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INTRODUCTION

The theory of oriented matroids provides a broad setting in which to model, de-
scribe, and analyze combinatorial properties of geometric configurations. Mathe-
matical objects of study that appear to be disjoint and independent, such as point
and vector configurations, arrangements of hyperplanes, convex polytopes, directed
graphs, and linear programs find a common generalization in the language of ori-
ented matroids.

The oriented matroid of a finite set of points P extracts relative position and
orientation information from the configuration; for example, it can be given by a
list of signs that encodes the orientations of all the bases of P . In the passage
from a concrete point configuration to its oriented matroid, metrical information
is lost, but many structural properties of P have their counterparts at the—purely
combinatorial—level of the oriented matroid. (In computational geometry, the
oriented matroid data of an unlabelled point configuration are sometimes called
the order type.) From the oriented matroid of a configuration of points, one can
compute not only that face lattice of the convex hull, but also the set of all its
triangulations and subdivisions (cf. Chapter 16).

We first introduce oriented matroids in the context of several models and mo-
tivations (Section 6.1). Then we present some equivalent axiomatizations (Section
6.2). Finally, we discuss concepts that play central roles in the theory of oriented
matroids (Section 6.3), among them duality, realizability, the study of simplicial
cells, and the treatment of convexity.

6.1 MODELS AND MOTIVATIONS

This section discusses geometric examples that are usually treated on the level of
concrete coordinates, but where an “oriented matroid point of view” gives deeper
insight. We also present these examples as standard models that provide intuition
for the behavior of general oriented matroids.

6.1.1 ORIENTED BASES OF VECTOR CONFIGURATIONS

GLOSSARY

Vector configuration X: A matrix X = (x1, . . . , xn) ∈ (Rd)n, usually assumed
to have full rank d.
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Matroid of X: The pair M
X

= (E,B
X

), where E := {1, 2, . . . , n} and B
X

is the
set of all subsets of E that correspond to bases of (the column space of) X.

Matroid: A pair M = (E,B), where E is a finite set, and B ⊂ 2E is a nonempty
collection of subsets of E (the bases of M) that satisfies the Steinitz exchange
axiom : For all B1, B2 ∈ B and e ∈ B1\B2, there exists an f ∈ B2\B1 such that
(B1\e) ∪ f ∈ B.

Chirotope of X: The map

χ
X

: Ed → {−1, 0,+1}
(λ1, . . . , λd) 7→ sign(det(xλ1

, . . . , xλd
)).

Signs: The elements of the set {−, 0,+}, used as a shorthand for the correspond-
ing elements of {−1, 0,+1}.

Ordinary (unoriented) matroids, as introduced in 1935 by Whitney (see Kung
[Kun86], Oxley [Oxl92]), can be considered as an abstraction of vector configu-
rations in finite dimensional vector spaces over arbitrary fields. All the bases of
a matroid M have the same cardinality d, which is called the rank of the ma-
troid. Equivalently, we can identify M with the characteristic function of the bases
BM : Ed → {0, 1}, where BM (λ) = 1 if and only if {λ1, . . . , λd} ∈ B.

One can obtain examples of matroids as follows: Take a finite set of vectors

X = {x1, x2, . . . , xn} ⊂ V

of rank d in a d-dimensional vector space V over an arbitrary field K and consider
the set of bases of V formed by subsets of the points in X. In other words, the pair

M
X

= (E,B
X

) =
(
{1, . . . , n},

{
{λ1, . . . , λd} | det(xλ1

, . . . , xλd
) 6= 0

} )
forms a matroid.

The basic information about the incidence structure of the points in X is con-
tained in the underlying matroid M

X
. However, the matroid alone without ad-

ditional orientation information contains only very restricted information about a
geometric configuration. For example, any configuration of n points in the plane
in general position (i.e., no three points on a line) after homogenization (that
is, appending a coordinate 1 to the each point) yields a vector configuration in R3

such that any three vectors are linearly independent. Thus all such point configu-
rations yield the same matroid M = U3,n: Here the matroid retains no information
beyond the dimension and size of the configuration, and the fact that it is in general
position.

In contrast to matroids, the theory of oriented matroids considers the struc-
ture of dependencies in vector spaces over ordered fields. Roughly speaking, an
oriented matroid is a matroid where in addition every basis is equipped with an
orientation. These oriented bases have to satisfy an oriented version of the Steinitz
exchange axiom (to be described later). For the affine setting, oriented matroids
not only describe the incidence structure between the points of X and the hyper-
planes spanned by points of X (this is the matroid information); they also encode
the positions of the points relative to the hyperplanes: “Which points lie on the
positive side of a hyperplane, which points lie on the negative side, and which lie
on the hyperplane?” If X ∈ V n is a configuration of n points in a d-dimensional
vector space V over an ordered field K, we can describe the corresponding oriented
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matroid χ
X

by the chirotope, which encodes the orientation of the (d + 1)-tuples
of points in X. The chirotope is very closely related to the oriented matroid of X,
but it encodes much more information than the corresponding matroid, including
orientation and convexity information about the underlying configuration.

6.1.2 CONFIGURATIONS OF POINTS

GLOSSARY

Affine point configuration: A matrix X ′ = (x′1, . . . , x
′
n) ∈ (Rd−1)n, usually

with the assumption that x′1, . . . , x
′
n affinely span Rd−1.

Associated vector configuration: The matrix X ∈ (Rd)n of full rank d ob-
tained from an ordered/labeled point configuration X ′ = (x′1, . . . , x

′
n) by adding

a row of ones. This corresponds to the embedding of the affine space Rd−1 into
the linear vector space Rd via p 7−→ x =

(
p
1

)
.

Homogenization: The step from a point configuration to the associated vector
configuration.

Oriented matroid of an affine point configuration: The oriented matroid
of the associated vector configuration.

Covector of a vector configuration X: Any partition of X = (x1, . . . , xn)
induced by an oriented linear hyperplane into the points on the hyperplane, on
its positive side, and on its negative side. The partition is denoted by a sign
vector C ∈ {−, 0,+}n.

Oriented matroid of X: The collection LX ⊆ {−, 0,+}n of all covectors of X.

Let X := (x1, . . . , xn) ∈ (Rd)n be an n× d matrix and let E := {1, . . . , n}. We
interpret the columns of X as n vectors in the d-dimensional real vector space Rd.
For a linear functional yT ∈ (Rd)∗ we set

C
X

(y) = (sign(yTx1), . . . , sign(yTxn)).

Such a sign vector is called a covector of X. We denote the collection of all
covectors of X by

L
X

:= {C
X

(y) | y ∈ Rd}.
The pair M

X
= (E,L

X
) is called the oriented matroid of X. Here each sign

vector C
X

(y) ∈ L
X

describes the positions of the vectors x1, . . . , xn relative to the

linear hyperplane Hy = {x ∈ Rd | yTx = 0}: the sets

C
X

(y)0 := {e ∈ E | C
X

(y)e = 0}
C
X

(y)+ := {e ∈ E | C
X

(y)e > 0}
C
X

(y)− := {e ∈ E | C
X

(y)e < 0}

describe how Hy partitions the set of points X. Thus C
X

(y)0 contains the points
on Hy, while C

X
(y)+ and C

X
(y)− contain the points on the positive and on the

negative side of Hy, respectively. In particular, if C
X

(y)− = ∅, then all points not
on Hy lie on the positive side of Hy. In other words, in this case Hy determines a
face of the positive cone

pos(x1, . . . , xn) := {λ1x1 + λ2x2 + . . .+ λnxn | 0 ≤ λi ∈ R for 1 ≤ i ≤ n}

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.



162 J. Richter-Gebert and G.M. Ziegler

of all points of X. The face lattice of the cone pos(X) can be recovered from L
X

.

