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INTRODUCTION

Grassmann-Cayley algebra is first and foremost a means of translating synthetic
projective geometric statements into invariant algebraic statements in the bracket
ring, which is the ring of projective invariants. A general philosophical principle of
invariant theory, sometimes referred to as Gram’s theorem, says that any pro-
jectively invariant geometric statement has an equivalent expression in the bracket
ring; thus we are providing here the practical means to carry this out. We give an
introduction to the basic concepts, and illustrate the method with several examples
from projective geometry, rigidity theory, and robotics.

60.1 BASIC CONCEPTS

Let P be a (d−1)-dimensional projective space over the field F , and V the canoni-
cally associated d-dimensional vector space over F . Let S be a finite set of n points
in P and, for each point, fix a homogeneous coordinate vector in V . We assume
that S spans V , hence also that n ≥ d. Initially, we choose all of the coordinates to
be distinct, algebraically independent indeterminates in F , although we can always
specialize to the actual coordinates we want in applications. For pi ∈ S, let the
coordinate vector be (x1,i, . . . , xd,i).

GLOSSARY

Bracket: A d× d determinant of the homogeneous coordinate vectors of d points
in S. Brackets are relative projective invariants, meaning that under projective
transformations their value changes only in a very predictable way (in fact, under
a basis change of determinant 1, they are literally invariant). Hence brackets
may also be thought of as coordinate-free symbolic expressions. The bracket of
u1, . . . , ud is denoted by [u1, . . . , ud].

Bracket ring: The ring B generated by the set of all brackets of d-tuples of
points in S, where n = |S| ≥ d. It is a subring of the ring F [x1,1, x1,2, . . . , xd,n]
of polynomials in the coordinates of points in S.

Straightening algorithm: A normal form algorithm in the bracket ring.

Join of points: An exterior product of k points, k ≤ d, computed in the exterior
algebra of V . We denote such a product by a1∨a2∨· · ·∨ak, or simply a1a2 · · · ak,
rather than a1 ∧ a2 ∧ · · · ∧ ak, which is commonly used in exterior algebra. A
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concrete version of this operation is to compute the Plücker coordinate vector of
(the subspace spanned by) the k points, that is, the vector whose components are
all k× k minors (in some prespecified order) of the d× k matrix whose columns
are the homogeneous coordinates of the k points.

Extensor of step k, or decomposable k-tensor: A join of k points. Extensors
of step k span a vector space V (k) of dimension

(

d

k

)

. (Note that not every element

of V (k) is an extensor.)

Antisymmetric tensor: Any element of the direct sum ΛV = ⊕kV
(k).

Copoint: Any antisymmetric tensor of step d−1. A copoint is always an extensor.

Join: The exterior product operation on ΛV . The join of two tensors can always
be reduced by distributivity to a linear combination of joins of points.

Integral: E = u1u2 · · ·ud, for any vectors u1, u2, . . . , ud such that [u1, u2, . . . , ud]
= 1. Every extensor of step d is a scalar multiple of the integral E.

Meet: If A = a1a2 · · · aj and B = b1b2 · · · bk, with j + k ≥ d, then

A ∧B =
∑

σ

sgn(σ)[aσ(1), . . . , aσ(d−k), b1, . . . , bk]aσ(d−k+1) · · · aσ(j)

≡ [
•

a1, . . . ,
•

ad−k, b1, . . . , bk]
•

ad−k+1 · · ·
•

aj .

The sum is taken over all permutations σ of {1, 2, . . . , j} such that σ(1) < σ(2) <
· · · < σ(d−k) and σ(d−k+1) < σ(d−k+2) < · · · < σ(j). Each such permutation
is called a shuffle of the (d − k, j − (d − k)) split of A, and the dots represent
such a signed sum over all the shuffles of the dotted symbols.

Grassmann-Cayley algebra: The vector space Λ(V ) together with the opera-
tions ∨ and ∧.

