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INTRODUCTION

Chapter 61 described the basic theory of infinitesimal rigidity of bar and joint
structures and a number of related structures. In this chapter, we consider the
stronger properties of:

(a) Global Rigidity: given a discrete configuration of points in Euclidean d-space,
and a set of fixed pairwise distances, is the set of solutions unique, up to
congruence in d-space?

(b) Universal Rigidity: given a discrete configuration of points in Euclidean d-
space, and a set of fixed pairwise distances, is the set of solutions unique, up
to congruence in all dimensions d′ ≥ d?

(c) How do global rigidity and universal rigidity depend on the combinatorial prop-
erties of the associated graph, in which the vertices and edges correspond to
points and fixed pairwise distances, respectively, and how do they depend on
the specific geometry of the initial configuration?

To study global rigidity, we use vocabulary and techniques drawn from (i)
structural engineering: bars and joints, redundant first-order rigidity, static self-
stresses (linear techniques); as well as from (ii) minima for energy functions with
their companion stress matrices. There are both global rigidity theorems which
hold for almost all realizations of a graph G based on combinatorial properties of
the graph; and global rigidity theorems that hold for some specific realizations, and
depend on the particular details of the geometry of (G, p).

Specifically, there are many globally rigid frameworks where the underlying
graph is not generically globally rigid. It is computationally hard to test the global
rigidity of such a particular framework.

For universal rigidity, we adapt the stress techniques from semidefinite pro-
gramming. Even when universal rigidity occurs for some generic realizations of a
graph, it may not occur for all such realizations, so it is not a generic property in
the broad sense. However, it is weakly generic in the sense that a graph can have a
full dimensional open subset of universally rigid realizations. Recent results show a
strong connection: there exists a generic globally rigid realization of a graph if and
only if there exists a generic universally rigid realization of that graph. So there is
little difference in the combinatorics for generic realizations. However, a recent al-
gorithm tests the universal rigidity of a given geometric framework (G, p), whereas
no algorithm exists for testing global rigidity of a specific framework. Thus uni-
versal rigidity can be a valuable tool for confirming the global rigidity of a specific
geometric framework (G, p).

Some results and techniques for universal rigidity were developed for tensegrity
frameworks, where the bars with fixed lengths are replaced by cables (which can
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only become shorter) and struts (which can only become longer). These have a
narrower set of stresses and relevant stress matrices, and provide some additional
insights into the behaviour of real structures and the ways the techniques are ap-
plied.

Global rigidity has a significant range of applications, such as localization in
sensor networks and molecular conformations. Some applications and extensions
also involve variations of the structure. Work on global rigidity of symmetric struc-
tures (Chapter 62) is in its initial stages.

63.1 BASICS FOR GLOBAL AND UNIVERSAL RIGIDITY OF
GRAPHS

Global rigidity results have both a combinatorial form, belonging to graphs, and a
geometric form, depending on the special geometry of the realizations. The same
two forms are found for universal rigidity.

63.1.1 BASICS FOR GLOBALLY RIGID GRAPHS

We begin with some basic results that apply to generic frameworks and therefore
almost all frameworks on a given graph. As such, they can be presented in terms
of the graphs.

GLOSSARY FOR GLOBAL AND UNIVERSAL RIGIDITY

Configuration of points in d-space: A map p : V → Rd that assigns points
pi ∈ Rd, 1 ≤ i ≤ n, to an index set V = {1, 2, ..., n}.

Generic configuration: A configuration for which the set of the d|V | coordinates
of the points is algebraically independent over the rationals.

Congruent configurations: Two configurations p and q in d-space, on the same
set V , related by an isometry T of Rd (with T (pi) = qi for all i ∈ V ).

Bar-and-joint framework in d-space (or framework:) A pair (G, p) of a graph
G = (V,E) (no loops or multiple edges) and a configuration p in d-space for
the vertex set V . We shall assume that there are no 0-length edges, that is,
p(u) 6= p(v) for all uv ∈ E.

Realization of graph G in d-space: A d-dimensional framework (G, p).

Globally rigid framework: A framework (G, p) in d-space for which every d-
dimensional realization (G, q) of G with the same edge lengths as in (G, p) is
congruent to (G, p).

Rigidity matrix: For a framework (G, p) in d-space, R(G, p) is the |E| × d|V |
matrix for the system of equations: (pi − pj) · (p′i − p′j) = 0 in the unknown
velocities p′i. The first-order flex equations are expressed as

R(G, p)p′
T

=


...

. . .
... · · ·

...
. . .

...
0 · · · (pi − pj) · · · (pj − pi) · · · 0
...

. . .
... . . .

...
. . .

...

× p′T = 0T .

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.



Chapter 63: Global rigidity 1663

Equilibrium stress: For a framework (G, p), an assignment of scalars ωij to the
edges such that at each vertex i,∑

{j| {i,j}∈E }

ωij(pi − pj) = 0.

Equivalently, a row dependence for the rigidity matrix: ωR(G, p) = 0.

Stress matrix: For a framework (G, p) in d-space and equilibrium stress ω the
stress matrix Ω is the |V |×|V | symmetric matrix in which the entries are defined
so that Ω[i, j] = −ωij for the edges, Ω[i, j] = 0 for nonadjacent vertex pairs, and
Ω[i, i] is calculated so that each row and column sum is equal to zero.

Independent framework: A framework (G, p) for which the rigidity matrix has
independent rows. Equivalently, there is only the zero equilibrium stress for
(G, p).

Universally rigid framework: A framework (G, p) in d-space for which every
other d′-dimensional realization (G, q) of G with the same edge lengths as in
(G, p) is congruent to (G, p).

BASICS FOR GLOBAL RIGIDITY OF GENERIC FRAMEWORKS

It is a hard problem to decide if a given framework is globally rigid. Saxe [Sax79]
showed that it is NP-hard to decide if even a 1-dimensional framework is globally
rigid. See Example 63.1.5 below for some subtleties that may arise. The problem
becomes tractable, however, if we consider generic frameworks, that is, frameworks
(G, p) for which p is generic. For these frameworks we have the following funda-
mental necessary and sufficient conditions in terms of stresses and stress matrices
due to Connelly [Con05] (sufficiency) and Gortler, Healy and Thurston [GHT10]
(necessity), respectively.

THEOREM 63.1.1 Stress Matrix Condition for Global Rigidity

Let (G, p) be a generic framework in Rd on at least d+ 2 vertices. (G, p) is globally
rigid in Rd if and only if (G, p) has an equilibrium stress ω for which the rank of
the associated stress matrix Ω is |V | − d− 1.

Theorem 63.1.1 implies that global rigidity is a generic property in the following
sense.

THEOREM 63.1.2 Generic Global Rigidity Theorem

For a graph G and a fixed dimension d the following are equivalent:

(a) (G, p) is globally rigid for some generic configuration p ∈ Rd;

(b) (G, p) is globally rigid for all generic configurations p ∈ Rd.

(c) (G, p) is globally rigid for an open dense subset of configurations p ∈ Rd.

63.1.2 BASICS FOR UNIVERSAL RIGIDITY OF FRAMEWORKS

There are several key basic theorems for universally rigid generic frameworks. These
depend on a stress matrix Ω being positive semi-definite (PSD) with maximal rank
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n − d − 1, where n = |V |. These properties can be broken down into two stages:
dimensional rigidity, where the stress matrix has full rank n−d−1, leaving possible
affine motions within the space, and super stability where the stress matrix is PSD
and the directions of the framework do not lie on a conic (eliminating affine motions
within the space).

BASIC RESULTS FOR UNIVERSAL RIGIDITY

For generic frameworks we have a more refined stress matrix condition, similar to
that of Theorem 63.1.1, due to Gortler and Thurston [GT14a].

THEOREM 63.1.3 Stress Matrix Condition for Universal Rigidity

Let (G, p) be a generic framework in Rd on at least d + 2 vertices. Then (G, p)
is universally rigid if and only if there exists an equilibrium stress ω for (G, p) for
which the associated stress matrix Ω is positive semi-definite and has rank |V |−d−1.

Universal rigidity of frameworks is not a generic property. Example 63.1.5
below illustrates that the four-cycle K2,2 has generic realizations which are uni-
versally rigid as well as generic realizations which are not universally rigid on the
line. This leads to two different problems concerning the combinatorial aspects of
universal rigidity. Given an integer d ≥ 1, characterize the graphs G (i) for which
every generic realization of G in Rd is universally rigid, (ii) for which some generic
realization of G in Rd is universally rigid.

The graphs satisfying (i) will be called generically universally rigid in Rd. The
characterization of these graphs is an unsolved problem, even in R1.

For each universally rigid generic framework (G, q) in Rd, there is an open

neighbourhood U(q) of q in Rd|V |, such that for all p ∈ U(q), the framework (G, p)
is universally rigid [CGT16a]. For this reason, the graphs satisfying (ii) are called
openly universally rigid or weakly generically universally rigid (WGUR, for short).

BASIC RESULTS CONNECTING GLOBAL AND UNIVERSAL RIGIDITY

It is clear that a framework that is universally rigid is also globally rigid and hence
every weakly generically universally rigid graph is generically globally rigid. What
may be surprising is that recent results [CGT16a] confirm that these two families of
graphs are the same, for every fixed dimension. The following theorem summarizes
this equivalence.