It is simply the set L
X
∩ {+, 0}E , partially ordered by the order induced from the

relation “0 < +.”
If, in the configuration X, we have xi,d = 1 for all 1 ≤ i ≤ n, then we can

consider X as representing homogeneous coordinates of an affine point set X ′ in
Rd−1. Here the affine points correspond to the original points xi after removal of
the dth coordinate. The face lattice of the convex polytope conv(X ′) ⊂ Rd−1 is
then isomorphic to the face lattice of pos(X). Hence, M

X
can be used to recover

the convex hull of X ′.

Thus oriented matroids are generalizations of point configurations in linear or
affine spaces. For general oriented matroids we weaken the assumption that the
hyperplanes spanned by points of the configuration are flat to the assumption that
they only satisfy certain topological incidence properties. Nonetheless, this kind of
picture is sometimes misleading since not all oriented matroids have this type of
representation (compare the “Type II representations” of [BLS+93, Sect. 5.3]).

6.1.3 ARRANGEMENTS OF HYPERPLANES AND OF HYPERSPHERES

GLOSSARY

Hyperplane arrangement H: Collection of (oriented) linear hyperplanes in Rd,
given by normal vectors x1, . . . , xn.

Hypersphere arrangement induced by H: Intersection of H with the unit
sphere Sd−1.

Covectors of H: Sign vectors of the cells in H; equivalently, 0 together with the
sign vectors of the cells in H ∩ Sd−1.

We obtain a different picture if we polarize the situation and consider hy-
perplane arrangements rather than configurations of points. For a real matrix
X := (x1, . . . , xn) ∈ (Rd)n consider the system of hyperplanes H

X
:= (H1, . . . ,Hn)

with
Hi := {y ∈ Rd | yTxi = 0}.

Each vector xi induces an orientation on Hi by defining

H+
i := {y ∈ Rd | yTxi > 0}

to be the positive side of Hi. We define H−i analogously to be the negative side
of Hi. To avoid degenerate cases we assume that X contains at least one proper
basis (i.e., the matrix X has rank d). The hyperplane arrangement H

X
subdivides

Rd into polyhedral cones. Without loss of information we can intersect with the
unit sphere Sd−1 and consider the sphere system

S
X

:=
(
H1 ∩ Sd−1, . . . ,Hn ∩ Sd−1

)
= H

X
∩ Sd−1.

Our assumption that X contains at least one proper basis translates to the fact
that the intersection of all H1 ∩ . . . ∩ Hn ∩ Sd−1 is empty. H

X
induces a cell

decomposition Γ(S
X

) on Sd−1. Each face of Γ(S
X

) corresponds to a sign vector in

{−, 0,+}E that indicates the position of the cell with respect to the (d−2)-spheres
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Hi ∩ Sd−1 (and therefore with respect to the hyperplanes Hi) of the arrangement.
The list of all these sign vectors is exactly the set L

X
of covectors of H

X
.

FIGURE 6.1.1
An arrangement of nine great circles on S2. The
arrangement corresponds to a Pappus configuration.

While the visualization of oriented matroids by sets of points in Rn does not
fully generalize to the case of nonrepresentable oriented matroids, the picture of
hyperplane arrangements has a well-defined extension that also covers all the non-
realizable cases. We will see that as a consequence of the topological representation
theorem of Folkman and Lawrence (Section 6.2.4) every rank d oriented matroid can
be represented as an arrangement of oriented pseudospheres (or pseudohyperplanes)
embedded in the Sd−1 (or in Rd, respectively). Arrangements of pseudospheres are
systems of topological (d−2)-spheres embedded in Sd−1 that satisfy certain inter-
section properties that clearly hold in the case of “straight” arrangements.

6.1.4 ARRANGEMENTS OF PSEUDOLINES

GLOSSARY

Pseudoline: Simple closed curve p in the projective plane RP2 that is topologi-
cally equivalent to a line (i.e., there is a self-homeomorphism of RP2 mapping p
to a straight line).

Arrangement of pseudolines: Collection of pseudolines P := (p1, . . . , pn) in
the projective plane, any two of them intersecting exactly once.

Simple arrangement: No three pseudolines meet in a common point. (Equiva-
lently, the associated oriented matroid is uniform.)

Equivalent arrangements: Arrangements P1 and P2 that generate isomorphic
cell decompositions of RP2. (In this case there exists a self-homeomorphism of
RP2 mapping P1 to P2.)

Stretchable arrangement of pseudolines: An arrangement that is equivalent
to an arrangement of projective lines.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.



164 J. Richter-Gebert and G.M. Ziegler

An arrangement of pseudolines in the projective plane is a collection of pseu-
dolines such that any two pseudolines intersect in exactly one point, where they
cross. (See Grünbaum [Grü72] and Richter [Ric89].) We will always assume that
P is essential, i.e., that the intersection of all the pseudolines pi is empty.

An arrangement of pseudolines behaves in many respects just like an arrange-
ment of n lines in the projective plane. (In fact, there are only very few combi-
natorial theorems known that are true for straight arrangements, but not true in
general for pseudoarrangements.) Figure 6.1.1 shows a small example of a non-
stretchable arrangement of pseudolines. (It is left as a challenging exercise to the
reader to prove the nonstretchability.) Up to isomorphism this is the only simple
nonstretchable arrangement of 9 pseudolines [Ric89] [Knu92]; every arrangement of
8 (or fewer) pseudolines is stretchable [GP80].

FIGURE 6.1.2
A nonstretchable arrangement of nine pseudolines. It was
obtained by Ringel [Rin56] as a perturbation of the Pappus
configuration.

To associate with a projective arrangement P an oriented matroid we represent
the projective plane (as customary) by the 2-sphere with antipodal points identi-
fied. With this, every arrangement of pseudolines gives rise to an arrangement of
great pseudocircles on S2. For each great pseudocircle on S2 we choose a positive
side. Each cell induced by P on S2 now corresponds to a unique sign vector. The
collection of all these sign vectors again forms a set of covectors LP\{0} of an
oriented matroid of rank 3. Conversely, as a special case of the topological repre-
sentation theorem (see Theorem 6.2.4 below), every oriented matroid of rank 3 has
a representation by an oriented pseudoline arrangement.

Thus we can use pseudoline arrangements as a standard picture to represent
rank 3 oriented matroids. The easiest picture is obtained when we restrict ourselves
to the upper hemisphere of S2 and assume w.l.o.g. that each pseudoline crosses the
equator exactly once, and that the crossings are distinct (i.e., no intersection of
the great pseudocircles lies on the equator). Then we can represent this upper
hemisphere by an arrangement of mutually crossing, oriented affine pseudolines in
the plane R2. (We did this implicitly while drawing Figure 6.1.2.) For a reason-
ably elementary proof of the fact that rank 3 oriented matroids are equivalent to
arrangements of pseudolines see Bokowski, Mock, and Streinu [BMS01].

By means of this equivalence, all problems concerning pseudoline arrangements
can be translated to the language of oriented matroids. For instance, the problem
of stretchability is equivalent to the realizability problem for oriented matroids.
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6.2 AXIOMS AND REPRESENTATIONS

In this section we define oriented matroids formally. It is one of the main features
of oriented matroid theory that the same object can be viewed under quite dif-
ferent aspects. This results in the fact that there are many different equivalent
axiomatizations, and it is sometimes very useful to “jump” from one point of view
to another. Statements that are difficult to prove in one language may be easy
in another. For this reason we present here several different axiomatizations. We
also give a (partial) dictionary that indicates how to translate among them. For a
complete version of the basic equivalence proofs—which are highly nontrivial—see
[BLS+93, Chapters 3 and 5].

We will give axiomatizations of oriented matroids for the following four types
of representations:
• collections of covectors,
• collections of cocircuits,
• signed bases, and
• arrangements of pseudospheres.

In the last part of this section these concepts are illustrated by an example.

GLOSSARY

Sign vector: Vector C in {−, 0,+}E , where E is a finite index set, usually
{1, . . . , n}. For e ∈ E, the e-component of C is denoted by Ce.

