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INTRODUCTION

Geographic information systems (GIS) facilitate the input, storage, manipulation,
analysis, and visualization of geographic data. Geographic data generally has a
location, size, shape, and various attributes, and may have a temporal component
as well. Geographical analysis is important for a GIS. It includes combining different
spatial themes, relating the dependency of phenomena to distance, interpolating,
studying trends and patterns, and more. Without analysis, a GIS could be called
a spatial database.

Not all aspects of GIS are relevant to computational geometry. Human-computer
interaction, and legal aspects of GIS, are also considered part of GIS research. This
chapter focuses primarily on those aspects that are susceptible to algorithms re-
search. Even here, the approach taken within GIS research is different from the
approach a computational geometer would take, with much less initial abstraction
of the problem, and less emphasis on theoretical efficiency. The GIS research field
is multi-disciplinary: it includes researchers from geography, geodesy, cartography,
and computer science. The research areas geodesy, surveying, photogrammetry, and
remote sensing primarily deal with the data input, storage, and correction aspects
of GIS. Cartography mainly concentrates on the visualization aspects.

Section 59.1 deals with spatial data structures important to GIS. Section 59.2
discusses the most common spatial analysis methods. Section 59.3 discusses the vi-
sualization of spatial data, in particular automated cartography. Section 59.4 deals
with Digital Elevation Models (DEMs) and their algorithms. Section 59.5 discusses
algorithmic results on trajectory data. Section 59.6 overviews miscellaneous other
occurrences of geometric algorithms in GIS. Section 59.7 discusses the most impor-
tant contributions that can be made from the computational geometry perspective
to research problems in GIS.

59.1 SPATIAL DATA STRUCTURES

GIS store different types of data separately, such as land cover, elevation, and
municipality boundaries. Therefore, each such data set is stored in a separate data
structure that is tailored to the data, both in terms of representation and searching
efficiency.

Geometric data structures for intersection, point location, and windowing are a
mainstream topic in computational geometry, and are treated at length in Chapters
38, 40, and 42. This section concentrates on concepts and results that are specific
and important to GIS. We overview raster and vector representation of data, prob-
lems that appear in data input and correction in a GIS, and a well-known spatial
indexing structure.
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1556 M. van Kreveld

GLOSSARY

Thematic map layer: Separately stored and manipulatable component of a
map that contains the data of only one specific theme or geographic variable.

(Geographic) feature: Any geographically meaningful object.

Raster structure: Representation of geometric data based on a subdivision of
the underlying space into a regular grid of square pixels.

Vector structure: Representation of geometric data based on the representation
of points with coordinates, and line segments between those points.

Digitizing: Process of transforming cartographic data such as paper maps into
digital form by tracing boundaries with a mouse-like device.

Conflation: Process of rectifying a digital data set by comparison with another
digital data set that covers the same region (cf. rubber sheeting).

Topological vector structure: Vector structure in which incidence and adja-
cency of points, line segments, and faces is explicitly represented.

Quadtree: Tree where every internal node has four children, and which corre-
sponds to a recursive subdivision of a square into four subsquares. The standard
quadtree is for raster data. Leaves correspond to pixels or larger squares that
appear in the recursive subdivision and are uniform in the thematic value.

R-tree: Tree based on a recursive partitioning of a set of objects into subsets,
where every internal node stores a number of pairs (BB,S) equal to the number
subtrees, where BB is the axis-parallel bounding box of all objects that appear
in the subtree S. All leaves have the same depth and store the objects. R-trees
have high (but constant) degree and are well-suited for secondary memory.

59.1.1 RASTER AND VECTOR STRUCTURES

Geographic data is composed of geometry, topology, and attributes. The attributes
contain the semantics of a geographic feature. There are two essentially differ-
ent ways to represent the geometric part of geographic data: raster and vector.
This distinction is the same as representation in image space and object space in
computer graphics (Chapter 52).

Data acquisition and input into a GIS often cause error and imprecision in the
data, which must be corrected either manually or in an automated way. Also, the
digitizing of paper maps yields unstructured collections of polygonal lines in vector
format, to which topological structure is usually added using the GIS.