THEOREM 63.1.4 Equivalence of Generic Global Rigidity and Weak Generic
Universal Rigidity

For a graph G on at least d+ 2 vertices and a fixed dimension d, the following are
equivalent:

(i) a graph G is generically globally rigid in Rd;

(ii) a graph is weakly generically universally rigid in Rd;

(iii) there exists a generic framework (G, q) in Rd which is universally rigid;

(iv) there exists a generic framework (G, p) in Rd which is globally rigid;
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Chapter 63: Global rigidity 1665

(v) there exists a generic framework (G, p) in Rd with a stress matrix Ω(G, p)
which has rank n− d− 1;

(vi) there exists a generic framework (G, q) in Rd with a PSD stress matrix Ω
which has rank n− d− 1.

(a) (b)

-1

3

3

3

(c) (d) (e) (f) (g) (h)

FIGURE 63.1.1
A range of frameworks on the graph K2,2. Figures (a,b) present a universally rigid frame-
work, where (b) uses the convention of dashed lines for tension, and thick lines for com-
pression. Figures (c,d,e) present a framework which is globally rigid but not universally
rigid as (e) illustrates. Figures (f,g,h) present a framework which is not globally rigid as
(f) and (h) have the same edge lengths on the line.

We illustrate these definitions and connections with a collection of related sim-
ple frameworks on the line.

EXAMPLE 63.1.5 K2,2 on the line

Consider the simple ‘bow’ framework of Figure 63.1.1(a). Intuitively, this is uni-
versally rigid (and therefore globally rigid). We can confirm this with a positive
semi-definite (PSD) stress matrix, for the simple stress of Figure 63.1.1(b):

Ω(G, p) =


2 −3 0 1
−3 6 −3 0

0 −3 6 −3
1 0 −3 2


One can check that this is PSD by taking the k × k determinants from the top
corner, down the diagonal 1 ≤ k ≤ 4. Moreover, Ω has rank 2 = 4 − 1 − 1, as
required for universal (and global) rigidity in dimension 1. Although this specific
framework is not generic, a small perturbation of the vertices will make it generic,
and will preserve the PSD property. So all the theorems above apply to K2,2. It is
generically globally rigid and is weakly generically universally rigid.

We know that all generic frameworks on K2,2 on the line will be globally rigid.
Consider the framework in Figure 63.1.1(c) which is globally rigid. However, Fig-
ure 63.1.1(e) shows another realization with the same lengths, in the plane, so it is

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.



1666 T. Jordán and W. Whiteley

not universally rigid. It has a stress matrix Ω for the stress with signs illustrated in
Figure 63.1.1(d) which has rank 2, but this cannot be PSD (by Figure 63.1.1(e)).

While the framework in Figure 63.1.1(c) is globally rigid, the framework in
Figure 63.1.1(f) is in a special position with the same pattern and is not globally
rigid. It can move through the plane as a parallelogram (Figure 63.1.1 (g) to
Figure 63.1.1 (h)) to another framework, which is also on the line but not congruent.
Figures 63.1.1 (f,h) have different stresses, each with a stress matrix of rank 2, but
these frameworks are not globally rigid, reminding us that the theorems above are
only guaranteed to be sufficient for generic frameworks.

63.2 COMBINATORICS FOR GENERIC GLOBAL RIGIDITY

The major goal in generic global rigidity is a combinatorial characterization of
graphs with globally rigid generic realizations in d-space. The companion problem
is to find efficient combinatorial algorithms to test graphs for generic global rigidity.
For the plane (and the line), this is solved. Beyond the plane the results are
incomplete, but some significant partial results are available.

Because of Theorem 63.1.4, all results for generic global rigidity are also results
for weak generic universal rigidity. We will usually not mention this extension.
For geometric—not generic—frameworks, there will be some key differences in the
techniques and results.

GLOSSARY

Globally rigid graph in Rd: A graph G for which some (or equivalently, all)
generic configurations p produce globally rigid frameworks (G, p) in d-space.

Edge splitting operation (d-dimensional): Replaces an edge of graph G with
a new vertex joined to the end vertices of the edge and to d− 1 other vertices.

d-connected graph: A graph G such that removing any d − 1 vertices (and all
incident edges) leaves a connected graph. (Equivalently, a graph such that any
two vertices can be connected by at least d paths that are vertex-disjoint except
for their endpoints.)

k-tree-connected graph: A graph G which contains k edge-disjoint spanning
trees.

Highly k-tree-connected graph: A graph G for which the removal of any edge
leaves a k-tree-connected graph.

Rigid graph in Rd: A graph G for which some (or equivalently, all) generic
configurations p produce rigid frameworks (G, p) in d-space.

Redundantly rigid graph in Rd: A graph G = (V,E) for which G− e is rigid
in Rd for all e ∈ E.

M-circuit (or generic circuit) in Rd: A graph G = (V,E) for which a generic
realization (G, p) in Rd is dependent, but (G−e, p) is independent in d-space for
all e ∈ E.

M-connected graph in Rd: A graph G = (V,E) for which every edge pair
e, f ∈ E belongs to a subgraph H of G which is an M -circuit.
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Cone graph: The graph G ∗u obtained from G = (V,E) by adding a new vertex
u and the |V | edges (u, i) for all vertices i ∈ V (Figure 63.2.4.)

BASIC PROPERTIES FOR GLOBAL RIGIDITY OF GRAPHS IN ALL
DIMENSIONS

The following necessary conditions, due to Hendrickson [Hen82], provide a basic
link between local and global rigidity.

THEOREM 63.2.1 Hendrickson’s Necessary Conditions

Let G be a globally rigid graph in Rd. Then either G is a complete graph on at most
d+ 1 vertices, or G is

(a) (d+ 1)-connected; and

(b) redundantly rigid in Rd.

It is clear that the d + 1 connectivity condition is necessary for the broader
class of general position frameworks which are globally rigid (or universally rigid).
For a weaker converse see Theorem 63.5.4.

The necessity of redundant rigidity can also be observed from the Stress Matrix
Condition Theorem 63.1.1. If an edge is not redundant the pair has a zero entry in
the stress matrix. Removing the edge makes a smaller graph which is also globally
rigid. On the other hand, removing the edge at a generic configuration, makes the
graph flexible—a contradiction.

(a) (b)

FIGURE 63.2.1
The two smallest known Hendrickson graphs in 3-space.

These necessary conditions together are also sufficient to imply the global rigid-
ity of the graph in Rd for d = 1, 2, as we shall see below. This is not the case,
however, for dimensions d ≥ 3. We say that a graph G is a Hendrickson graph
in Rd if it satisfies the necessary conditions (a) and (b) of Theorem 63.2.1 in Rd

but it is not globally rigid in Rd. For d = 3, Connelly [Con91] showed that the
complete bipartite graph K5,5 is a Hendrickson graph. He also constructed similar

examples (specific complete bipartite graphs on
(
d+2
2

)
vertices) for all d ≥ 3. Frank
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and Jiang [FJ11] found two more (bipartite) Hendrickson graphs in R4 as well as
infinite families in Rd for d ≥ 5. Jordán, Király, and Tanigawa [JKT16] constructed
infinite families of Hendrickson graphs for all d ≥ 3 (see Figure 63.2.1 (b)). Fur-
ther examples can be obtained by using the observation that the cone graph of a
d-dimensional Hendrickson graph is a d+ 1-dimensional Hendrickson graph.

There is a generic global rigidity result for complete bipartite frameworks which
combines results in [CG17, Con91].

THEOREM 63.2.2

A complete bipartite graph Km,n is generically globally rigid in Rd if and only if

m,n ≥ d+ 1 and m+ n ≥
(
d+2
2

)
+ 1.

The examples with m,n ≥ d + 1 and m + n =
(
d+2
2

)
include a number of

Hendrickson graphs which are not globally rigid, such as K5,5 in 3-space, and K6,9,
K7,8 in 4-space.

INDUCTIVE CONSTRUCTIONS FOR GLOBAL RIGIDITY

Inductive constructions for graphs that preserve generic global rigidity are used
both to prove theorems for general classes of frameworks and to analyze particular
graphs.

Adding a new vertex of degree d+1 preserves global rigidity in Rd. By applying
a sequence of this operation to the base graph Kd+1 we obtain the (d+1)-lateration
graphs, which are thus sparse globally rigid graphs in Rd. A finer and more useful
operation that preserves global rigidity is edge splitting.

(a) (b)

v 

(c)

v 

(d)

v 

FIGURE 63.2.2
From these planar frameworks: (a) is universally rigid (it has a complete graph). The
edge split (b) is globally rigid and (b,c) are universally rigid. Figure (d) is globally rigid,
but not universally rigid (it lifts in R3).

THEOREM 63.2.3 Edge Split Theorem [Con05, JJS06]

Let G = (V,E) be a graph obtained from a globally rigid graph H by a d-dimensional
edge splitting operation. Then G is globally rigid in Rd.