Positive, negative, and zero part of C:

C+ := {e ∈ E | Ce = +},
C− := {e ∈ E | Ce = −},
C0 := {e ∈ E | Ce = 0}.

Support of C: C := {e ∈ E | Ce 6= 0}.
Zero vector: 0 := (0, . . . , 0) ∈ {−, 0,+}E .

Negative of a sign vector: −C, defined by (−C)+ := C−, (−C)− := C+ and
(−C)0 = C0.

Composition of C and D: (C ◦D)e :=

{
Ce if Ce 6= 0,

De otherwise.

Separation set of C and D: S(C,D) := {e ∈ E | Ce = −De 6= 0}.

We partially order the set of sign vectors by “0 < +” and “0 < −”. The
partial order on sign vectors, denoted by C ≤ D, is understood componentwise;
equivalently, we have

C ≤ D ⇐⇒
[
C+ ⊂ D+ and C− ⊂ D−

]
.

For instance, if C := (+,+,−, 0,−,+, 0, 0) and D := (0, 0,−,+,+,−, 0,−), then
we have:

C+ = {1, 2, 6}, C− = {3, 5}, C0 = {4, 7, 8}, C = {1, 2, 3, 5, 6},
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C ◦D = (+,+,−,+,−,+, 0,−), C ◦D ≥ C, S(C,D) = {5, 6}.
Furthermore, for x ∈ Rn, we denote by σ(x) ∈ {−, 0,+}E the image of x under the
componentwise sign function σ that maps Rn to {−, 0,+}E .

6.2.1 COVECTOR AXIOMS

Definition: An oriented matroid given in terms of its covectors is a pairM :=
(E,L), where L ⊆ {−, 0,+}E satisfies

(CV0) 0 ∈ L

(CV1) C ∈ L =⇒ −C ∈ L

(CV2) C,D ∈ L =⇒ C ◦D ∈ L

(CV3) C,D ∈ L, e ∈ S(C,D) =⇒
there is a Z ∈ L with Ze = 0 and with Zf = (C ◦D)f for f ∈ E\S(C,D).

It is not difficult to check that these covector axioms are satisfied by the sign
vector system L

X
of the cells in a hyperplane arrangement H

X
, as defined in the

previous section. The first two axioms are satisfied trivially. For (CV2) assume
that xC and xD are points in Rd with σ(xTC · X) = C ∈ L

X
and σ(xTD · X) =

D ∈ L
X

. Then (CV2) is implied by the fact that for sufficiently small ε > 0 we

have σ((xC + εxD)T · X) = C ◦ D. The geometric content of (CV3) is that if
He := {y ∈ Rd | yTxe = 0} is a hyperplane separating xC and xD, then there exists
a point xZ on He with the property that xZ is on the same side as xC and xD for
all hyperplanes not separating xC and xD. We can find such a point by intersecting
He with the line segment that connects xC and xD.

As we will see later the partially ordered set (L,≤) describes the face lattice of
a cell decomposition of the sphere Sd−1 by pseudohyperspheres. Each sign vector
corresponds to a face of the cell decomposition. We define the rank d ofM = (E,L)
to be the (unique) length of the maximal chains in (L,≤) minus one. In the case
of realizable arrangements S

X
of hyperspheres, the lattice (L

X
,≤) equals the face

lattice of the cell complex of the arrangement (see Section 6.2.4).

6.2.2 COCIRCUITS

The covectors of (inclusion-)minimal support in L\{0} correspond to the 0-faces
(= vertices) of the cell decomposition that we have just described. We call the set
C∗(M) of all such minimal covectors the cocircuits of M. An oriented matroid
can be described by its set of cocircuits, as shown by the following theorem.

THEOREM 6.2.1 Cocircuit Characterization

A collection C∗ ⊂ {−, 0,+}E is the set of cocircuits of an oriented matroid M if
and only if it satisfies

(CC0) 0 6∈ C∗

(CC1) C ∈ C∗ =⇒ −C ∈ C∗

(CC2) for all C,D ∈ C∗ we have: C ⊂ D =⇒ C = D or C = −D
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(CC3) C,D ∈ C∗, C 6= −D, and e ∈ S(C,D) =⇒
there is a Z ∈ C∗ with Z+ ⊂ (C+ ∪D+)\{e} and Z− ⊂ (C− ∪D−)\{e}.

THEOREM 6.2.2 Covector/Cocircuit Translation

For every oriented matroid M, one can uniquely determine the set C∗ of cocircuits
from the set L of covectors of M, and conversely, as follows:

(i) C∗ is the set of sign vectors with minimal support in L\{0}:
C∗ = {C ∈ L\{{0}} | C ′ ≤ C =⇒ C ′ ∈ {0, C}}

(ii) L is the set of all sign vectors obtained by successive composition of a finite
number of cocircuits from C∗:
L = {C1 ◦ . . . ◦ Ck | k ≥ 0, C1, . . . , Ck ∈ C∗}.
(The zero vector is obtained as the composition of an empty set of covectors.)

In part (ii) of this result one may assume additionally that the sign vectors Ci are
compatible , that is, they do not have opposite nonzero signs in any component,
so that the composition is commutative.

6.2.3 CHIROTOPES

GLOSSARY

Alternating sign map: A map χ : Ed −→ {−, 0,+} such that any transposition
of two components changes the sign: χ(τij(λ)) = −χ(λ).

Chirotope: An alternating sign map χ that encodes the basis orientations of an
oriented matroid M of rank d.

We now present an axiom system for chirotopes, which characterizes oriented
matroids in terms of basis orientations. Here an algebraic connection to deter-
minant identities becomes obvious. Chirotopes are the main tool for translating
problems in oriented matroid theory to an algebraic setting [BS89a]. They also
form a description of oriented matroids that is very practical for many algorithmic
purposes (for instance in computational geometry; see Knuth [Knu92]).

Definition: Let E := {1, . . . , n} and 0 ≤ d ≤ n. A chirotope of rank d is an
alternating sign map χ : Ed → {−, 0,+} that satisfies

(CHI1) the map |χ| : Ed → {0, 1}, λ 7→ |χ(λ)| is a matroid, and

(CHI2) for every λ ∈ Ed−2 and a, b, c, d ∈ E\λ the set{
χ(λ, a, b) · χ(λ, c, d), −χ(λ, a, c) · χ(λ, b, d), χ(λ, a, d) · χ(λ, b, c)

}
either contains {−1,+1} or equals {0}.

Where does the motivation of this axiomatization come from? If we again
consider a configuration X := (x1, . . . , xn) of vectors in Rd, we can observe the
following identity among the d× d submatrices of X:

det(xλ1 , . . . , xλd−2
, xa, xb) · det(xλ1 , . . . , xλd−2

, xc, xd)

− det(xλ1
, . . . , xλd−2

, xa, xc) · det(xλ1
, . . . , xλd−2

, xb, xd)

+ det(xλ1
, . . . , xλd−2

, xa, xd) · det(xλ1
, . . . , xλd−2

, xb, xc) = 0
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for all λ ∈ Ed−2 and a, b, c, d ∈ E\λ. Such a relation is called a three-term
Grassmann–Plücker identity. If we compare this identity to our axiomatiza-
tion, we see that (CHI2) implies that

χ
X

: Ed → {−, 0,+}
(λ1, . . . , λd) 7→ sign(det(xλ1

, . . . , xλd
))

is consistent with these identities. More precisely, if we consider χ
X

as defined
above for a vector configuration X, the above Grassmann–Plücker identities imply
that (CHI2) is satisfied. (CHI1) is also satisfied since for the vectors of X the
Steinitz exchange axiom holds. (In fact the exchange axiom is a consequence of
higher order Grassmann–Plücker identities.)

Consequently, χ
X

is a chirotope for every X ∈ (Rd)n. Thus chirotopes can be
considered as a combinatorial model of the determinant values on vector configu-
rations. The following is not easy to prove, but essential.