The topological vector structure obtained could be represented as, for example,
a doubly-connected edge list or a quad-edge structure. But for maps with admin-
istrative boundaries, where long polygonal boundary lines occur where all vertices
have degree 2, such a representation is space-inefficient. It is undesirable to have
a separate object for every vertex and edge, with pointers to the incident features.
The following variation gives better efficiency. Group maximal chains of degree-2
vertices into single objects, and treat them like an edge in the doubly-connected
edge list. More explicitly, a chain stores pointers to the origin vertex (junction or
endpoint), the destination vertex (junction or endpoint), the left face, the right
face, and the next and previous chains in the two cycles of the faces incident to this
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FIGURE 59.1.1

A set of polygons and an example of an R-tree for it.
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chain. Such a representation allows retrieval of k adjacent faces of a face with m
vertices to be reported in O(k) time rather than in O(m) time.

Advances in geographic data modeling and representation include multi-scale
models, temporal and spatio-temporal models, fuzzy models, and qualitative rep-
resentations of location.

59.1.2 R-TREES

The most widely used spatial data structure in GIS is the R-tree of Guttmann
[Gut84]. It is a type of box-tree (see [BCG+96]) that has high (but constant) degree
internal nodes, with all leaves at the same depth. It permits any type of object to
be stored, and supports several types of queries, such as windowing, point location,
and intersection. Insertions and deletions are both supported. The definition of
R-trees does not specify which objects go in which subtree, and different heuristics
for grouping give rise to different versions [BKSS90, KF94, LLE97].

R-trees generally do not have nontrivial worst-case query time bounds, so dif-
ferent versions must be compared experimentally. Only the versions of Agarwal
et al. [ABG+02] and Arge et al. [ABHY08] have a query time bound better than
linear (close to O(

√
n)) when the stored objects are rectangles. These structures

are also I/O-efficient.

59.2 SPATIAL ANALYSIS

Spatial analysis is the process of discovering information implicitly present in one
or more spatial data sets. It includes common GIS operations such as map overlay,
buffer computation, and shortest paths on road networks, but also geostatistical and
spatial data analysis functions such as cluster detection, spatial interpolation, and
spatial modeling. We discuss the most common forms and results in this section.
For cluster analysis and classification, see Chapter 32.
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GLOSSARY

Map overlay: The operation of combining two thematic map layers of the same
region in order to obtain one new map layer, often with a refinement of the
subdivisions used for the input map layers.

Buffer: The region of the plane within a certain specified distance to a geographic
feature.

Neighborhood analysis: The study of how relations between geographic fea-
tures depend on the distance.

Network analysis: The study of distance, reachability, travel time, and sim-
ilar geographic functions that can be defined for network data (graphs with a
geographic meaning).

Cluster analysis: The study of the grouping in sets of geographic features by
proximity.

Trend analysis: The study of time-dependent patterns in geographic data.

Spatial interpolation: The derivation of values at locations based on values at
other (nearby) locations.

Geostatistics: Statistics for data associated with locations in the plane.

59.2.1 MAP OVERLAY

With map overlay, two or more thematic map layers are combined into one. For
example, if one map layer contains elevation contours and another map layer (of
the same region) forest types, then their overlay reveals which types of forest occur
at which elevations. One layer can also serve as a mask for the other layer. Overlay
is essential to locating a region that has various properties that appear in different
thematic map layers. In the spatial database literature, map overlay is also called
spatial join.

Map overlay is commonly solved using a plane sweep like the Bentley-Ottmann
algorithm [BO79] for line segment intersection. This leads to an O((n + k) logn)
time algorithm for two planar subdivisions of complexity O(n), and output com-
plexity O(k). However, map overlay of two thematic map layers is essentially an
extension of a red-blue line segment intersection problem, and can therefore be
solved in optimal O(n log n+ k) time [CEGS94, Cha94, PS94]. In case each subdi-
vision is simply connected, the running time can be improved to O(n+ k) [FH95].

Map overlay in GIS must handle imprecise data as well, and therefore overlay
methods that include sliver removal have been suggested. Essentially, boundaries
that are closer than some pre-specified value are identified in the overlay. This is
also called epsilon filter or fuzzy tolerance [Chr97]. The idea of using an epsilon
band around a cartographic line is due to Perkal [Per66].