Another operation merges two graphs. For example, it is easy to see that the
union of two graphs G1, G2 that are globally rigid in Rd is also globally rigid in
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(a)

b 

a e 

c 
G1 

(b)

b 

a 

c 

e 

G2 

(c)

u1 

v1 

a 

c 

b 

G 

FIGURE 63.2.3
If G1 (a) and G2 (b) are globally rigid graphs sharing the edge e, then gluing on d + 1
vertices creates a globally rigid graph without e.

Rd, provided they share at least d + 1 vertices. In fact it remains globally rigid
even if we delete the edges of G1 spanned by their common vertices before taking
the union. An even stronger statement holds for graphs which have exactly d + 1
vertices in common.

THEOREM 63.2.4 Gluing Theorem [Con11]

If G1 = (V1, E1) and G2 = (V2, E2) are globally rigid graphs in Rd sharing at least
d+ 1 vertices, then G = (V1 ∪ V2, E1 ∪ E2 −G1[V1 ∩ V2]) is globally rigid in Rd.

If G1 = (V1, E1) and G2 = (V2, E2) are globally rigid graphs in Rd sharing
exactly d+ 1 vertices and some edge e, then G = (V1 ∪ V2, E1 ∪ E2 − e) is globally
rigid in Rd (Figure 63.2.3).

The first statement of Theorem 63.2.4 extends to pairs of geometric globally
rigid frameworks and to pairs of universally rigid frameworks, provided the over-
lapping vertices affinely span the space.

The following operation can also be used to construct globally rigid graphs from
smaller graphs. Let G be a graph, X be a subset of V (G), and let H be a graph
on X (whose edges may not be in G). The pair (H,X) is called a rooted minor of
(G,X) if H can be obtained from G by deleting and contracting edges of G, that
is, if there is a partition {Uv|v ∈ X} of V (G) into |X| subsets such that v ∈ Uv and
G[Uv] are connected for all v ∈ X, and G has an edge between Uu and Uv for each
uv ∈ E(H). Let K(X) denote the complete graph on the vertex set X.

THEOREM 63.2.5 Rooted Minor Theorem [Tan15]

Let G1 and G2 be graphs with X = V (G1)∩V (G2) and H be a graph on X. Suppose
that |X| ≥ d + 1, G1 is rigid in Rd, (H,X) is a rooted minor of (G2, X), G1 ∪H
and G2 ∪K(X) are globally rigid or G1 ∪K(X) and G2 ∪H are globally rigid in
Rd. Then G1 ∪G2 is globally rigid in Rd.

Note that the Rooted Minor Theorem implies the Gluing Theorem as well as
the Edge Split Theorem.
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GLOBALLY RIGID GRAPHS IN THE PLANE

Generic global rigidity has been completely characterized for dimensions up to 2.
For all dimensions d it is easy to see that a graph G on at most d + 1 vertices is
globally rigid in Rd if and only if G is complete. Thus we shall formulate the results
only for graphs with at least d+ 2 vertices.

The 1-dimensional result is folklore (see also Figure 63.1.1).

THEOREM 63.2.6 Global Rigidity on the Line

For a graph G with |V | ≥ 3 the following are equivalent:

(a) G is globally rigid in R1;

(b) G is 2-connected;

(c) there is a construction for G from K3, using only edge splitting and edge
addition.

Note that 2-connected graphs are redundantly rigid in R1. The equivalence
of (b) and (c) is clear by using the well-known ear-decompositions of 2-connected
graphs.

The 2-dimensional result is based on the Edge Split Theorem (i.e., (c) implies
(a) below), Hendrickson’s Necessary Conditions (i.e., (a) implies (b)) and an in-
ductive construction of 3-connected redundantly rigid graphs due to Jackson and
Jordán [JJ05], which shows that (b) implies (c).

THEOREM 63.2.7 Global Rigidity in the Plane

For a graph G with |V | ≥ 4 the following are equivalent:

(a) G is globally rigid in R2;

(b) G is 3-connected and redundantly rigid in R2;

(c) there is a construction for G from K4, using only edge splitting and edge
addition.

Note that if G has |E| = 2|V | − 2, that is, if G is a 3-connected M -circuit,
then the edge splitting operation alone suffices in (c). This fact and an inductive
construction for M -circuits can be found in Berg and Jordán [BJ03].

Since 6-connected graphs are redundantly rigid in R2, we obtain the following
sufficient condition.

THEOREM 63.2.8 Sufficient Connectivity in the Plane

If a graph G is 6-connected, then G is globally rigid in R2.

The bound 6 above on vertex-connectivity is the best possible (see [LY82] for
5-connected graphs which are not even rigid). Jackson and Jordán [JJ09b] strength-
ened Theorem 63.2.8 by showing that 6-connectivity can be replaced by a weaker
connectivity property, involving a mixture of vertex- and edge-connectivity param-
eters.

We remark that the characterization of globally rigid graphs in the plane has
been used to deduce a number of variations (e.g., for zeolites [Jor10a], squares of
graphs) and to solve related optimization problems (e.g., minimum cost anchor
placement [Jor10b]).
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GENERICALLY GLOBALLY RIGID GRAPHS IN HIGHER DIMENSIONS

There are some additional generic results for higher dimensions. A useful obser-
vation, proved by Connelly and Whiteley [CW10], is that coning preserves global
rigidity.

THEOREM 63.2.9 Generic Global Rigidity Coning

A graph G is globally rigid in Rd if and only if the cone G ∗ u is globally rigid in
Rd+1.

Tanigawa [Tan15] established another interesting connection between rigidity
and global rigidity. We say that G is vertex-redundantly rigid in Rd if G− v is rigid
in Rd for all v ∈ V (G).

THEOREM 63.2.10 Vertex-redundant Rigidity Implies Global Rigidity

If G is vertex-redundantly rigid in Rd then it is globally rigid in Rd.

The concept of (vertex-)redundant rigidity can be generalized to d-dimensional
k-rigid graphs, for all k ≥ 2: these graphs remain rigid in Rd after removing any
set of at most k − 1 vertices. Kaszanitzky and Király [KK16] solve a number of
extremal questions related to these families. One can also consider higher degrees
of redundant rigidity with respect to edge removal as well as similar notions for
global rigidity. An interesting open problem is whether these graph properties can
be tested in polynomial time for d ≥ 2. Kobayashi et al. [KHKS16] show that a
version of this problem for body-hinge graphs, in which sets of hinges are removed
without losing global rigidity, is tractable.

Theorem 63.2.10 can be used to deduce a new sufficient condition for global
rigidity as well as to solve an augmentation problem, see [Jor17].

THEOREM 63.2.11

If G is rigid in Rd+1 then it is globally rigid in Rd.

(a) (b) (c)

FIGURE 63.2.4
A redundantly rigid plane framework cones to a redundantly rigid framework in three-space
(a). A redundantly rigid cone (b) slices back to a redundantly rigid framework in the plane
(c).

THEOREM 63.2.12

Every rigid graph in Rd on |V | vertices can be made globally rigid in Rd by adding
at most |V | − d− 1 edges.
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The bound is tight for all d ≥ 1: consider the complete bipartite graphs Kn−d,d.

A number of other related structures have also been investigated for generic
global rigidity. These structures, which appear in engineering, robotics, and chem-
istry, can be defined in Rd for all d ≥ 2. They consist of rigid bodies which are
connected by disjoint bars (a body-bar framework) or by hinges (a body-hinge
structure) that constrain the relative motion of the corresponding pairs of bodies
to a rotation about an affine subspace of dimension d− 2. For example in 3-space
a hinge is a line (segment) which restricts the relative motion of the two bodies
connected by the hinge to a rotation about the shared hinge line.

The underlying multigraph H of such a framework has one vertex for each body
and one edge for each bar (resp. hinge), connecting the vertices of the bodies it
connects. (See Section 61.2 for definitions and infinitesimal rigidity results.)

These frameworks can be modeled as bar-and-joint frameworks, with each body
replaced by a large enough rigid framework on a complete graph. In the case of
a body-bar framework these complete graphs are disjoint and the connecting bars
correspond to vertex-disjoint bars between the complete subgraphs. For body-
hinge frameworks the complete graphs corresponding to the bodies are constructed
so that if two bodies are connected by a hinge then the complete graphs share
d−1 vertices. The underlying graphs of these special bar-and-joint frameworks are
called (d-dimensional) body-bar graphs and body-hinge graphs, respectively.

We shall formulate the results concerning the global rigidity of generic body-bar
and body-hinge frameworks in terms of body-bar and body-hinge graphs, respec-
tively. For these graphs, global rigidity has been fully characterized in Rd for all
d ≥ 1 in terms of their underlying multigraphs. The body-bar result is due to
Connelly, Jordán, and Whiteley [CJW13].

THEOREM 63.2.13 Body-Bar Global Rigidity

Let G be a d-dimensional body-bar graph on at least d+ 2 vertices with underlying
multigraph H and let d ≥ 1 be an integer. Then the following are equivalent:

(a) G is globally rigid in Rd;

(b) G is redundantly rigid in Rd;

(c) H is highly
(
d+1
2

)
-tree-connected.

For a multigraph H and integer k we use kH to denote the multigraph obtained
from H by replacing each edge e of H by k parallel copies of e. The body-hinge
version was solved by Jordán, Király, and Tanigawa [JKT16].