THEOREM 6.2.3 Chirotope/Cocircuit Translation

For each chirotope χ of rank d on E := {1, . . . , n} the set

C∗(χ) =
{(
χ(λ, 1), χ(λ, 2), . . . , χ(λ, n)

) ∣∣ λ ∈ Ed−1}
forms the set of cocircuits of an oriented matroid. Conversely, for every oriented
matroid M with cocircuits C∗ there exists a unique pair of chirotopes {χ,−χ} such
that C∗(χ) = C∗(−χ) = C∗.

The retranslation of cocircuits into signs of bases is straightforward but needs
extra notation. It is omitted here.

6.2.4 ARRANGEMENTS OF PSEUDOSPHERES

GLOSSARY

A (d-1)-sphere: The standard unit sphere Sd−1 := {x ∈ Rd | ||x|| = 1}, or any
homeomorphic image of it.

Pseudosphere: The image s ⊂ Sd−1 of the equator {x ∈ Sd−1 | xd = 0} in the
unit sphere under a self-homeomorphism φ : Sd−1 → Sd−1. (This definition de-
scribes topologically tame embeddings of a (d−2)-sphere in Sd−1. Pseudospheres
behave “nicely” in the sense that they divide Sd−1 into two open sets, its sides,
that are homeomorphic to open (d−1)-balls.)

Oriented pseudosphere: A pseudosphere together with a choice of a positive
side s+ and a negative side s−.

Arrangement of pseudospheres: A set of n pseudospheres in Sd−1 with the
extra condition that any subset of d + 2 or fewer pseudospheres is realizable :
it defines a cell decomposition of Sd−1 that is isomorphic to a decomposition by
an arrangement of d+ 2 linear hyperplanes.

Essential arrangement: An arrangement such that the intersection of all the
pseudospheres is empty.

Rank: The codimension in Sd−1 of the intersection of all the pseudospheres. For
an essential arrangement in Sd−1, the rank is d.
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Topological representation of M = (E,L): An essential arrangement of ori-
ented pseudospheres such that L is the collection of sign vectors associated with
the cells of the arrangement.

One of the most important interpretations of oriented matroids is given by
the topological representation theorem of Folkman and Lawrence [FL78]; see also
[BLS+93, Chapters 4 and 5] and [BKMS05]. It states that oriented matroids are in
bijection to (combinatorial equivalence classes of) arrangements of oriented pseu-
dospheres. Arrangements of pseudospheres are a topological generalization of hy-
perplane arrangements, in the same way in which arrangements of pseudolines gen-
eralize line arrangements. Thus every rank d oriented matroid describes a certain
cell decomposition of the (d−1)-sphere. Arrangements of pseudospheres are collec-
tions of pseudospheres that have intersection properties just like those satisfied by
arrangements of proper subspheres.

Definition: A finite collection P = (s1, s2, . . . , sn) of pseudospheres in Sd−1 is an
arrangement of pseudospheres if the following conditions hold (we set E :=
{1, . . . , n}):

(PS1) For all A ⊂ E the set SA =
⋂
e∈A se is a topological sphere.

(PS2) If SA 6⊂ se, for A ⊂ E, e ∈ E, then SA ∩ se is a pseudosphere in SA with
sides SA ∩ s+e and SA ∩ s−e .

Notice that this definition permits two pseudospheres of the arrangement to be
identical. An entirely different, but equivalent, definition is given in the glossary.

We see that every essential arrangement of pseudospheres P partitions the
(d−1)-sphere into a regular cell complex Γ(P). Each cell of Γ(P) is uniquely de-
termined by a sign vector in {−, 0,+}E encoding the relative position with respect
to each pseudosphere si. Conversely, Γ(P) characterizes P up to homeomorphism.
An arrangement of pseudospheres P is realizable if there exists an arrangement
of proper spheres S

X
with Γ(P) ∼= Γ(S

X
).

The translation of arrangements of pseudospheres to oriented matroids is given
by the topological representation theorem of Folkman and Lawrence [FL78], as
follows. (For the definition of “loop,” see Section 6.3.1.)

THEOREM 6.2.4 The Topological Representation Theorem (Pseudosphere/
Covector Translation)

If P is an essential arrangement of pseudospheres on Sd−1 then Γ(P) ∪ {0} forms
the set of covectors of an oriented matroid of rank d. Conversely, for every oriented
matroid (E,L) of rank d (without loops) there exists an essential arrangement of
pseudospheres P on Sd−1 with Γ(P) = L\{0}.

6.2.5 REALIZABILITY AND DUALITY

GLOSSARY

Realizable oriented matroid: Oriented matroid M such that there is a vector
configuration X with M

X
=M.
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Realization of M: A vector configuration X with M
X

=M.

Orthogonality: Two sign vectors C,D ∈ {−, 0,+}E are orthogonal if the set

{Ce ·De | e ∈ E}

either equals {0} or contains {+,−}. We then write C ⊥ D.

Vector of M: A sign vector that is orthogonal to all covectors ofM; a covector
of the dual oriented matroid M∗.

Circuit of M: A vector of minimal nonempty support; a cocircuit of the dual
oriented matroid M∗.

Realizability is a crucial (and hard-to-decide) property of oriented matroids
that may be discussed in any of the models/axiomatizations that we have intro-
duced: An oriented matroid given by its covectors, cocircuits, chirotope, or by a
pseudosphere arrangement is realizable if there is a vector configuration or a hy-
persphere arrangement which produces these combinatorial data.

There is a natural duality structure relating oriented matroids of rank d on n
elements to oriented matroids of rank n−d on n elements. It is an amazing fact that
the existence of such a duality relation can be used to give another axiomatization
of oriented matroids (see [BLS+93, Section 3.4]). Here we restrict ourselves to the
definition of the dual of an oriented matroid M.

THEOREM 6.2.5 Duality

For every oriented matroidM = (E,L) of rank d there is a unique oriented matroid
M∗ = (E,L∗) of rank |E| − d given by

L∗ =
{
D ∈ {−, 0,+}E

∣∣ C ⊥ D for every C ∈ L
}
.

M∗ is called the dual of M. In particular, (M∗)∗ =M.

In particular, the cocircuits of the dual oriented matroid M∗, which we call
the circuits of M, also determine M. Hence the collection C(M) of all circuits of
an oriented matroid M, given by

C(M) := C∗(M∗),

is characterized by the same cocircuit axioms. Analogously, the vectors of M are
obtained as the covectors of M∗; they are characterized by the covector axioms.

An oriented matroid M is realizable if and only if its dual M∗ is realizable.
The reason for this is that a matrix (Id|A) representsM if and only if (−AT |In−d)
represents M∗. (Here Id denotes a d × d identity matrix, A ∈ Rd×(n−d), and

AT ∈ R(n−d)×d denotes the transpose of A.)
Thus for a realizable oriented matroid M

X
the vectors represent the linear

dependencies among the columns of X, while the circuits represent minimal linear
dependencies. Similarly, in the pseudoarrangements picture, circuits correspond
to minimal systems of closed hemispheres that cover the whole sphere, while vec-
tors correspond to consistent unions of such covers that never require the use of
both hemispheres determined by a pseudosphere. This provides a direct geometric
interpretation of circuits and vectors.
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6.2.6 AN EXAMPLE

We close this section with an example that demonstrates the different representa-
tions of an oriented matroid. Consider the planar point configuration X given in
Figure 6.2.1(left).

FIGURE 6.2.1
An example of an oriented matroid on 6 elements.

Homogeneous coordinates for X are given by

X :=


0 3 1
−3 1 1
−2 −2 1

2 −2 1
3 1 1
0 0 1

 .