PROPERTIES OF GRASSMANN-CAYLEY ALGEBRA

(i) A ∨ B = (−1)jkB ∨ A and A ∧ B = (−1)(d−k)(d−j)B ∧ A, if A and B are
extensors of steps j and k.

(ii) ∨ and ∧ are associative and distributive over addition and scalar multiplica-
tion.

(iii) A ∨B = (A ∧B) ∨ E if step(A) + step(B) = d.

(iv) A meet of two extensors is again an extensor.

(v) The meet is dual to the join, where duality exchanges points and copoints.

(vi) Alternative Law: Let a1, a2, . . . , ak be points and γ1, γ2, . . . , γs copoints.
Then if k ≥ s,

(a1a2 · · · ak) ∧ (γ1 ∧ γ2 ∧ · · · ∧ γs) = [
•

a1, γ1][
•

a2, γ2] · · · [
•

as, γs]
•

as+1 ∨ · · · ∨
•

ak .

Here the dots refer to all shuffles over the (1, 1, . . . , 1, k− s) split of a1 · · · ak,
that is, a signed sum over all permutations of the a’s such that the last k− s

of them are in increasing order.
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60.2 GEOMETRY ↔ G.-C. ALGEBRA → BRACKET ALGEBRA

If X is a projective subspace of dimension k − 1, pick a basis a1, a2, . . . , ak and let
A = a1a2 · · · ak be an extensor. We call X = A the support of A.

(i) If A 6= 0 is an extensor, then A determines A uniquely.

(ii) If A ∩B 6= ∅, then A ∨B = A+B.

(iii) If A ∪B spans V , then A ∧B = A ∩B.

TABLE 60.2.1 Examples of geometric conditions and corresponding Grassmann-Cayley

algebra statements.

GEOMETRIC CONDITION DIM G.-C. ALGEBRA STATEMENT BRACKET STATEMENT

Point a is on the line bc 2 a ∧ bc = 0 [abc] = 0

(or b is on ac, etc.)

Lines ab and cd intersect 3 ab ∧ cd = 0 [abcd] = 0

Lines ab, cd, ef concur 2 ab ∧ cd ∧ ef = 0 [
•

acd][
•

bef ] = 0

Planes abc, def , and ghi 3 abc ∧ def ∧ ghi = 0 [
•

adef ][
•

bghi][
•

cxyz] = 0 ∀x, y, z

have a line in common

The intersections of ab 2 (ab ∧ cd) ∨ (ef ∧ gh) ∨ i = 0 [
•

acd][
⋄

egh][
•

b
⋄

fi] = 0

with cd and of ef with

gh are collinear with i

The geometric conditions in Table 60.2.1 should be interpreted projectively.
For example, the concurrency of three lines includes as a special case that the three
lines are mutually parallel, if one prefers to interpret the conditions in affine space.
Degenerate cases are always included, so that the concurrency of three lines includes
as a special case the equality of two or even all three of the lines, for example.

Most of the interesting geometric conditions translate into Grassmann-Cayley
conditions of step 0 (or, equivalently, step d), and therefore expand into bracket
conditions directly. When the Grassmann-Cayley condition is not of step 0, as in
the example in Table 60.2.1 of three planes in three-space containing a common line,
then the Grassmann-Cayley condition may be joined with an appropriate number
of universally quantified points to get a conjunction of bracket conditions. The
joined points may also be required to come from a specified basis to make this a
conjunction of a finite number of bracket conditions.

In this fashion, any incidence relation in projective geometry may be translated
into a conjunction of Grassmann-Cayley statements, and, conversely, Grassmann-
Cayley statements may be translated back to projective geometry just as easily,
provided they involve only join and meet, not addition.

Many identities in the Grassmann-Cayley algebra yield algebraic, coordinate-
free proofs of important geometric theorems. These proofs typically take the form
“the left-hand side of the identity is 0 if and only if the right-hand side of the
identity is 0,” and the resulting equivalent Grassmann-Cayley conditions translate
to interesting geometric conditions as above.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.



1584 N.L. White

TABLE 60.2.2 Examples of Grassmann-Cayley identities and corresponding geometric

theorems, in dimension 2.