THEOREM 63.2.14 Body-Hinge Global Rigidity

Let G be a d-dimensional body-hinge graph on at least d+2 vertices with underlying
multigraph H and let d ≥ 3 be an integer. Then the following are equivalent:

(a) G is globally rigid in Rd;

(b) (
(
d+1
2

)
− 1)H is highly

(
d+1
2

)
-tree-connected.

The two-dimensional characterization is slightly different.
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THEOREM 63.2.15 Body-Hinge Global Rigidity in the Plane

A 2-dimensional body-hinge graph G on at least 4 vertices with underlying graph H
is globally rigid in R2 if and only if H is 3-edge-connected.

A recent result, due to Jordán and Tanigawa [JT17], characterizes globally rigid
braced triangulations in R3.

GLOBALLY LINKED PAIRS AND THE NUMBER OF REALIZATIONS

Even if a graph is not globally rigid, some parts of it may have a unique realization
with the given edge lengths. One notion that can be used to analyse these parts
is as follows. We say that a pair {u, v} of vertices of G is globally linked in G
in Rd if for all generic d-dimensional realizations (G, p) we have that the distance
between q(u) and q(v) is the same in all realizations (G, q) equivalent with (G, p).
Thus a graph G is globally rigid in Rd if and only if all pairs of vertices in G are
globally linked in Rd. It is not hard to see that a pair {u, v} is globally linked in
G in R1 if and only if there exist two openly vertex-disjoint paths from u to v in
G, which is equivalent to {u, v} sharing a globally rigid subgraph. It follows that
global linkedness is a generic property on the line.

In higher dimensions global linkedness is not a generic property and it remains
an open problem to find a combinatorial characterization of globally linked pairs
even in R2 (see Figure 63.2.5). This section lists some of the partial results that have
been proven in the planar case by Jackson, Jordán, and Szabadka [JJS06, JJS14].

(a)

2
1

(b)

2
1

(c)

1

2

(d)

21

FIGURE 63.2.5
The pair {1, 2} is globally linked in (a,b) although the framework is not globally rigid. In
(c,d), with the same graph, {1, 2} are not globally linked, so being globally linked is not a
generic property of the graph.

THEOREM 63.2.16

Let G and H be graphs such that G is obtained from H by a two-dimensional edge
splitting operation on edge xy and vertex w. If H−xy is rigid in R2 and that {u, v}
is globally linked in H in R2, then {u, v} is globally linked in G in R2.

For the family of M -connected graphs, global linkedness has been characterized
as follows, see [JJS06]. Note that globally rigid graphs are M -connected and M -
connected graphs are redundantly rigid in R2, see [JJ05].

THEOREM 63.2.17

Let G = (V,E) be an M -connected graph in R2 and let u, v ∈ V . Then {u, v} is
globally linked in G if and only if there exist three openly vertex-disjoint paths from
u to v in G (Figure 63.2.6).
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In minimally rigid graphs, or more broadly, in all independent graphs, there
are no globally linked pairs, other than the adjacent pairs of vertices [JJS14].

THEOREM 63.2.18

Let G = (V,E) be an independent graph in R2 and u, v ∈ V . Then {u, v} is globally
linked in G in R2 if and only if uv ∈ E.

(a) (b) (c) (d)

FIGURE 63.2.6
Edge splitting preserves globally linked pairs, as well as M-circuits (a,b). (c) Three openly
vertex disjoin paths. (d) A framework with h = 2 and its two noncongruent realizations.

A related observation is that if a pair {u, v} is globally linked in G in Rd, then
either the edge uv is present in G, or it is in an M -circuit in G+ uv in Rd.

One can also determine the maximum number of pairwise equivalent but non-
congruent generic realizations of an M -connected graph. Given a rigid generic
framework (G, p), let h(G, p) denote the number of distinct congruence classes of
frameworks which are equivalent to (G, p). Given a rigid graph G, let h(G) =
max{h(G, p)}, where the maximum is taken over all generic frameworks (G, p).

Borcea and Streinu [BS04] investigated the number of realizations of minimally
rigid generic frameworks (G, p) in the plane. Their results imply that h(G) ≤ 4n for
all rigid graphs G. They also construct an infinite family of generic minimally rigid
frameworks (G, p) for which h(G, p) has order 12

n
3 which is approximately (2.28)n.

One can determine the exact value of h(G, p) for all generic realizations (G, p) of
an M -connected graph G = (V,E). For u, v ∈ V , let b(u, v) denote the number of
connected components of G−{u, v} and put c(G) =

∑
u,v∈V (b(u, v)−1). The next

equality was verified by Jackson, Jordán, and Szabadka [JJS06].

THEOREM 63.2.19

Let G be an M -connected graph in R2. Then h(G, p) = 2c(G) for all generic real-
izations (G, p) of G.

It follows that h(G) ≤ 2
n−2
2 −1 for all M -connected graphs G. A family of

graphs attaining this bound is a collection of K4’s joined along a common edge.

OPEN PROBLEMS ON GENERIC GLOBAL RIGIDITY

As noted earlier, the major open problem in this area is to find a combinatorial
characterization of (and an efficient deterministic algorithm for testing) globally
rigid graphs in Rd for d ≥ 3. There are several related conjectures.

The next conjecture is open for d ≥ 3.
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CONJECTURE 63.2.20 Sufficient Connectivity Conjecture

For every d ≥ 1 there is a (smallest) integer f(d) such that every f(d)-connected
graph G is globally rigid in Rd.

Some of the results mentioned earlier imply that f(1) = 2 and f(2) = 6. By
replacing globally rigid by rigid in Conjecture 63.2.20 we obtain a conjecture of
Lovász and Yemini [LY82] from 1982. By Theorem 63.2.10 the two conjectures are
equivalent.

Note that no degree of vertex-connectivity suffices to imply generic universal
rigidity (c.f. Theorem 63.5.2).

A molecular model in three-space treats each atom and its set of neighbours
as pairwise adjacent joints (due to dihedral constraints). Thus bonds may be in-
terpreted as hinges between such complete subframeworks or simply as rigid bars
between the corresponding atoms. In the former case we obtain molecular-hinge
frameworks (which are geometrically singular body-hinge frameworks since the lines
of all bonds of an atom are concurrent in the center of the atom) while in the latter
case (where all pairs of neighbours of the atom are also connected by rigid bars)
we obtain bar-and-joint frameworks whose underlying graph is a square of another
graph, that is, a molecular graph. (See Section 61.2 for related results.) These
models are central to applications of (global) rigidity to protein structures with
thousands of atoms [Whi99].

CONJECTURE 63.2.21 Molecular Graph Global Rigidity Conjecture

Let G be a graph with no cycles of length at most four. Then G2 is generically
globally rigid in R3 if and only if G2 is 4-connected and the multigraph 5G is highly
6-tree connected.

A graph G is minimally globally rigid in Rd if it is globally rigid but removing
any edge from G leaves a graph which is not globally rigid.

CONJECTURE 63.2.22 Minimally Globally Rigid Conjecture

Let G be minimally globally rigid in Rd. Then

(a) |E| ≤ (d+ 1)|V | −
(
d+2
2

)
and

(b) the minimum degree of G is at most 2d+ 1.

This conjecture has been verified for d = 1, 2 (with slightly better bounds); see
[Jor17]. The bounds on the edge number and the minimum degree would be close
to being tight for all d, see the complete bipartite graph Kd+1,n−d−1.

Let v be a vertex of degree at least d − 1 in G with neighbour set N(v). The
d-dimensional vertex splitting operation at vertex v in G partitions N(v) into three
(possibly empty) sets A1, C,A2 with |C| = d− 1, deletes vertex v and its incident
edges, and adds two new vertices v1, v2 and new edges from vi to all vertices in
Ai ∪ C, for i = 1, 2, as well as the edge v1v2 (the so-called bridging edge). The
operation is nontrivial if A1, A2 are both nonempty. The vertex splitting operation
preserves rigidity. It is conjectured to preserve global rigidity, provided that it is
nontrivial. The 2-dimensional version of this conjecture was verified in [JS09]. For
higher dimensions this conjecture is open even in the following weaker form.

CONJECTURE 63.2.23 Vertex Split Conjecture

Let H be globally rigid in Rd and let G be obtained from H by a nontrivial vertex
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splitting operation with bridging edge e. If G − e is rigid in Rd then G is globally
rigid in Rd.

A recent result of [JT17] shows that if G is obtained from a globally rigid graph
H with maximum degree at most d+ 2 by a sequence of nontrivial vertex splitting
operations, then G is globally rigid in Rd.

There is a conjectured characterization of globally linked pairs in R2. Suffi-
ciency follows from Theorem 63.2.17.

CONJECTURE 63.2.24 Globally Linked Pairs Conjecture

Let G = (V,E) be a graph and let u, v ∈ V . Then {u, v} is globally linked in G
in R2 if and only if uv ∈ E or there is an M -connected subgraph H of G with
{u, v} ⊆ V (H) for which there exist three openly vertex-disjoint paths from u to v
in H.

ALGORITHMS FOR GENERIC GLOBAL RIGIDITY

The Stress Matrix Condition for Generic Global Rigidity (Theorem 63.1.1) implies
that there is a randomized polynomial time algorithm for testing whether a given
graph G is globally rigid in Rd, for any fixed d. See [CW10, GHT10] for the details.