The chirotope χ
X

of M is given by the orientations:

χ(1, 2, 3) = + χ(1, 2, 4) = + χ(1, 2, 5) = + χ(1, 2, 6) = + χ(1, 3, 4) = +
χ(1, 3, 5) = + χ(1, 3, 6) = + χ(1, 4, 5) = + χ(1, 4, 6) = − χ(1, 5, 6) = −
χ(2, 3, 4) = + χ(2, 3, 5) = + χ(2, 3, 6) = + χ(2, 4, 5) = + χ(2, 4, 6) = +
χ(2, 5, 6) = − χ(3, 4, 5) = + χ(3, 4, 6) = + χ(3, 5, 6) = + χ(4, 5, 6) = +

Half of the cocircuits of M are given in the table below (the other half is obtained
by negating the data):

(0, 0,+,+,+,+) (0,−, 0,+,+,+) (0,−,−, 0,+,−)
(0,−,−,−, 0,−) (0,−,−,+,+, 0) (+, 0, 0,+,+,+)
(+, 0,−, 0,+,+) (+, 0,−,−, 0,−) (+, 0,−,−,+, 0)
(+,+, 0, 0,+,+) (+,+, 0,−, 0,+) (+,+, 0,−,−, 0)
(+,+,+, 0, 0,+) (−,+,+, 0,−, 0) (−,−,+,+, 0, 0)

Observe that the cocircuits correspond to the point partitions produced by hyper-
planes spanned by points. Half of the circuits of M are given in the next table.
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The circuits correspond to sign patterns induced by minimal linear dependencies
on the rows of the matrix X. It is easy to check that every pair consisting of a
circuit and a cocircuit fulfills the orthogonality condition.

(+,−,+,−, 0, 0) (+,−,+, 0,−, 0) (+,−,+, 0, 0,−)
(+,−, 0,+,−, 0) (+,+, 0,+, 0,−) (+,−, 0, 0,−,+)
(+, 0,−,+,−, 0) (+, 0,+,+, 0,−) (+, 0,+, 0,+,−)
(+, 0, 0,+,−,−) (0,+,−,+,−, 0) (0,+,−,+, 0,−)
(0,+,+, 0,+,−) (0,+, 0,+,+,−) (0, 0,+,−,+,−)

Figure 6.2.1(right) shows the corresponding arrangement of pseudolines. The circle
bounding the configuration represents the projective line at infinity representing
line 6.

An affine picture of a realization of the dual oriented matroid is given in Fig-
ure 6.2.1(middle). The minus-sign at point 6 indicates that a reorientation at point
6 has taken place. It is easy to check that the circuits and the cocircuits interchange
their roles when dualizing the oriented matroid.

6.3 IMPORTANT CONCEPTS

In this section we briefly introduce some very basic concepts in the theory of oriented
matroids. The list of topics treated here is tailored toward some areas of oriented
matroid theory that are particularly relevant for applications. Thus many other
topics of great importance are left out. In particular, see [BLS+93, Section 3.3] for
minors of oriented matroids, and [BLS+93, Chapter 7] for basic constructions.

6.3.1 SOME BASIC CONCEPTS

In the following glossary, we list some fundamental concepts of oriented matroid
theory. Each of them can be expressed in terms of any one of the representations
of oriented matroids that we have introduced (covectors, cocircuits, chirotopes,
pseudoarrangements), but for each of these concepts some representations are much
more convenient than others. Also, each of these concepts has some interesting
properties with respect to the duality operator—which may be more or less obvious,
depending on the representation that one uses.

GLOSSARY

Direct sum: An oriented matroid M = (E,L) has a direct sum decomposi-
tion, denoted byM =M(E1)⊕M(E2), if E has a partition into nonempty sub-
sets E1 and E2 such that L = L1×L2 for two oriented matroidsM1 = (E1,L1)
and M2 = (E2,L2). If M has no direct sum decomposition, then it is irre-
ducible.

Loops and coloops: A loop of M = (E,L) is an element e ∈ E that satisfies
Ce = 0 for all C ∈ L. A coloop satisfies L ∼= L′×{−, 0,+}, where L′ is obtained
by deleting the e-components from the vectors in L. If M has a direct sum
decomposition with E2 = {e}, then e is either a loop or a coloop.
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Acyclic oriented matroid: Oriented matroidM = (E,L) for which (+, . . . ,+)
is a covector in L; equivalently, the union of the supports of all nonnegative
cocircuits is E.

Totally cyclic oriented matroid: An oriented matroid without nonnegative
cocircuits; equivalently, L ∩ {0,+}E = {0}.

Uniform: An oriented matroid M of rank d on E is uniform if all of its co-
circuits have support of size |E| − d + 1, that is, they have exactly d − 1 zero
entries. Equivalently, M is uniform if its chirotope has all values in {+,−}.

THEOREM 6.3.1 Duality II

Let M be an oriented matroid on the ground set E, and M∗ its dual.

• M is acyclic if and only if M∗ is totally cyclic. (However, “most” oriented
matroids are neither acyclic nor totally cyclic!)

• e ∈ E is a loop of M if and only if it is a coloop of M∗.
• M is uniform if and only if M∗ is uniform.

• M is a direct sum M(E) = M(E1) ⊕M(E2) if and only if M∗ is a direct
sum M∗(E) =M∗(E1)⊕M∗(E2).

Duality of oriented matroids captures, among other things, the concepts of
linear programming duality [BK92] [BLS+93, Chapter 10] and the concept of Gale
diagrams for polytopes [Grü67, Section 5.4] [Zie95, Lecture 6]. For the latter, we
note here that the vertex set of a d-dimensional convex polytope P with d+k vertices
yields a configuration of d + k vectors in Rd+1, and thus an oriented matroid of
rank d+ 1 on d+ k points. Its dual is a realizable oriented matroid of rank k − 1,
the Gale diagram of P . It can be modeled by a signed affine point configuration
of dimension k − 2, called an affine Gale diagram of P . Hence, for “small”
k, we can represent a (possibly high-dimensional) polytope with “few vertices” by
a low-dimensional point configuration. In particular, this is beneficial in the case
k = 4, where polytopes with “universal” behavior can be analyzed in terms of their
2-dimensional affine Gale diagrams. For further details, see Chapter 15 of this
Handbook.

6.3.2 REALIZABILITY AND REALIZATION SPACES

GLOSSARY

Realization space: Let χ : Ed → {−, 0,+} be a chirotope with χ(1, . . . , d) = +.
The realization space R(χ) is the set of all matrices X ∈ Rd·n with χ

X
= χ and

xi = ei for i = 1, . . . , d, where ei is the ith unit vector. IfM is the corresponding
oriented matroid, we write R(M) = R(χ).

Rational realization: A realization X ∈ Qd·n; that is, a point in R(χ) ∩Qd·n.

Basic primary semialgebraic set: The (real) solution set of an arbitrary finite
system of polynomial equations and strict inequalities with integer coefficients.

Existential Theory of the Reals: The problem of solving arbitrary systems of
polynomial equations and inequalities with integer coefficients.
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Stable equivalence: A strong type of arithmetic and homotopy equivalence. Two
semialgebraic sets are stably equivalent if they can be connected by a sequence of
rational coordinate changes, together with certain projections with contractible
fibers. (See [RZ95] and [Ric96] for details.) In particular, two stably equivalent
semialgebraic sets have the same number of components, they are homotopy
equivalent, and either both or neither of them have rational points.

One of the main problems in oriented matroid theory is to design algorithms
that find a realization of a given oriented matroid if it exists. However, for oriented
matroids with large numbers of points, one cannot be too optimistic, since the real-
izability problem for oriented matroids is NP-hard. This is one of the consequences
of Mnëv’s universality theorem below. An upper bound for the worst-case complex-
ity of the realizability problem is given by the following theorem. It follows from
general complexity bounds for algorithmic problems about semialgebraic sets by
Basu, Pollack, and Roy [BPR96] [BPR03] (see also Chapter 37 of this Handbook).