GEOMETRIC THEOREM G.-C. ALGEBRA IDENTITY

Desargues’s theorem: Derived points ab ∧ a′b′, ac ∧ a′c′, (ab ∧ a′b′) ∨ (ac ∧ a′c′) ∨ (bc ∧ b′c′) =

and bc ∧ b′c′ are collinear if and only if abc or a′b′c′ are [abc][a′b′c′](aa′ ∧ bb′ ∧ cc′)

collinear or aa′, bb′, and cc′ concur.

Pappus’s theorem and Pascal’s theorem: If abc and a′b′c′ [ab′c′][a′bc′][a′b′c][abc]

are both collinear sets, then (bc′ ∧ b′c), (ca′ ∧ c′a), and −[abc′][ab′c][a′bc][a′b′c′]

(ab′ ∧ a′b) are collinear. = (bc′ ∧ b′c) ∨ (ca′ ∧ c′a) ∨ (ab′ ∧ a′b)

Pappus’s theorem (alternate version): If aa′x, bb′x, cc′x, aa′ ∧ bb′ ∧ cc′ + ab′ ∧ bc′ ∧ ca′

ab′y, bc′y, and ca′y are collinear, then ac′, ba′, cb′ concur. +ac′ ∧ ba′ ∧ cb′ = 0

Fano’s theorem: If no three of a, b, c, d are collinear, then (ab ∧ cd) ∨ (bc ∧ ad) ∨ (ca ∧ bd)

(ab ∧ cd), (bc ∧ ad), and (ca ∧ bd) are collinear if and only = 2 [abc][abd][acd][bcd]

if char F = 2.

The identities in Table 60.2.2 are proved by expanding both sides, using the
rules for join and meet, and then verifying the equality of the resulting expressions
by using the straightening algorithm of bracket algebra (see [Stu93]).

The right-hand side of the identity for the first version of Pappus’s theorem
is also the Grassmann-Cayley form of the geometric construction used in Pascal’s
theorem, and hence is 0 if and only if the six points lie on a common conic (Pappus’s
theorem being the degenerate case of Pascal’s theorem in which the conic consists
of two lines). Hence the left-hand side of the same identity is the bracket expression
that is 0 if and only if the six points lie on a common conic. In particular, if abc
and a′b′c′ are both collinear, we see immediately from the underlined brackets that
the left-hand side is 0.

Numerous other projective geometry incidence theorems may be proved using
the Grassmann-Cayley algebra. We illustrate this with an example modified from
[RS76]. Other examples may be found in the same reference.

THEOREM 60.2.1

In 3-space, if triangles abc and a′b′c′ are in perspective from the point d, then the

lines a′bc ∧ ab′c′, b′ca ∧ bc′a′, c′ab ∧ ca′b′, and a′b′c′ ∧ abc are all coplanar.

Proof. We prove the general case, where a, b, c, d, a′, b′, c′ are all distinct, triangles
abc and a′b′c′ are nondegenerate, and d is in neither the plane abc nor the plane
a′b′c′. Then, since a, a′, d are collinear, we may write αa′ = βa + d for nonzero
scalars α and β. Since we are using homogeneous coordinates for points, a, and
similarly a′, may be replaced by nonzero scalar multiples of themselves without
changing the geometry. Thus, without loss of generality, we may write a′ = a+ d.
Similarly, b′ = b+ d and c′ = c+ d. Now

L1 := a′bc ∧ ab′c′ = [a′ab′c′]bc− [bab′c′]a′c+ [cab′c′]a′b

= [dabc]bc+ [badc]ca+ [cabd]ab+ [badc]cd+ [cabd]db

= [abcd](−bc− ac+ ab+ cd− bd).
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Similarly,
L2 := b′ca ∧ bc′a′ = [abcd](ac+ ab+ bc+ ad− cd),

L3 := c′ab ∧ ca′b′ = [abcd](−ab+ bc− ac+ bd− ad),

L4 := a′b′c′ ∧ abc = [abcd](bc− ac+ ab).

