraphy.) But two-point correlation masks subtle differences:

• The Rudin-Shapiro sequence, which is generated by recursion, and the Berno-
ulli coin-flipping sequence have the same diffraction spectrum. This is per-
plexing: surely a deterministic pattern is more orderly than a random set! In
fact we do find differences if we look more deeply. Although their diffraction
spectra are identical, their dynamical spectra are not [HB00].

• The family of generalized Thue-Morse sequences, which are generated by sub-
stitution rules, have self-similarities that do not appear in the pure-point com-
ponent in their diffraction measures. They are, however, revealed by looking
at the two-point correlations of pairs [Gri15].
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These examples are just the beginning. In the 21st century, crystallography is
merging with materials science; the question What is a crystal? may become as
academic as What is a planet? In the next edition of this Handbook, applications
of “aperiodic order beyond crystals” will have a chapter of their own.

64.6 SOURCES AND RESOURCES

SURVEYS AND COLLECTIONS

[BG13]: A mathematically sophisticated survey of the rapidly developing theory of
aperiodic order.
[BM00]: A multi-authored survey of major problems in the field, as seen at the
turn of the 21st century.
[FI08]: A multi-authored survey of “quasicrystals” as a subfield of metal physics.
[HH15]: A selection of influential articles on crystallography, classical and modern.
This book is especially useful for mathematicians seeking an overview of the field
through the eyes of its practitioners.
[Moo97]: The proceedings of a NATO conference held Waterloo, Canada, in 1995.
[Sen96]: An overview and gentle introduction to the relations between these sub-
jects, as of 1995.

RELATED CHAPTERS
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