THEOREM 6.3.2 Complexity of the Best General Algorithm Known

The realizability of a rank d oriented matroid on n points can be decided by solving
a system of S =

(
n
d

)
real polynomial equations and strict inequalities of degree at

most D = d − 1 in K = (n − d − 1)(d − 1) variables. Thus, with the algorithms
of [BPR96], the number of bit operations needed to decide realizability is (in the
Turing machine model of complexity) bounded by (S/K)K ·S ·DO(K) in a situation
where d is fixed and n is large.

THE UNIVERSALITY THEOREM

A basic observation is that all oriented matroids of rank 2 are realizable. In partic-
ular, up to change of orientations and permuting the elements in E there is only one
uniform oriented matroid of rank 2. The realization space of an oriented matroid
of rank 2 is always stably equivalent to {0}; in particular, if M is uniform of rank
2 on n elements, then R(M) is isomorphic to an open subset of R2n−4.

In contrast to the rank 2 case, Mnëv’s universality theorem states that for
oriented matroids of rank 3, the realization space can be “arbitrarily complicated.”
Here is what one can observe for oriented matroids on few elements:

• The realization spaces of all realizable uniform oriented matroids of rank 3
and at most 9 elements are contractible (Richter [Ric89]).

• There is a realizable rank 3 oriented matroid on 9 elements that has no real-
ization with rational coordinates (Perles [Grü67, p. 93]).

• There is a realizable rank 3 oriented matroid on 13 elements with disconnected
realization space (Tsukamoto [Tsu13]).

The universality theorem is a fundamental statement with various implications for
the configuration spaces of various types of combinatorial objects.

THEOREM 6.3.3 Mnëv’s Universality Theorem [Mnë88]

For every basic primary semialgebraic set V defined over Z there is a chirotope χ
of rank 3 such that V and R(χ) are stably equivalent.
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Although some of the facts in the following list were proved earlier than Mnëv’s
universality theorem, they all can be considered as consequences of the construction
techniques used by Mnëv.

CONSEQUENCES OF THE UNIVERSALITY THEOREM

1. The full field of algebraic numbers is needed to realize all oriented matroids
of rank 3.

2. The realizability problem for oriented matroids is NP-hard (Mnëv [Mnë88],
Shor [Sho91]).

3. The realizability problem for oriented matroids is (polynomial-time-)equivalent
to the Existential Theory of the Reals (Mnëv [Mnë88]).

4. For every finite simplicial complex ∆, there is an oriented matroid whose
realization space is homotopy equivalent to ∆.

5. Realizability of rank 3 oriented matroids cannot be characterized by excluding
a finite set of “forbidden minors” (Bokowski and Sturmfels [BS89b]).

6. In order to realize all combinatorial types of integral rank 3 oriented ma-
troids on n elements, even uniform ones, in the integer grid {1, 2, . . . , f(n)}3,
the “coordinate size” function f(n) has to grow doubly exponentially in n
(Goodman, Pollack, and Sturmfels [GPS90]).

7. The isotopy problem for oriented matroids (Can one given realization ofM
be continuously deformed, through realizations, to another given one?) has
a negative solution in general, even for uniform oriented matroids of rank 3
[JMSW89].

6.3.3 TRIANGLES AND SIMPLICIAL CELLS

There is a long tradition of studying triangles in arrangements of pseudolines. In
his 1926 paper [Lev26], Levi already considered them to be important structures.
There are good reasons for this. On the one hand, they form the simplest possible
cells of full dimension, and are therefore of basic interest. On the other hand, if
the arrangement is simple, triangles locate the regions where a “smallest” local
change of the combinatorial type of the arrangement is possible. Such a change
can be performed by taking one side of the triangle and “pushing” it over the
vertex formed by the other two sides. It was observed by Ringel [Rin56] that
any two simple arrangements of pseudolines can be deformed into one another by
performing a sequence of such “triangle flips.”

Moreover, the realizability of a pseudoline arrangement may depend on the sit-
uation at the triangles. For instance, if any one of the triangles in the nonrealizable
example of Figure 6.1.2 other than the central one is flipped, we obtain a realizable
pseudoline arrangement.

TRIANGLES IN ARRANGEMENTS OF PSEUDOLINES

Let P be any arrangement of n pseudolines.
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1. For any pseudoline ` in P there are at least 3 triangles adjacent to `.
Either the n−1 pseudolines different from ` intersect in one point (i.e., P is a
near-pencil), or there are at least n− 3 triangles that are not adjacent to `.
Thus P contains at least n triangles (Levi [Lev26]).

2. P is simplicial if all its regions are bounded by exactly 3 (pseudo)lines.
Except for the near-pencils, there are two infinite classes of simplicial line
arrangements and 94 additional “sporadic” simplicial line arrangements (and
many more simplicial pseudoarrangements) known: See Grünbaum [Grü71]
with the recent updates by Grünbaum [Grü09], and Cuntz [Cun12], who also
classified the simplicial pseudoarrangements up to n = 27 pseudolines; the
first nonstretchable example occurs for n = 15.

3. If P is simple, then it contains at most n(n−1)
3 triangles.

For infinitely many values of n, there exists a simple arrangement with n(n−1)
3

triangles (Harborth and Roudneff, see [Rou96]).

4. Any two simple arrangements P1 and P2 can be deformed into one another
by a sequence of simplicial flips (Ringel [Rin56]).

FIGURE 6.3.1
A simple arrangement of 28 pseudolines
with a maximal number of 252 triangles.

Every arrangement of pseudospheres in Sd−1 has a centrally symmetric repre-
sentation. Thus we can always derive an arrangement of projective pseudohyper-
planes (pseudo (d−2)-planes in RPd−1) by identifying antipodal points. The proper
analogue for the triangles in rank 3 are the (d−1)-simplices in projective arrange-
ments of pseudohyperplanes in rank d, i.e., the regions bounded by the minimal
number, d, of pseudohyperplanes. We call an arrangement simple if no more than
d− 1 planes meet in a point.

It was conjectured by Las Vergnas in 1980 [Las80] that (as in the rank 3 case)
any two simple arrangements can be transformed into each other by a sequence of
flips of simplicial regions. In particular this requires that every simple arrangement
contain at least one simplicial region (which was also conjectured by Las Vergnas).
If we consider the case of realizable arrangements only, it is not difficult to prove

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.



Chapter 6: Oriented matroids 177

that any two members in this subclass can be connected by a sequence of flips of sim-
plicial regions and that each realizable arrangement contains at least one simplicial
cell. In fact, Shannon [Sha79] proved that every arrangement (even the nonsimple
ones) of n projective hyperplanes in rank d contains at least n simplicial regions.
More precisely, for every hyperplane h there are at least d simplices adjacent to
h and at least n − d simplices not adjacent to h. The contrast between the Las
Vergnas conjecture and the results known for the nonrealizable case is dramatic.

SIMPLICIAL CELLS IN PSEUDOARRANGEMENTS

1. There is an arrangement of 8 pseudoplanes in rank 4 having only 7 simplicial
regions (Altshuler and Bokowski [ABS80], Roudneff and Sturmfels [RS88]).

2. Every rank 4 arrangement with n < 13 pseudoplanes has at least one simpli-
cial region (Bokowski and Rohlfs [BR01]).

3. For every k > 2 there is a rank 4 arrangement of 4k pseudoplanes having only
3k+1 simplicial regions. (This result of Richter-Gebert [Ric93] was improved
by Bokowski and Rohlfs [BR01] to arrangements of 7k+ c pseudoplanes with
5k + c simplicial regions, for k ≥ 0 and c ≥ 4.)

4. There is a rank 4 arrangement consisting of 20 pseudoplanes for which one
plane is not adjacent to any simplicial region (Richter-Gebert [Ric93]; im-
proved to 17 pseudoplanes by Bokowski and Rohlfs [BR01]).

OPEN PROBLEMS

The topic of simplicial cells is interesting and rich in structure even in rank 3. The
case of higher dimensions is full of unsolved problems and challenging conjectures.
These problems are relevant for various problems of great geometric and topological
interest, such as the structure of spaces of triangulations. Three key problems are:

1. Classify simplical arrangements. Is it true, at least, that there are only
finitely many types of simplicial arrangements of straight lines outside the
three known infinite families?