Now we check that any two of these lines intersect. For example,

L1 ∧ L2 = [abcd]2(−bc− ac+ ab+ cd− bd) ∧ (ac+ ab+ bc+ ad− cd) = 0.

However, this shows only that either all four lines are coplanar or all four lines
concur. To prove the former, it suffices to check that the intersection of L1 and L4

is distinct from that of L2 and L4. Notice that L1∧L4 does not tell us the point of
intersection, because L1 and L4 do not jointly span V , by our previous computation.
But if we choose a generic vector x representing a point in general position, it follows
from L1 6= L4, which must hold in our general case, that (L1 ∨ x) ∧ L4 is nonzero
and does represent the desired point of intersection. Then we compute

(L1 ∨ x) ∧ L4 = [abcd]2(−bcx− acx+ abx+ cdx− bdx) ∧ (bc− ac+ ab)

= [abcd]2(2[abcx]− [bcdx]− [acdx])(c− b)

= α(c − b)

for some nonzero scalar α. Similarly, (L2 ∨ x) ∧ L4 = β(c − a) for some nonzero
scalar β. By the nondegeneracy of the triangle abc, these two points of intersection
are distinct.

60.3 CAYLEY FACTORIZATION:
BRACKET ALGEBRA → GEOMETRY

(1) Projective geometry
l

(2) Grassmann-Cayley algebra
↓ ↑ Cayley factorization

(3) Bracket algebra
↓

(4) Coordinate algebra

(1)↔(2)→(3) in the chart above is explained in Section 60.2 above, with (2)→(1)
being straightforward only in the case of a Grassmann-Cayley expression involving
only joins and meets. (3)→(4) is the trivial expansion of a determinant into a poly-
nomial in its d2 entries. (4)→(3) is possible only for invariant polynomials (under
the special linear group); see [Stu93] for an algorithm.

PHILOSOPHY OF INVARIANT THEORY: It is best for many pur-
poses to avoid level (4), and to work instead with the symbolic coordinate-free
expressions on levels (2) and (3).
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Cayley factorization, (3)→(2), refers to the translation of a bracket poly-
nomial into an equivalent Grassmann-Cayley expression involving only joins and
meets. The input polynomial must be homogeneous (i.e., each point must occur the
same number of times in the brackets of each bracket monomial of the polynomial),
and Cayley factorization is not always possible. No practical algorithm is known
in general, but an algorithm [Whi91] is known that finds such a factorization—or
else announces its impossibility—in the multilinear case (each point occurs exactly
once in each monomial). This algorithm is practical up to about 20 points.

MULTILINEAR CAYLEY FACTORIZATION

The multilinear Cayley factorization (MCF) algorithm is too complex to present
here in detail; instead, we give an example and indicate roughly how the algorithm
proceeds on the example.

Let

P = − [acj][deh][bfg] − [cdj][aeh][bfg] − [cdj][abe][fgh]

+ [acj][bdf ][egh] − [acj][bdg][efh] + [acj][bdh][efg].

Note that P is multilinear in the 9 points. The MCF algorithm now looks for
sets of points x, y, . . . , z such that the extensor xy · · · z could be part of a Cayley
factorization of P . For this choice of P , it turns out that no such set larger than a
pair of elements occurs. An example of such a pair is a, d; in fact, if d is replaced
by a in P , leaving two a’s in each term of P , although in different brackets, the
resulting bracket polynomial is equal to 0, as can be verified using the straightening
algorithm. The MCF algorithm, using the straightening algorithm as a subroutine,
finds that (a, d), (b, h), (c, j), (f, g) are all the pairs with this property.