We have deterministic polynomial-time algorithms for the cases in which global
rigidity is well characterized: low dimensions (d = 1, 2) and special classes of graphs
(body-bar, body-hinge). These algorithms are based on testing low dimensional (re-
dundant) rigidity (see Chapter 61), checking whether a graph is k-vertex-connected
(for which there exist well-known efficient network flow-based algorithms in general,
and linear time algorithms up to k = 3) and testing (high) k-tree-connectivity.

For the latter problem, the tree partitions of Theorems 63.2.13 and 63.2.14 can
be computed by matroidal algorithms of order O(|V |3) time.

We also have algorithms for identifying finer substructures (rigid, redundantly
rigid or M -connected components), see e.g., [Jor16].

63.3 VARIATIONS AND CONNECTIONS TO OTHER FIELDS

GLOSSARY

Direction-length framework: A pair (G, p) of a loopless edge-labeled graph
G = (V ;D,L) and a configuration p in d-space for the vertex set V . The edge
set of G consists of direction edges D and length edges L that represent direction
and length constraints, respectively. A direction edge uv fixes the gradient of
the line through p(u) and p(v), whereas a length edge uv specifies the distance
between the points p(u) and p(v).

Mixed graph: A graph G = (V ;D,L) whose edge set consists of direction edges
D and length edges L.

Pure graph: A (mixed) graph G = (V ;D,L), in which L = ∅ (a direction-pure
graph) or D = ∅ (a length-pure graph), respectively.

Congruent realizations: Two realizations (G, p) and (G, q) of G for which (G, q)
can be obtained from (G, p) by a translation and, possibly, a dilation by −1.
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Globally rigid direction-length framework: A direction-length framework (G, p)
in d-space for which every other d-dimensional realization (G, p) with the same
edge lengths (for e ∈ L) and edge directions (for e ∈ D) as in (G, p) is congruent
to (G, p).

Direction balanced graph: A 2-connected mixed graph in which both sides of
any 2-vertex-separation contain a direction edge.

63.3.1 OTHER CONSTRAINTS

In computer-aided design, many different patterns of constraints (lengths, angles,
incidences of points and lines, etc.) are used to design or describe configurations
of points and lines, up to congruence. With distances between points, the geom-
etry becomes that of global rigidity, with several positive results on the generic
behaviour. For some other constraints the corresponding combinatorial problems
(concerning “generic” configurations) are unsolved, and perhaps not solvable in
polynomial time.

However, for special designs, e.g., for direction constraints in Rd and even for the
combination of distance and direction constraints in R2, these problems have been
solved, using extensions of the techniques and results for bar-and-joint frameworks.

DIRECTION-LENGTH FRAMEWORKS

By the Generic Global Rigidity Theorem (Theorem 63.1.2) global rigidity is a
generic property for length-pure frameworks (with respect to the global rigidity
definition for bar-and-joint frameworks). Whiteley [Whi96] showed that global
rigidity is equivalent to first-order rigidity for direction-pure frameworks in Rd.
This implies that global rigidity is a generic property for direction-pure frameworks
in Rd for all d ≥ 1 (with respect to the adapted global rigidity definition allowing
translations and dilations).

It is not known whether global rigidity is a generic property for direction-length
frameworks, even in R2. In the plane we do have a number of partial results. In
particular, we have a list of necessary conditions [JJ10a, JK11]. Let (G, p) be a
generic direction-length framework with at least three vertices and G = (V ;D,L).
If (G, p) is globally rigid in Rd then (i) G is not pure, (ii) G is rigid, (iii) G is
2-connected, (iv) G is direction balanced, (v) the only 2-edge-cuts in G consist of
incident direction edges, and (vi) if |L| ≥ 2 then G− e is rigid for all e ∈ L.

The characterization of generically rigid mixed graphs gives rise to a rigidity
matroid defined on the edge set of a mixed graph G = (V ;D,L) in which M -circuits
and M -connected graphs are well-characterized.

Jackson and Jordán [JJ10a] characterized global rigidity for mixed graphs
whose edge set is a circuit in the two-dimensional (mixed) rigidity matroid.

THEOREM 63.3.1 Mixed Global Rigidity for Plane Circuits

Let (G, p) be a generic realization of a mixed graph whose rigidity matroid is a
circuit. Then (G, p) is globally rigid in R2 if and only if G is direction balanced.

Recently Clinch [Cli16] extended Theorem 63.3.1 toM -connected mixed graphs.
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THEOREM 63.3.2 Mixed Global Rigidity for Plane Connected Matroids

Let (G, p) be a generic realization of a mixed graph whose rigidity matroid is con-
nected. Then (G, p) is globally rigid in R2 if and only if G is direction balanced.

The proofs of the previous theorems rely on inductive constructions of the corre-
sponding families of mixed graphs, using the mixed versions of the two-dimensional
extension operations [JJ10b]. The d-dimensional versions of these operations are
treated in Nguyen [Ngu12].

A recent result by Clinch, Jackson, and Keevash [CJK16] characterizes mixed
graphs with the property that all generic realizations in R2 are globally rigid. There
is also a special case of d-dimensional direction-length frameworks where global
rigidity is fully understood.

THEOREM 63.3.3

Let G be a mixed graph in which all pairs of adjacent vertices are connected by both
a length and a direction edge, and let (G, p) be a d-dimensional generic realization
of G. Then (G, p) is globally rigid if and only if G is 2-connected.

GLOBAL RIGIDITY OF FRAMEWORKS ON SURFACES

Another direction of research investigates frameworks in R3 whose vertices are
constrained to lie on 2-dimensional surfaces. (See Section 61.2 for related results.)
Generic rigidity has been characterized for various surfaces and there are some
partial results concerning generic global rigidity on the sphere, cylinder, cone, and
ellipsoid. In fact the spherical case has been settled by a result of Connelly and
Whiteley, who proved that a generic framework on the sphere is globally rigid if and
only if the corresponding generic framework is globally rigid in the plane [CW10].

Hendrickson’s necessary conditions have been extended to the cylinder and the
cone: a generic globally rigid framework with at least five vertices must be redun-
dantly rigid and 2-connected. A sufficient condition, in terms of the corresponding
stress matrix has also been found by Jackson and Nixon [JN15b]. Jackson, Mc-
Court and Nixon [JMN14] conjecture that the necessary conditions above are also
sufficient to guarantee global rigidity on the cylinder and the cone. The missing
piece is an inductive construction for the graph family in question using operations
which are known to preserve global rigidity.

63.3.2 CONNECTIONS TO OTHER FIELDS

There are a number of situations where global rigidity (or universal rigidity) is a
key part of the computational process. These problems are often expressed in terms
of “distance geometry.” Dependence among the distances being used is a synonym
for having a self-stress in the corresponding framework.

LOCALIZATION

An important problem is computing the location of sensors, scattered randomly in
the plane, using pairwise distances. This problem is a setting for applying global
rigidity [JJ09a, AEG+06, SY07]. The computation needs access to a set of distance
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measurements which form a globally rigid graph, in order to have a unique solution.
Typically, a few locations are known; these are called anchors and they function like
pinned vertices. We are seeking a globally rigid pinned framework [Jor10b]. Given
the expected errors in the measurements, the calculations reasonably assume the
vertices are generic.

There are several simple approaches which have been used to make the calcu-
lations manageable. One is to find a trilateral subgraph: a graph which is formed
inductively from the anchors by adding 3-valent vertices. Each step of the calcu-
lation has modest overhead and the locations are built up, one at a time. If the
sensors have many neighbours with measured distances, then we can select such a
trilateration graph with high probability [AEG+06].

MOLECULAR CONFORMATIONS

Another significant computation problem is finding the shape (conformation) of a
molecule from NMR (nuclear magnetic resonance) data. NMR measures (approx-
imately) a set of pairwise distances, typically between pairs of hydrogen atoms.
Again one needs to calculate the (relative) locations with data that is redundant at
least in some parts of most molecules. Some parts will be underdetermined (e.g.,
tails of a protein may not be fixed). Some of the programs for optimizing these
calculations use “smoothing” through small universally rigid subgraphs to refine
the errors in the measurements (e.g., [CH88]).

63.4 GEOMETRY OF GLOBAL RIGIDITY

Unlike infinitesimal rigidity, graphs which are not generically globally rigid can
have special position realizations which are globally rigid and even universally rigid,
provided that they have a nontrivial stress with an appropriate stress matrix and
some additional features. There are layers of analysis here that we shall return
to in the following sections, including the study of super stability and tensegrity
frameworks.

GLOSSARY

Special position of a graph G in d-space: Any configuration p ∈ Rd|V | such
that the rigidity matrix R(G, p), or any submatrix, has rank smaller than the
maximum rank (the rank at a configuration with algebraically independent co-
ordinates). These form an algebraic variety (see Chapter 61).

Affine spanning set for d-space: A configuration p of points such that every
point q ∈ Rd can be expressed as an affine combination of the pi: q =

∑
i λipi,

with
∑

i λi = 1. (Equivalently, the affine coordinates (pi, 1) span the vector

space Rd+1.)
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BASIC GEOMETRIC RESULTS

There are some basic results for specific geometric frameworks. The stronger geo-
metric results will appear for Universal Rigidity. The following three theorems are
due to Connelly and Whiteley [CW10].