2. Does every arrangement of pseudohyperplanes contain at least one simplicial
region?

3. Is it true that any two simple arrangements (of the same rank and the same
number of pseudohyperplanes) can be transformed into one another by a
sequence of flips at simplex regions?

6.4 APPLICATIONS IN POLYTOPE THEORY

Oriented matroid theory has become a very important structural tool for the theory
of polytopes, but also for the algorithmic treatment and classification of polytopes.
In this section we give a brief overview of fundamental concepts and of results.
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MATROID POLYTOPES

The convexity properties of a point configuration X are modeled superbly by the
oriented matroid M

X
. The combinatorial versions of many theorems concerning

convexity also hold on the level of general (including nonrealizable) oriented ma-
troids. For instance, there are purely combinatorial versions of Carathéodory’s,
Radon’s, and Helly’s theorems [BLS+93, Section 9.2].

In particular, oriented matroid theory provides an entirely combinatorial model
of convex polytopes, commonly known as “matroid polytopes,” although “oriented
matroid polytope” might be more appropriate. (Warning: In Combinatorial Opti-
mization, an entirely different object, the 0/1-polytope spanned by the incidence
vectors of the bases of an (unoriented) matroid is also called a “matroid polytope.”)

Definition: The face lattice (sometimes called the Las Vergnas face lattice)
of an acyclic oriented matroid M = (E,L) is the set

FL(M) := {C0 | C ∈ L ∩ {0,+}E},

with the partial order of sign vectors induced from (L,≤), which coincides with the
partial ordered by inclusion of supports. The elements of FL(M) are the faces
of M. The acyclic oriented matroid M = (E,L) is a matroid polytope if {e} is
a face for every e ∈ E.

Every polytope gives rise to a matroid polytope: If P ⊂ Rd is a d-polytope with
n vertices, then the canonical embedding x 7→

(
x
1

)
creates a vector configuration

XP of rank d + 1 from the vertex set of P . The oriented matroid of XP is a
matroid polytope MP , whose face lattice FL(M) is canonically isomorphic to the
face lattice of P .

Matroid polytopes provide a very precise model of (the combinatorial structure
of) convex polytopes. In particular, the topological representation theorem implies
that every matroid polytope of rank d is the face lattice of a regular piecewise
linear (PL) cell decomposition of a (d−2)-sphere. Thus matroid polytopes form an
excellent combinatorial model for convex polytopes: In fact, much better than the
model of PL spheres (which does not have an entirely combinatorial definition).

However, the construction of a polar fails in general for matroid polytopes.
The cellular spheres that represent matroid polytopes have dual cell decompositions
(because they are piecewise linear), but this dual cell decomposition is not in general
a matroid polytope, even in rank 4 (Billera and Munson [BM84]; Bokowski and
Schuchert [BS95]). In other words, the order dual of the face lattice of a matroid
polytope (as an abstract lattice) is not in general the face lattice of a matroid
polytope. (Matroid polytopes form an important tool for polytope theory, not only
because of the parts of polytope theory that work for them, but also because of
those that fail.)

For every matroid polytope one has the dual oriented matroid (which is totally
cyclic, hence not a matroid polytope). In particular, the setup for Gale diagrams
generalizes to the framework of matroid polytopes; this makes it possible to also
include nonpolytopal spheres in a discussion of the realizability properties of poly-
topes. This amounts to perhaps the most powerful single tool ever developed for
polytope theory. It leads to, among other things, the classification of d-dimensional
polytopes with at most d+ 3 vertices, the proof that all matroid polytopes of rank
d+ 1 with at most d+ 3 vertices are realizable, and the construction of nonrational
polytopes as well as of nonpolytopal spheres with d+ 4 vertices.
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ALGORITHMIC APPROACHES TO POLYTOPE CLASSIFICATION

For a long time there has been substantial work in classifying the combinatorial
types of d-dimensional polytopes with a “small” number n of vertices, for d ≥ 4.

For d = 3 the enumeration problem is reduced to the enumeration of 3-
connected planar graphs, by Steinitz’s Theorem 15.1.3. For n ≤ d + 3, it may be
solved by the “Gale diagram” technique introduced by Perles in the 1960s, which
in retrospect may be seen as an incarnation of oriented matroid duality; see Section
15.1.7. For d = 4 one can try to do the enumeration via Schlegel diagrams; thus
Brückner (1910) attempted to classify the simplicial 4-polytopes with 8 vertices.
His work was corrected and completed in the 1960s, see [Grü67].

For the following discussion we restrict our attention to the simplicial case—
there are additional technical problems to deal with in the nonsimplicial case, and
very little work has been done there as yet (see e.g., Brinkmann & Ziegler [BZ17]).

In the simplicial case, at the core of the enumeration problem lies the following
hierarchy:(

simplicial

spheres

)
⊃

(
uniform

matroid polytopes

)
⊃

(
simplicial

convex polytopes

)
.

The classical plan of attack from the 1970s and 1980s, when oriented matroid
technology in the current form was not yet available, was to first enumerate all
isomorphism types of simplicial spheres with given parameters. Then for each
sphere one would try to decide realizability. This has been successfully completed
for the classification of all simplicial 3-spheres with 9 vertices (Altshuler, Bokowski,
and Steinberg [ABS80]) and of all neighborly 5-spheres with 10 vertices (Bokowski
and Shemer [BS87]) into polytopes and nonpolytopes.

In an alternative approach to enumerate all polytopes in a class, largely due to
Bokowski and Sturmfels [BS89a], one tries to bypass the first step of enumeration of
spheres and enumerates directly all possible oriented matroids/matroid polytopes,
and then tries to decide realizability for each single type. Thus one has to effectively
deal with three problems:

(1) enumeration of oriented matroids/matroid polytopes,

(2) proving nonrealizability, or

(3) proving realizability.

(1) For the enumeration problem, Finschi & Fukuda [FF02] developed an effective
approach to generate oriented matroids (including the nonuniform ones!) through
single element extensions: Take an oriented matroid and try to add an element.
Their algorithms relied on cocircuit graphs. It was later observed that the set
of possible single element extensions can be viewed as the set of solutions of a
SAT problem. Moreover, SAT-solvers are readily available “off the shelf” and thus
much easier to employ than the special purpose software that had previously been
developed for such purposes. For example, Miyata & Padrol [MP15] use this as
a key step in the enumeration of neighborly oriented matroids. (The use of SAT-
solvers in oriented matroid theory had been pioneered by Schewe [Sch10], who first
used them for proving that a geometric structure, such as a polytope or a sphere,
does not admit a compatible oriented matroid.)

(2) For proving nonrealizability of oriented matroids, Biquadratic Final Polynomi-
als (BFPs), introduced by Bokowski and Richter-Gebert [BR90], usually outper-
form all the other methods. These can be found effectively by linear programming.
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(This was up to now used mostly for the uniform case, but may work even more
effectively in nonuniform situations; see Brinkmann and Ziegler [BZ17].) Moreover,
nonrealizable oriented matroids that do not have a BFP seem to be rare for the
parameters of the enumeration problems within reach. (It had been observed by
Dress and Sturmfels that every nonrealizable oriented matroid has a final polyno-
mial proof for this fact, but the final polynomials typically are huge and cannot be
found efficiently.) Moreover, recent works by Firsching and others have exploited
that biquadratic final polynomials typically use only a partial oriented matroid, so
BFP proofs can be based on incomplete enumeration trees.

(3) For proving realizability of oriented matroids, exact methods—which might
solve general semialgebraic problems—are not available or inefficient. Randomized
methods can be employed to find realizations, but it seems hard to employ them
for nonuniform oriented matroids; see Fukuda, Miyata and Moriyama [FMM13].