The algorithm now looks for combinations of these extensors that could appear
as a meet in a Cayley factorization of P . (For details, see [Whi91].) It finds
in our example that ad ∧ cj is such a combination. As soon as a single such
combination is found, an algebraic substitution involving a new variable, z = ad∧cj,
is performed, and a new bracket polynomial of smaller degree involving this new
variable is derived; the algorithm then begins anew on this polynomial. If no
such combination is found, the input bracket polynomial is then known to have
no Cayley factorization. In our example, this derived polynomial turns out to
be P = [zef ][gbh] − [zeg][fbh], which of necessity is still multilinear. The MCF
algorithm proceeds to find (and we can directly see by consulting Table 60.2.1)
that P = ze ∧ fg ∧ bh. Thus, our final Cayley factorization is output as

P = ((ad ∧ cj) ∨ e) ∧ fg ∧ bh.

It is significant that this algorithm requires no backtracking. For example, once
ad ∧ cj is found as a possible meet in a Cayley factorization of P , it is known that
if P has a Cayley factorization at all, then it must also have one using the factor
ad ∧ cj; hence we are justified in factoring it out, i.e., substituting a new variable
for it. Other Cayley factorizations may be possible, for example,

P = ((fg ∧ bh) ∨ (ad ∧ cj)) ∧ e.

Note that these two factorizations have the same geometric meaning.
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60.4 APPLICATIONS

60.4.1 ROBOTICS

GLOSSARY

Robot arm: A set of rigid bodies, or links, connected in series by joints that
allow relative movement of the successive links, as described below. The first
link is regarded as fixed in position, or tied to the ground, while the last link,
called the end-effector, is the one that grasps objects or performs tasks.

Revolute joint: A joint between two successive links of a robot arm that allows
only a rotation between them. In simpler terms, a revolute joint is a hinge
connecting two links.

Prismatic joint: A joint between two successive links of a robot arm that allows
only a translational movement between the two links.

Screw joint: A joint between two successive links of a robot arm that allows
only a screw movement between the two links.

TABLE 60.4.1 Modeling instantaneous robotics.

ROBOTICS CONCEPT GRASSMANN-CAYLEY EQUIVALENT

Revolute joint on axis ab α(a ∨ b), a 2-extensor

Rotation about line ab β(a ∨ b)

Motion of point p in rotation about line ab β(a ∨ b) ∨ p

Screw joint indecomposable 2-tensor

Prismatic joint 2-extensor at infinity

Motion space of the end-effector, span of the extensors

where j1, j2, . . . , jk are joints in series < j1, j2, . . . , jk >

We are considering here only the instantaneous kinematics or statics of robot
arms, that is, positions and motions at a given instant in time. A robot arm
has a critical configuration if the joint extensors become linearly dependent. If
the arm has six joints in three-space, a critical configuration means a loss of full
mobility. If the arm has a larger number of joints, criticality is defined as any six of
the joint extensors becoming linearly dependent. This can mean severe problems
with the driving program in real-life robots, even when the motion space retains
full dimensionality.

In one sense, criticality is trivial to determine, since we need only compute
a determinant function, called the superbracket, on the six-dimensional space
Λ2(V ). However, if we want to know all the critical configurations of a given robot
arm, this becomes a nontrivial question, that of determining all of the zeroes of
the superbracket. To answer it, we need to express the superbracket in terms of
ordinary brackets. This has been done in [MW91], where the superbracket of the
six 2-extensors a1a2, b1b2, . . . , f1f2 is given by
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[[a1a2, b1b2, c1c2, d1d2, e1e2, f1f2]] =

− [a1a2b1b2][c1c2
•

d1
⋄

e1][
•

d2
⋄

e2 f1f2]

+ [a1a2
•

b1
⋄

c1][
•

b2
⋄

c2 d1d2][e1e2f1f2]

− [a1a2
•

b1
⋄

c1][
•

b2d1d2
⊳
e1][

⋄

c2
⊳
e2f1f2]

+ [a1a2
•

b1
⋄

d1][
•

b2 c1c2
⊳
e1][

⋄

d2
⊳
e2f1f2].

(Here the dots, diamonds, and triangles have the same meaning as the dots in
Section 60.1.)