THEOREM 63.4.1 Stress Matrix and Infinitesimal Rigidity Certificate

If there is a realization (G, p) of G in Rd which is infinitesimally rigid with an
equilibrium stress ω for which the associated stress matrix Ω has rank |V | − d − 1
then G is generically globally rigid in Rd.

This theorem does not guarantee that (G, p) is itself globally rigid.

THEOREM 63.4.2 Stability Lemma

Given a framework (G, p) which is globally rigid and infinitesimally rigid in Rd,

there is an open neighborhood U of p in Rd|V | such that for all q ∈ U the framework
(G, q) is globally rigid and infinitesimally rigid.

The 2-dimensional case of the Stability Lemma has been generalized in [JJS14]:
if (G, p) is infinitesimally rigid in R2, then there is an open neighbourhood U of p

in Rd|V | for which h(G, q) ≤ h(G, p) for all q ∈ U .
An immediate corollary of the Stability Lemma is a different kind of global

rigidity certificate.

THEOREM 63.4.3 Global Rigidity and Infinitesimal Rigidity Certificate

If there is a realization (G, p) of G which is globally rigid and infinitesimally rigid
in Rd then G is generically globally rigid in Rd.

63.5 UNIVERSALLY RIGID FRAMEWORKS

We return to universal rigidity of a framework (G, p), working in several layers,
which turn out to be connected by important theorems and classes of PSD stress
matrices. Here are several basic theorems for generic universally rigid frameworks.
These depend on a stress matrix Ω being positive semi-definite (PSD) with maximal
rank n− d− 1, where there are n vertices.

We begin with a few results for particular classes of graphs. We then follow
two related but narrower concepts: dimensional rigidity and super stability. While
not all universally rigid frameworks are super stable, a recent result of Connelly
and Gortler [CG15] shows that every universally rigid framework can be iteratively
built by a nested sequence of super stable structures.

We first present the results for bar frameworks. In the next section, we attend
to the signs of the coefficients in the stress, and present the results for tensegrity
frameworks, which is the form in which many of them appear in engineering and
tensegrity installations.

The complexity of testing the universal rigidity of frameworks is open.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.



Chapter 63: Global rigidity 1681

GLOSSARY

Dimensionally rigid framework: A framework (G, p) in d-space with an affine
span of dimension d, is dimensionally rigid in Rd if every framework (G, q) equiv-
alent to (G, p) in any dimension has an affine span of dimension at most d.

Edge directions lie on a conic at infinity: The edge directions of a frame-
work (G, p) lie on a conic at infinity if there is a symmetric matrix Q such that
mi,jQm

T
i,j = 0 for all mi,j = (pi − pj) with {i, j} ∈ E.

Super stable framework: A framework (G, p) in d-space for which there is a
stress matrix which is positive semi-definite with rank |V | − d− 1 and the edge
directions do not lie on a conic at infinity.

Strictly separated by a quadric: Two sets of points P,Q in Rd, with affine
coordinates, for which there exists a quadric represented by a symmetric (d +
1)× (d+ 1) matrix Q such that pTi Qpi > 0 for all pi ∈ P and qTj Qqj < 0 for all
qj ∈ Q.

BASIC RESULTS FOR UNIVERSAL RIGIDITY

We have described some basic results in Section 63.1.1. Several specific classes of
graphs have more complete answers.

Connelly and Gortler characterized universally rigid complete bipartite frame-
works for all d ≥ 1 [CG17], extending the 1-dimensional result from [JN15a]. These
geometric results lie behind some results for global rigidity cited earlier in Theo-
rem 63.2.2.

THEOREM 63.5.1 Complete Bipartite Frameworks

Let G be a complete bipartite graph and let (G, p) be a d-dimensional realization of
G in general position, with m + n > d + 1. Then (G, p) is not universally rigid if
and only if the two vertex classes are strictly separated by a quadric.

THEOREM 63.5.2 Bipartite Universal Rigidity [JN15a]

The only generically universally rigid bipartite graph in Rd is K2, for all d ≥ 1.

There is also a sufficient condition which works for squares of graphs.

THEOREM 63.5.3 Universally Rigid Squares [GGLT13]

Let G be a (d + 1)-connected graph. Then every generic d-dimensional realization
of G2 is universally rigid.

THEOREM 63.5.4 General Position Realizations [Alf17]

If a graph G is (d+ 1)-connected, then there exists a general position configuration
p in Rd such that the framework (G, p) is universally rigid (therefore globally rigid).

DIMENSIONAL RIGIDITY

Dimensional rigidity, introduced by Alfakih [Alf07], is a concept that says a frame-
work, with the given edge lengths, always lives in a restricted dimension. Again,
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beyond the small complete graphs, this is linked to properties of stress matrices.
This is weaker than universal rigidity, as there may be noncongruent affinely equiva-
lent frameworks. However, the concepts are clearly linked, and dimensional rigidity
can be a key step towards proving universal rigidity, see e.g., [CG15].

THEOREM 63.5.5 Stress matrices for dimensional rigidity [Alf11]

1. A framework (G, p) with n vertices whose affine span is d-dimensional with
n ≥ d + 2, is dimensionally rigid if and only if (G, p) has a nonzero PSD
stress matrix.

2. If a framework (G, p) with n vertices in Rd has an equilibrium stress with a
PSD stress matrix of rank n− d− 1, then (G, p) is dimensionally rigid in Rd.

THEOREM 63.5.6 [AY13, CGT16b]

A framework (G, p) in Rd, with d-dimensional affine span, has a nontrivial affine
flex if and only if it has an equivalent noncongruent affine image in Rd if and only
if the edge directions lie on a conic at infinity.

THEOREM 63.5.7 Dimensional Rigidity

If a framework (G, p) with n vertices in Rd is dimensionally rigid in Rd, and (G, q)
is equivalent to (G, p), then q is an affine image of p.

As a result, we have the following strong connection to universal rigidity.

THEOREM 63.5.8 Dimensional Rigidity and Universal Rigidity

A framework (G, p) with n vertices in Rd is universally rigid if and only if it is
dimensionally rigid and the edge directions do not lie on a conic at infinity.

SUPER STABILITY

The focus of the stress matrix approach remains finding a positive semi-definite
stress matrix of appropriate rank. This is captured by the notion of super stability,
defined by the following result of Connelly.

THEOREM 63.5.9 Super Stability

Let (G, p) be a framework whose affine span is all of Rd, with an equilibrium stress
ω and stress matrix Ω. Suppose further that

1. Ω is positive semi-definite (PSD);

2. the rank of Ω is n− d− 1;

3. the member directions of (G, p) do not lie on a conic at infinity.

Then (G, p) is universally rigid.

A framework (G, p) satisfying conditions (1-3) is called super stable.

THEOREM 63.5.10 Generic Global Rigidity Implies Super Stability [CGT16a]

If G is generically globally rigid in Rd, then there exists a framework (G, p) in Rd

that is infinitesimally rigid in Rd and super stable. Moreover, every framework
within a small enough open neighborhood of (G, p) will be infinitesimally rigid in
Rd and super stable, including some generic framework.
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Not all universally rigid frameworks are super stable. However [CG15] shows
that every universally rigid framework can be constructed through a nested se-
quence of affine spaces, each with an associated super stable framework. Such a
nested sequence with associated super stable frameworks is a certificate for univer-
sal (global) rigidity of the framework and it is algorithmically efficient to confirm
that the certificate is correct. What is not algorithmically efficient, is finding the
sequence. Failure to find this sequence also generates a certificate that the frame-
work is not universally rigid—by finding a higher dimensional set which includes
equivalent, but not congruent, frameworks. Again, this is not efficient.

(a) (b) (c) (d)

FIGURE 63.5.1
A universally rigid framework (a) will have super stable components (b), and members
that have no self-stress at the first level of iteration. (c) shows a projectively equivalent
framework which is not even rigid, though it is dimensionally rigid. (d) shows a cone of
both (a) and (c) which is globally rigid, with a nonglobally rigid base.

Universal rigidity of a framework (G, p) is not preserved by projective trans-
formations, because the property that the edge directions lie on a conic at infinity
may change when a new “infinity” appears under the projection. That this is the
only failure was confirmed by [Alf14, AN13]. Moreover, when the edge vectors at d
vertices linearly span the space, the edge directions automatically avoid conics at
infinity [Alf14].

63.5.1 PROJECTIVE TRANSFORMATIONS, CONING AND CHANGE OF
METRIC

Given rigidity properties of a framework (G, p) in dimension d, we can often extend
these properties to a coned framework in (d+1)-space, and then project to a different
hyperplane to obtain another d-dimensional realization (G, q) as a slice of the cone,
preserving the properties. This is a concrete form of a projective transformation
from (G, p) to (G, q). Alternatively, there can be a direct analysis of the impact of
a projective transformation from p to q = f(p) on the various properties [SW07].
As Chapter 61 describes, these projective transformations preserve the first-order
rigidity of (G, p), and have a clearly described impact on the coefficients of any
equilibrium stress of (G, p). These processes also provide the tools to confirm the
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transfer of these basic properties among Euclidean, spherical, Minkowskian, and
hyperbolic metrics, all of which live in a common projective space. The geometric
transfer, for a specific projective configuration p̃ in any of the metrics, then gives
corresponding combinatorial transfers of generic properties.