Firsching [Fir17] demonstrated recently that current nonlinear optimization
software can be used very efficiently to find realizations. Those then (as one is using
numerical software with rounding errors) have to be checked in exact arithmetic.
This turned out to work very well for simplicial polytopes, but also in nonuniform
situations, say for inscribed realizations with all vertices on a sphere. If the program
does not find a solution or does not terminate (which happens more often), this does
not yield a proof, but may be interpreted as suggesting that the oriented matroid
might be not realizable.

Another important tool in classification efforts is the use of constructions that
preserve realizability, such as stackings, or lexicographic extensions. The latter is
in particular useful in the context of neighborly polytopes, see Padrol [Pad13].

Recently there has been a number of complete classification results based on
the methods we have mentioned. This includes the classifications of

• simplicial 4-polytopes with 10 vertices [Fir17],

• simplicial 5-polytopes with 9 vertices [FMM13], and

• neighborly 8-polytopes with 12 vertices [MP15].

A comprehensive overview table can be found in [Fir15, p. 17].
Finally, let us note that in the passages from spheres to oriented matroids

and to polytopes there are considerable subtleties involved that lead to important
structural insights. For a given simplicial sphere, the following may apply:

• There may be no matroid polytope that supports it. In this case the sphere
is called nonmatroidal. The Barnette sphere [BLS+93, Proposition 9.5.3] is
an example.

• There may be exactly one matroid polytope. In this (important) case the
sphere is called rigid. That is, a matroid polytope M is rigid if FL(M′) =
FL(M) already impliesM′ =M. For rigid matroid polytopes the face lattice
uniquely defines the oriented matroid, and thus every statement about the
matroid polytope yields a statement about the sphere. In particular, the
matroid polytope and the sphere have the same realization space.

Rigid matroid polytopes are a priori rare; however, the Lawrence construc-
tion [BLS+93, Section 9.3] [Zie95, Section 6.6] associates with every oriented
matroid M on n elements in rank d a rigid matroid polytope Λ(M) with 2n
vertices of rank n + d. The realizations of Λ(M) can be retranslated into
realizations of M.
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Furthermore, even-dimensional neighborly polytopes are rigid (Shemer [She82],
Sturmfels [Stu88]), which is a key property for all approaches to the classi-
fication of neighborly polytopes with few vertices, but also for proving the
universality for simplicial polytopes (see Theorem 6.3.4 below).

• There may be many matroid polytopes.

The situation is similarly complex for the second step, from matroid polytopes to
convex polytopes. In fact, for each matroid polytope the following may apply:

• There may be no convex polytope—this is the case for a nonrealizable matroid
polytope. These exist already with relatively few vertices; namely in rank 5
with 9 vertices [BS95], and in rank 4 with 10 vertices [BLS+93, Proposition
9.4.5].

• There may be essentially only one—this is the rare case where the matroid
polytope is “projectively unique” (cf. Adiprasito and Ziegler [AZ15]).

• There may be many convex polytopes—the space of all polytopes for a given
matroid polytope is the realization space of the oriented matroid, and this
may be “arbitrarily complicated.” This is made precise by Mnëv’s universal-
ity theorem [Mnë88]. Note that for simplicial polytopes, this has been claimed
since the 1980s, but has been proven only recently by Adiprasito and Padrol
[AP17]. (One can prove universality for the realization spaces of uniform ori-
ented matroids of rank 3 from the nonuniform case by a scattering technique
[BS89a, Thm. 6.2]; for polytopes, this technique does not suffice, as Lawrence
extensions (see Chapter 15) destroy simpliciality.)

THEOREM 6.4.1 The Universality Theorem for Polytopes [Mnë88] [AP17]

For every [open] basic primary semialgebraic set V defined over Z there is an integer
d and a [simplicial] d-dimensional polytope P on d+ 4 vertices such that V and the
realization space of P are stably equivalent.

6.5 SOURCES AND RELATED MATERIAL

FURTHER READING

The basic theory of oriented matroids was introduced in two fundamental papers,
Bland and Las Vergnas [BL78] and Folkman and Lawrence [FL78]. We refer to the
monograph by Björner, Las Vergnas, Sturmfels, White, and Ziegler [BLS+93] for
a broad introduction, and for an extensive development of the theory of oriented
matroids. An extensive bibliography is given in Ziegler [Zie96+]. Other introduc-
tions and basic sources of information include Bachem and Kern [BK92], Bokowski
[Bok93] and [Bok06], Bokowski and Sturmfels [BS89a], and Ziegler [Zie95, Lectures
6 and 7].
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[Mnë88] N.E. Mnëv. The universality theorems on the classification problem of configuration va-
rieties and convex polytopes varieties. In O.Ya. Viro, editor, Topology and Geometry—
Rohlin Seminar, vol. 1346 of Lecture Notes in Math., pages 527–544, Springer-Verlag,
Berlin, 1988.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.

edocs.fu-berlin.de/diss/receive/FUDISS_thesis_000000101268


184 J. Richter-Gebert and G.M. Ziegler

[MP15] H. Miyata and A. Padrol. Enumeration of neighborly polytopes and oriented matroids.
Exp. Math., 24:489–505, 2015.

[Oxl92] J. Oxley. Matroid Theory. Oxford Univ. Press, 1992; 2nd revised edition 2011.

[Pad13] A. Padrol. Many neighborly polytopes and oriented matroids, Discrete Comput.
Geom., 50:865–902, 2013.

[Ric89] J. Richter. Kombinatorische Realisierbarkeitskriterien für orientierte Matroide. Mitt.
Math. Sem. Gießen, 194:1–112, 1989.

[Ric93] J. Richter-Gebert. Oriented matroids with few mutations. Discrete Comput. Geom.,
10:251–269, 1993.

[Ric96] J. Richter-Gebert. Realization Spaces of Polytopes. Vol. 1643 of Lecture Notes in Math.,
Springer-Verlag, Berlin, 1996.

[Rin56] G. Ringel. Teilungen der Ebene durch Geraden oder topologische Geraden. Math. Z.,
64:79–102, 1956.

[Rou96] J.-P. Roudneff. The maximum number of triangles in arrangements of pseudolines. J.
Combin. Theory Ser. B, 66:44–74, 1996.

[RS88] J.-P. Roudneff and B. Sturmfels. Simplicial cells in arrangements and mutations of
oriented matroids. Geom. Dedicata, 27:153–170, 1988.

[RZ95] J. Richter-Gebert and G.M. Ziegler. Realization spaces of 4-polytopes are universal.
Bull. Amer. Math. Soc., 32:403–412, 1995.

[Sch10] L. Schewe. Nonrealizable minimal vertex triangulations of surfaces: Showing nonreal-
izability using oriented matroids and satisfiability solvers. Discrete Comput. Geom.,
43:289–302, 2010.

[Sha79] R.W. Shannon. Simplicial cells in arrangements of hyperplanes. Geom. Dedicata,
8:179–187, 1979.

[She82] I. Shemer. Neighborly polytopes. Israel J. Math., 43:291–314, 1982.

[Sho91] P. Shor. Stretchability of pseudolines is NP -hard. In P. Gritzmann and B. Sturmfels,
editors, Applied Geometry and Discrete Mathematics—The Victor Klee Festschrift,
vol 4 of DIMACS Series Discrete Math. Theor. Comp. Sci., pp. 531–554, AMS, Prov-
idence, 1991.

[Stu88] B. Sturmfels. Neighborly polytopes and oriented matroids. European J. Combin.,
9:537–546, 1988.

[Tsu13] Y. Tsukamoto. New examples of oriented matroids with disconnected realization
spaces. Discrete Comput. Geom., 49:287–295, 2013.

[Zie95] G.M. Ziegler. Lectures on Polytopes. Vol. 152 of Graduate Texts in Math., Springer,
New York, 1995; 7th revised printing 2007.

[Zie96+] G.M. Ziegler. Oriented matroids today: Dynamic survey and updated bibliography.
Electron. J. Combin., 3:DS#4, 1996+.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.