Consider the particular example of the six-revolute-joint robot arm illustrated
in Figure 60.4.1, whose first two joints lie on intersecting lines, whose third and
fourth joints are parallel, and whose last two joints also lie on intersecting lines.
The larger cylinders in the figure represent the revolute joints. To express the
superbracket, we must choose two points on each joint axis. We may choose b1 = a2,
d1 = c2 (where this point is at infinity), and f1 = e2, as shown by the black dots.
The thin cylinders represent the links; for example, the first link, between a2 and
b2, is connected to the ground (not shown) by joint a1a2, and can therefore only
rotate around the axis a1a2.

FIGURE 60.4.1

Six-revolute-joint robot arm.

a2=b1

a1

b2

c1

d2

e1

e2=f1

f2

Plugging in and deleting terms with a repeated point inside a bracket, we get

− [a1a2b2
•

c1][a2c2d2e2][
•

c2e1e2f2] (60.4.1)

+ [a1a2b2
•

c2][a2c1c2e2][
•

d2e1e2f2] (60.4.2)

= [
•

c1a1a2b2][
•

d2a2c2e2][
•

c2e1e2f2] , (60.4.3)

where each of (60.4.1) and (60.4.2) has two terms because of the dotting, and the
same four terms constitute (60.4.3), since two of the six terms generated by the
dotting are zero because of the repetition of c2 in the second bracket.

Finally, we recognize (60.4.3) as the bracket expansion of

(c1d2c2) ∧ (a1a2b2) ∧ (a2c2e2) ∧ (e1e2f2).

We then recognize that the geometric conditions for criticality are any positions
that make this Grassmann-Cayley expression 0, namely
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(i) one or more of the planes c1c2d2, a1a2b2, a2c2e2, e1e2f2 is degenerate, or

(ii) the four planes have nonempty intersection.

Notice that in an actual robot arm of the type we are considering, none of the
degeneracies in (i) can actually occur.

See Section 51.1 for more information.

60.4.2 BAR FRAMEWORKS

Consider a generically (d−1)-isostatic graph G (see Section 61.1 of this Handbook),
that is, a graph for which almost all realizations in (d−1)-space as a bar framework
are minimally first-order rigid. Since first-order rigidity is a projective invariant
(see Theorem 61.1.25), we would like to know the projective geometric conditions
that characterize all of its nonrigid (first-order flexible) realizations. By Gram’s
theorem, these conditions must be expressible in terms of bracket conditions, and
[WW83] shows that the first-order flexible realizations are characterized by the
zeroes of a single bracket polynomial CG, called the pure condition (see Theorem
61.1.27). Furthermore, [WW83] gives an algorithm to construct the pure condition
CG directly from the graph G. Then we require Cayley factorization to recover the
geometric incidence condition, if it is not already known. Consider the following
examples, illustrated in Figure 60.4.2.

FIGURE 60.4.2

Three examples of bar frameworks.
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a

b

b

b3

a

b

(i) The graph G is the edge skeleton of a triangular prism, realized in the plane.
We have CG = [abc][def ]([abe][dfc] − [dbe][afc]), and we may recognize the
factor in parentheses as the third example in Table 60.2.1. Thus CG = 0, and
the framework is first-order flexible, if and only if one of the triangles abc or
def is degenerate, or the three lines ad, be, cf are concurrent, or one or more
of these lines is degenerate.

(ii) The graph G is K3,3, a complete bipartite graph, realized in the plane. Then
CG = [a1a2a3][a1b2b3][b1a2b3][b1b2a3] − [b1b2b3][b1a2a3][a1b2a3][a1a2b3], and
this is the second example in Table 60.2.2. Thus CG = 0, and the framework
is first-order flexible, if and only if the six points lie on a common conic or,
equivalently by Pascal’s theorem, the three points a1b2 ∧ a2b1, a1b3 ∧ a3b1,
a2b3 ∧ a3b2 are collinear.

(iii) The graph G is the edge skeleton of an octahedron, realized in Euclidean 3-
space. Then CG = [abc′a′][bca′b′][cab′c′] + [abc′b′][bca′c′][cab′a′], and this can

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.