Here we look at the extensions of these techniques and results to global rigid-
ity, dimensional rigidity, super stability, and universal rigidity for bar-and-joint
frameworks.

GLOSSARY

Projective transform of a configuration p of points in d-space: A configuration
q on the same vertices in d-space such that there is an invertible (d+ 1)× (d+ 1)
matrix T for which T (pi, 1) = λi(qi, 1) for all 1 ≤ i ≤ n (where λi is a scalar and
(pi, 1) is the vector pi extended with an additional 1—the affine coordinates of
pi).

Cone slice from v0: For a (d+1)-dimensional configuration p of the vertices
{v0, v1, . . . , vn}, a configuration q in d-space (placed as a hyperplane in (d+1)-
space) of the vertices {v1, .., vn}, such that qi is on the line through p0, pi for all
1 ≤ i ≤ n. We use q = Π0(p) to denote that q is obtained from p by a cone slice
from v0 (Figure 63.2.4(b,c)).

CONING

The Generic Global Rigidity Coning Theorem (Theorem 63.2.9) fails as a statement
for specific geometric frameworks, as there are both examples where the plane
framework is globally rigid and the cone is not [CW10], and examples where the
cone framework is globally rigid and the projection back to the plane is not globally
rigid (or even rigid) [CG15]. See Figure 63.5.1 for illustrative examples.

On the other hand there are strong geometric results for dimensional rigidity
and super stability. In the following statements on coning (due to Connelly and
Gortler [CG17]) we shall use (G, p) and (G ∗u, q) to denote a framework in d-space
and a corresponding cone framework in (d + 1)-space. Note this includes all cone
frameworks with the same cone slice.

THEOREM 63.5.11 Dimensional Rigidity Coning

The framework (G, p) is dimensionally rigid in Rd if and only if the cone framework
(G ∗ u, q) is dimensionally rigid in Rd+1.

THEOREM 63.5.12 Super Stability Coning

The framework (G, p) is super stable in Rd if and only if the cone framework (G ∗
u, q) is super stable in Rd+1.

There is a standard sliding operation on cone frameworks, where vertices pi
slide along the line through p0 and pi, perhaps even through p0 to the other side
along the same line, so that they remain distinct from the cone vertex p0. The
following result from [CG17] follows from the fact that sliding does not change the
projected framework of the cone to Rd.
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COROLLARY 63.5.13 Sliding in Cones

Let (G ∗ u, p) be a cone framework in Rd+1 and let (G ∗ u, q) be obtained from it
by sliding. Then (G ∗ u, p) is super stable (resp. dimensionally rigid) if and only if
(G ∗ u, q) is super stable (resp. dimensionally rigid).

THEOREM 63.5.14 Universal Rigidity Coning

If the framework (G, p) is super stable in Rd then the cone framework (G ∗ u, q) is
universally rigid in Rd+1.

If the cone framework (G∗u, q) is universally rigid in Rd+1 then the framework
(G, p) is dimensionally rigid in Rd.

The only failure for projecting a universally rigid cone framework to a univer-
sally rigid framework can come from the appearance of affine motions due to the
projection having edge directions on a conic at infinity. If, for example, the frame-
work (G, p) is in general position, this cannot happen, as was observed by Alfakih
[AY13, Alf17].

PROJECTIVE TRANSFORMATIONS

A general projection in Rd can be formed by coning to Rd+1, rotating, and re-
projecting, perhaps several times. As a result, the coning results guarantee the
projective invariance of key properties.

THEOREM 63.5.15 Projective Invariance of Dimensional Rigidity and Super
Stability

A framework (G, p) is super stable (resp. dimensionally rigid) in Rd if and only if
every invertible projective transformation which keeps vertices finite is super stable
(resp. dimensionally rigid) in Rd.

This projective invariance is almost always true for universal rigidity. The key
is whether the directions of the edges meet the set X which is going to infinity, in
a conic.

THEOREM 63.5.16 Projection and Universal Rigidity

If a framework (G, p) is universally rigid in Rd, and X is a hyperplane avoiding all
vertices, such that the edge directions do not meet it in a conic, then any invertible
projective transformation T which takes X to infinity makes (G,T (p)) universally
rigid.

When a nested sequence of affine spaces, with a sequence of PSD matrices is
used to iteratively demonstrate the dimensional rigidity (universal rigidity) of a
given framework (G, p), the projected framework (G,T (p)) has the projected affine
sequence to demonstrate its dimensional rigidity (universal rigidity).

It is well known that global rigidity is not projectively invariant for specific
frameworks (G, p). However, the rank of any stress matrix Ω on the framework
is invariant under projective transformations [CW10]. We might move to a con-
figuration where the rank of the stress matrix is not sufficient to guarantee global
rigidity.
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THEOREM 63.5.17

If a framework (G, p) is globally rigid in Rd then there is an open neighborhood
O(p) among projective images of p such that (G, q) is globally rigid in Rd for all
q ∈ O(p).

CHANGE OF METRIC

It is a classical result that infinitesimal rigidity, and associated properties (even
with symmetry) transfer from Euclidean metric to all the other metric spaces built
by Cayley-Klein metrics on the shared projective space [SW07, CW10]. See also
Chapters 61 and 62. It is natural to ask how the properties of global rigidity and
universal rigidity transfer. Coning, along with sliding, takes frameworks from the
Euclidean metric in Rd to the Spherical metric in Sd.

Given a projective configuration p in d-dimensional projective space, a corre-
sponding configuration in Rd (all vertices finite) is called R(p) and a corresponding
configuration in Sd is called S(p).

THEOREM 63.5.18 Super Stability Transfer to the Spherical Metric

For a given graph G and a fixed configuration p in projective space of dimension
d, the framework (G,R(p)) is super stable in Euclidean metric space Rd if only if
(G,S(p)) is super stable in the spherical metric Sd.

THEOREM 63.5.19 Global and Universal Rigidity Transfer to the Spherical
Metric

A given graph G is generically globally rigid in Euclidean metric space if and only
if G is generically globally rigid in the spherical metric.

For a given graph G and a fixed configuration p in projective space of dimension
d, (G, p) is universally rigid in the spherical metric if and only if the framework
(G, p) is universally rigid in Euclidean metric space, for almost all projections.

Basically, all results and methods transfer from Euclidean metric space to the
spherical metric.

Gortler and Thurston [GT14b] considered generic global rigidity in complex
space and pseudo-Euclidean metrics (metrics with more general signatures). Here
are a few results for generic configurations.

THEOREM 63.5.20 Transfer of Metrics: Complex Space

A graph G is globally rigid at some (all) generic configurations in Euclidean metric
space if and only if G is globally rigid at some (all) generic configurations in complex
metric space of the same dimension.

THEOREM 63.5.21 Transfer of Metrics: Pseudo-Euclidean

If a graph G is globally rigid at generic configurations in Euclidean metric space,
then G is globally rigid at all generic configurations in every alternate Cayley-Klein
metric.

If a graph G contains a d-simplex, then G is globally rigid at some generic
configurations in Euclidean d-space if and only if G is globally rigid at every generic
configuration in every d-dimensional alternate Cayley-Klein metric.
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The gap in Theorem 63.5.21 is that there may be additional graphs that are
globally rigid for some generic configurations in a pseudo-Euclidean space but not
globally rigid at other generic configurations in the same space, and are therefore
never globally rigid at a generic configuration in Euclidean metric space. Alterna-
tively, it is an open problem in the pseudo-Euclidean metric whether global rigidity
is “generic”: does one generic globally rigid framework imply that all generic frame-
works are globally rigid?

One technique for these transfers among metrics is the Pogorelov map, which
takes any pair of equivalent frameworks (G, p), (G, q) in one metric M to another
pair (G, p′), (G, q′) in another metric M ′ through the process of averaging to an
infinitesimally flexible framework (G, p + q) in M . By first-order principles, this
transfers to confirm that (G, p+ q) is infinitesimally flexible in M ′, and de-averages
to an equivalent pair (G, p′), (G, q′) in M ′ [GT14b, CW10].

63.6 TENSEGRITY FRAMEWORKS

In a tensegrity framework, we replace some (or all) of the equalities for bars with
inequalities for the distances, corresponding to cables (the distance can shrink but
not expand) and struts (the distance can expand but not shrink). See Chapter 61
for basic results on the infinitesimal rigidity of tensegrity frameworks. Many results
on universal rigidity transfer directly from results for bar frameworks, as soon as
we align the cables and struts with the sign pattern of the self-stress with a PSD
stress matrix.

GLOSSARY

Tensegrity graph: A graph T = (V ;B,C, S) with a partition (or labelling) of
the edges into three classes, called bars, cables, and struts. The edges of T may
be called members. In figures, cables are indicated by dashed lines, struts by
thick lines, and bars by single thin lines.

Tensegrity framework in Rd: A pair (T, p), where T is a tensegrity graph and
p is a configuration p of the vertex set of T in Rd.