1590 N.L. White

be recognized directly as the expansion of the Grassmann-Cayley expression
abc ∧ a′bc′ ∧ a′b′c ∧ ab′c′. Thus CG = 0, and the framework is first-order
flexible, if and only if the four alternating octahedral face planes abc, a′bc′,
a′b′c, and ab′c′ concur, or any one or more of these planes is degenerate. This,
in turn, is equivalent to the same condition on the other four face planes, abc′,
ab′c, a′bc, a′b′c′.

60.4.3 BAR-AND-BODY FRAMEWORKS

A bar-and-body framework consists of a finite number of (d−1)-dimensional
rigid bodies, free to move in Euclidean (d−1)-space, and connected by rigid bars,
with the connections at the ends of each bar allowing free rotation of the bar
relative to the rigid body; i.e., the connections are “universal joints.” Each rigid
body may be replaced by a first-order rigid bar framework in such a way that the
result is one large bar framework, thus in one sense reducing the study of bar-and-
body frameworks to that of bar frameworks. Nevertheless, the combinatorics of
bar-and-body frameworks is quite different from that of bar frameworks, since the
original rigid bodies are not allowed to become first-order flexible in any realization,
contrary to the case with bar frameworks.

A generically isostatic bar-and-body framework has a pure condition, just as
a bar framework has, whose zeroes are precisely the special positions in which
the framework has a first-order flex. However, this pure condition is a bracket
polynomial in the bars of the framework, as opposed to a bracket polynomial in the
vertices, as was the case with bar frameworks. An algorithm to directly compute
the pure condition for a bar-and-body framework, somewhat similar to that for bar
frameworks, is given in [WW87]. We illustrate with the example in Figure 60.4.3,
consisting of three rigid bodies and six bars in the plane. We may interpret the
word “plane” here as “real projective plane.”

FIGURE 60.4.3

A bar-and-body framework.
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Hence V = R
3, and we let W = Λ2(V ) ∼= V ∗ ∼= R

3. We think of the endpoints
of the bars as elements of V , and hence the lines determined by the bars are two-
extensors of these points, or elements of W . The algorithm produces the pure
condition [abc][def ] − [abd][cef ]. This bracket polynomial may be Cayley factored
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as ab ∧ cd ∧ ef , as seen in Table 60.2.1. Now we switch to thinking of a, b, . . . , f
as 2-extensors in V rather than elements of W , and recall that there is a duality
between V and W , hence between Λ(V ) and Λ(W ). Thus, the framework has a
first-order flex if and only if (a ∧ b) ∨ (c ∧ d) ∨ (e ∧ f) = 0 in Λ(V ). Hence the
desired geometric condition for the existence of a first-order flex is that the three
points a ∧ b, c ∧ d, and e ∧ f are collinear. Now a ∧ b is just the center of relative
(instantaneous) motion for the two bodies connected by those two bars: think of
fixing one of the bodies and then rotating the other body about this center; the
lengths of the two bars are instantaneously preserved. The geometric result we have
obtained is just a restatement of the classical theorem of Arnhold-Kempe that in
any flex of three rigid bodies, the centers of relative motion of the three pairs of
bodies must be collinear.

60.4.4 AUTOMATED GEOMETRIC THEOREM-PROVING

J. Richter-Gebert [RG95] uses Grassmann-Cayley algebra to derive bracket condi-
tions for projective geometric incidences in order to produce coordinate-free auto-
matic proofs of theorems in projective geometry. By introducing two circular points
at infinity, the same can be done for theorems in Euclidean geometry [CRG95].

Richter-Gebert’s technique is to reduce each hypothesis to a binomial equa-
tion, that is, an equation with a single product of brackets on each side. For
example, as we have seen, the concurrence of three lines ab, cd, ef may be rewrit-
ten as [acd][bef ] = [bcd][aef ]. Similarly, the collinearity of three points a, b, c may
be expressed as [abd][bce] = [abe][bcd], avoiding the much more obvious expression
[abc] = 0 since it is not of the required form. If all binomial equations are now
multiplied together, and provided they were appropriately chosen in the first place,
common factors may be canceled (which involves nondegeneracy assumptions, so
that the common factors are nonzero), resulting in the desired conclusion. A sur-
prising array of theorems may be cast in this format, and this approach has been
successfully implemented.

More recent work along similar lines, extending it especially to conic geometry,
is by H. Li and Y. Wu [LW03a, LW03b].

60.4.5 COMPUTER VISION

Much of computer vision study involves projective geometry, and hence is very
amenable to the techniques of the Grassmann-Cayley algebra. One reference that
explicitly applies these techniques to a system of up to three pinhole cameras is
Faugeras and Papadopoulo [FP98].

60.5 SOURCES AND RELATED MATERIAL

SURVEYS

[DRS74] and [BBR85]: These two papers survey the properties of the Grassmann-
Cayley algebra (called the “double algebra” in [BBR85]).
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[Whi95]: A more elementary survey than the two above.

[Whi94]: Emphasizes the concrete approach via Plücker coordinates, and gives more
detail on the connections to robotics.

RELATED CHAPTERS

Chapter 9: Geometry and topology of polygonal linkages
Chapter 51: Robotics
Chapter 61: Rigidity and scene analysis
Chapter 62: Rigidity of symmetric frameworks

REFERENCES

[BBR85] M. Barnabei, A. Brini, and G.-C. Rota. On the exterior calculus of invariant theory. J.
Algebra, 96:120–160, 1985.

[CRG95] H. Crapo and J. Richter-Gebert. Automatic proving of geometric theorems. In N. White,
editor, Invariant Methods in Discrete and Computational Geometry, pages 167–196.
Kluwer, Dordrecht, 1995.

[DRS74] P. Doubilet, G.-C. Rota, and J. Stein. On the foundations of combinatorial theory: IX,
combinatorial methods in invariant theory. Stud. Appl. Math., 53:185–216, 1974.

[FP98] O. Faugeras and T. Papadopoulo. Grassmann-Cayley algebra for modelling systems of
cameras and the algebraic equations of the manifold of trifocal tensors. Philos. Trans.

Roy. Soc. London, Ser. A, 356:1123–1152, 1998.

[LW03a] H. Li and Y. Wu Automated short proof generation for projective geometric theorems
with Cayley and bracket algebras, I. Incidence geometry. J. Symbolic Comput., 36:717–
762, 2003.

[LW03b] H. Li and Y. Wu Automated short proof generation for projective geometric theorems
with Cayley and bracket algebras, II. Conic geometry. J. Symbolic Comput., 36:763–809,
2003.

[MW91] T. McMillan and N.L. White. The dotted straightening algorithm. J. Symbolic Comput.,
11:471–482, 1991.

[RG95] J. Richter-Gebert. Mechanical theorem proving in projective geometry. Ann. Math.

Artif. Intell., 13:139–172, 1995.

[RS76] G.-C. Rota and J. Stein. Applications of Cayley algebras. In Colloquio Internazionale

sulle Teorie Combinatorie, pages 71–97, Accademia Nazionale dei Lincei, 1976.

[Stu93] B. Sturmfels. Algorithms in Invariant Theory. Springer-Verlag, New York, 1993.

[Whi91] N. White. Multilinear Cayley factorization. J. Symbolic Comput., 11:421–438, 1991.

[Whi94] N. White. Grassmann-Cayley algebra and robotics. J. Intell. Robot. Syst., 11:91–107,
1994.

[Whi95] N. White. A tutorial on Grassmann-Cayley algebra. In N. White, editor, Invariant

Methods in Discrete and Computational Geometry, pages 93–106. Kluwer, Dordrecht,
1995.

[WW83] N. White and W. Whiteley. The algebraic geometry of stresses in frameworks. SIAM

J. Algebraic Discrete Methods, 4:481–511, 1983.

[WW87] N. White and W. Whiteley. The algebraic geometry of motions in bar-and-body frame-
works. SIAM J. Algebraic Discrete Methods, 8:1–32, 1987.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.