(T, p) dominates (T, q): For each member of T , the appropriate condition holds:

|pi − pj | = |qi − qj | when {i, j} ∈ B
|pi − pj | ≥ |qi − qj | when {i, j} ∈ C
|pi − pj | ≤ |qi − qj | when {i, j} ∈ S.

Globally rigid tensegrity framework: A d-dimensional tensegrity framework
(T, p) for which any other realization (T, q) in Rd, dominated by (T, p) is con-
gruent to p.

Universally globally rigid tensegrity framework: A d-dimensional tenseg-
rity framework (T, p) for which any other realization (T, q) in any dimension,
dominated by (T, p) is congruent to p.

Proper equilibrium stress on a tensegrity framework (T, p): An assignment ω
of scalars to the members of T such that:

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.



1688 T. Jordán and W. Whiteley

(a) ωij ≥ 0 for cables {i, j} ∈ C;

(b) ωij ≤ 0 for struts {i, j} ∈ S; and

(c) for each vertex i,
∑
{j | {i,j}∈E} ωij(pj − pi) = 0.

Strict proper equilibrium stress: A proper equilibrium stress ω with the in-
equalities in (a) and (b) strict.

Underlying bar framework: For a tensegrity framework (T, p), where T =
(V ;B,C, S), the bar framework (Ḡ, p) on the graph Ḡ = (V,E) with E = B ∪
C ∪ S.

Spiderweb: A labelled graph G− = (V0, V1;C), with pinned vertices V0 and cable
members only, with C ⊂ V1 × [V0 ∪ V1], and a configuration p for V0 ∪ V1.

Spiderweb self-stress on (G−, p): An assignment ω of nonnegative scalars to C
such that for each unpinned vertex i ∈ V1,

∑
{j|{i,j}∈C} ωij(pj − pi) = 0.

Spiderweb flex: A flex p(t) for (G−, p) with all pinned vertices fixed.

63.6.1 BASIC RESULTS FOR TENSEGRITIES

All the definitions and results for dimensional rigidity and superstability of frame-
works extend to proper equilibrium stresses of tensegrity frameworks. The follow-
ing result confirms that super stability transfers from bar frameworks to tensegrity
frameworks. These transfers flow from [CG17, CGT16a, CGT16b].

THEOREM 63.6.1 Dimensional Rigidity of Tensegrity Frameworks

Let (T, p) be a d-dimensional tensegrity framework, where the affine span of the
joint positions is all of Rd, with a proper equilibrium stress ω and stress matrix Ω.
Suppose further that

(i) Ω is positive semi-definite,

(ii) the rank of Ω is n− d− 1.

Then (T, p) is dimensionally rigid.

THEOREM 63.6.2 The Fundamental Theorem of Tensegrity Frameworks

Let (T, p) be a d-dimensional tensegrity framework, where the affine span of the
joint positions is all of Rd, with a proper equilibrium stress ω and stress matrix Ω.
Suppose further that

(i) Ω is positive semi-definite,

(ii) the rank of Ω is n− d− 1,

(iii) the stressed member directions of (G, p) do not lie on a conic at infinity.

Then (T, p) is universally rigid.

For example, Connelly [Con82] proved that a tensegrity framework obtained
from a planar polygon by putting a joint at each vertex, a cable along each edge,
and struts connecting other vertices (a tensegrity polygon) such that the resulting
tensegrity has some nonzero proper equilibrium stress satisfies conditions (i)-(iii)
and hence it is universally globally rigid. Geleji and Jordán [GJ13] characterized
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the tensegrity polygons for which all convex realizations in R2 possess a nonzero
proper equilibrium stress.

The following result of Bezdek and Connelly [Con06] is an initial analogous
result in 3-space.

THEOREM 63.6.3

If a tensegrity framework in R3 has cables along the edges of a convex centrally
symmetric polyhedron, and struts connecting antipodal vertices, then it is super
stable.

Note that within these theorems are many examples of universally rigid tenseg-
rity frameworks which are not infinitesimally rigid. There is a version of the stability
theorem that extends even to these special position frameworks.

COROLLARY 63.6.4 Tensegrity Stability Theorem

If we take a globally rigid framework where Ω is positive semi-definite of the required
rank, then within the variety of projectively equivalent frameworks there is an open
neighborhood O(p) within which all frameworks are universally rigid.

A special result for the modified spiderwebs further illustrates the role of tenseg-
rity frameworks.

(a) (b) (c)

(d) (e) (f)

FIGURE 63.6.1
The development of super stable tensegrity frameworks. Figure (a) has a spiderweb self-
stress, due to the geometry of the three concurrent edges (b). It is super stable but not
infinitesimally rigid. Figure (c,d) shows ways of extending the framework that preserve
universal rigidity, although the added edges in (d) will not have a nonzero self-stress,
following the inductions below. Moreover, we can add vertices outside a cable edge (Figure
(e) and continue to add edges and new vertices, preserving the universal rigidity.

THEOREM 63.6.5 Spiderweb Rigidity

Any spiderweb (G−, p) in d-space with a spiderweb self-stress, positive on all cables,
is super stable in d-space.
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FIGURE 63.6.2
If a universally rigid tensegrity framework is projected, the edges cut by the line going to
infinity change class and their stress changes sign (a,b), (c,d)

THEOREM 63.6.6 Projective Invariance of Super Stability of Tensegrity Frame-
works

Let f : X → Rd be an invertible projective transformation, where X is a (d − 1)-
dimensional affine subspace of Rd, and suppose that for each i, pi /∈ X. Further
assume that the member directions of (G, p) do not lie on a conic at infinity, and
that the member directions of (G, f(p)) do not lie on a conic on X for a projective
transformation f . Then the tensegrity framework (G, p) is super stable if and only
if (G, f(p)) is super stable, where the strut/cable designation for {i, j} changes only
when the line segment [pi, pj ] intersects X and bars go to bars.

Coning also extends to tensegrity frameworks. Make all the edges incident to
the cone vertex bars, and initially preserve the designation of cables and struts, with
configurations near the original Rd (relative to the cone vertex p0). Then switch the
cable and strut designation under sliding only when a vertex slides across the cone
vertex (one vertex at a time). This process will transfer all the relevant tensegrity
results from the Euclidean metric to tensegrities in the spherical metric, with the
same caveats as for bar frameworks.

INDUCTIVE CONSTRUCTIONS FOR TENSEGRITIES

The tensegrity gluing of two tensegrity graphs T1 = (V1;B1, C1, S1) and T2 =
(V2;B2, C2, S2) is the tensegrity graph T with vertices V = V1 ∪V2, B = B1 ∪B2 ∪
(C1 ∩ S2) ∪ (S1 ∩ C2), C = C1 ∪ C2 −B, and S = S1 ∪ S2 −B.

The following is a corollary of the previous gluing results.

COROLLARY 63.6.7 Tensegrity Gluing

If (T1, p1) and (T2, p2) are universally rigid (resp. dimensionally rigid) tensegrity
frameworks in Rd sharing at least d+1 points affinely spanning Rd then the tenseg-
rity glued framework (T, p1 ∪ p2) is universally rigid (resp. dimensionally rigid) in
Rd.

Appendix A of [CW96] includes a process of: (i) adding a new vertex pc any-
where along the interior of a cable [pipj ], splitting the cable into two cables {i, c},
{c, j} and (ii) inserting a new vertex ps along the exterior of a strut [pipj ] (say
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along the pj side) splitting the strut into a strut {i, s} and a cable {s, j}. We note
that the strut insertion is the same as a cable insertion on a projective image of the
framework. See Figure 63.6.1(c,d,e).

These insertions provide inductive steps that preserve dimensional rigidity, su-
per stability, and universal rigidity of specific geometric tensegrity frameworks. This
provides a geometric inductive process for building up universally rigid frameworks,
onto which one can then hang further—even nongeneric—frameworks by geometric
gluing.

Applied just to cables, the insertions take a spiderweb to a spiderweb. Again,
one can insert vertices and then glue in another spiderweb, iterating to create larger
spiderwebs.

63.7 SOURCES AND RELATED MATERIALS

SURVEYS AND BASIC SOURCES

We refer the reader to the following books, book chapters, survey articles and recent
substantial articles for a more detailed overview of this field.

[CG16]: A forthcoming book on frameworks and tensegrities with a number of
connections to global rigidity.

[Alf14]: Basic results for universal rigidity and dimensional rigidity.

[CG15]: Key recent article for super stability and the iterative constructions, with
extensions to tensegrity frameworks.

[CG17]: Basic results for complete bipartite frameworks and current results in
universal rigidity, including coning and projection.

[JJ09a]: A survey chapter on graph theoretic techniques in sensor network local-
ization.

[AEG+06]: An introduction to the links between sensor network localization and
combinatorial rigidity.

[Jor10b]: A survey chapter on rigid and globally rigid pinned frameworks.

[Jor16]: A short monograph on generic rigidity and global rigidity in the plane.

[Whi96]: An expository article presenting matroidal aspects of first-order rigidity,
redundant rigidity, scene analysis, and multivariate splines.

[Wiki]: A wiki site with a number of preprints, including original papers on global
rigidity.

RELATED CHAPTERS

Chapter 9: Geometry and topology of polygonal linkages
Chapter 57: Solid modeling
Chapter 61: Rigidity and scene analysis
Chapter 62: Symmetry and rigidity
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