Since R-trees can also be used as access structures for subdivisions, map overlay
can also be performed efficiently using R-trees [BKS93, KBS91, Oos94].

59.2.2 BUFFER COMPUTATION

The buffer of a geographic feature of width ǫ is the same as the Minkowski sum
of that feature with a disk of radius ǫ, centered at the origin; see Chapter 50.
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Computation can be done with the algorithms mentioned in that chapter.
Buffer computation and map overlay are two main ingredients for urban plan-

ning. As an example, three requirements for a new factory may be the proximity
of a river, at least some distance to houses, and not in nature preserves. A map
with suitable locations is obtained after computing buffers for two of the thematic
map layers, and then combining these with each other and the third layer.

59.2.3 SPATIAL INTERPOLATION

Spatial interpolation is one of the main operations in geostatistics. It is the opera-
tion of defining values at locations when only values at other locations are known.
For example, when ground measurements are taken at various locations, we only
know values at a finite set of points, but we would like to know the values every-
where. Several methods exist for this version of the spatial interpolation problem,
including triangulation, moving windows, natural neighbors, and Kriging. Trian-
gulation is discussed in a later section. Moving windows is a form of weighted
averaging of known (or observed) values within a window around the point with
unknown value.

Natural neighbor interpolation is a method based on Voronoi dia-
grams [Sib81, SBM95]. Suppose the Voronoi diagram of the points with known
values is given, and we want to obtain an interpolated value at another location p0.
We determine what Voronoi cell p0 would “own” if it were inserted in the point set
defining the Voronoi diagram. Let A be the area of the Voronoi cell of p0, and let
A1, . . . , Ak be the areas removed from the Voronoi cells of the points p1, . . . , pk, due
to the insertion of p0. Then, by natural neighbor interpolation, the interpolated
value at p0 is

∑
k

i=1
(Ai/A)·V (pi), where V (pi) denotes the known or observed value

at pi. The bivariate function obtained is continuous everywhere, and differentiable
except at the points with known values.

Kriging is an interesting method that also applies weighted linear combina-
tions of the known (or observed) values, that is, V (p0) =

∑n

i=1
λi · V (pi). The λi

are the weights, and
∑

n

i=1
λi = 1. Furthermore, the weights are chosen so that

the estimation variance is less than for any other linear combination of known val-
ues. One additional advantage of Kriging is that it provides an estimation error as
well [BM98].

Splines, discussed extensively in Chapter 56, can also be used for interpola-
tion. A version used in GIS are the thin-plate splines. They do not necessarily
pass through the known values of the points, and can therefore reduce artifacts.
The spline function minimizes the sum of two components, one representing the
smoothness and the other representing the proximity to the known values of the
points [BM98].

59.3 VISUALIZATION OF SPATIAL DATA

Various tasks traditionally performed manually by cartographers can be automated.
This not only leads to a more efficient map production process, it may also be
necessary during the use of a GIS. A user of a GIS will typically select a several
thematic map layers for display, and exactly which layers are selected determines
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which labels are needed and where they are placed best. Hence, pre-computation
of label positions can often not be done off-line or by hand.

GLOSSARY

Choropleth map: Map in which the regions of an administrative subdivision
are shown using a particular color scheme to represent a geographic variable.

Isoline map: Map for a continuous spatial phenomenon where curves of equal
value for that phenomenon are displayed.

Cartogram: Map in which the area of the regions of an administrative subdivi-
sion represent a geographic variable (also called value-by-area map).

Rectangular cartogram: Map in which administrative regions are shown as
rectangles and the area of the rectangles represent a geographic variable.

Linear cartogram: Map in which travel times between locations are represented
by distance on the map.

Schematic map: Map where important locations and connections between them
(direct transportation) are shown highly stylized, and where location is preserved
only approximately.

Flow map: Map that displays arrows of varying thickness that represent flows
between geographic features. Arrows are often bundled at shared departure
features or arrival features to enhance the visual representation.

Dot map: Map that shows dots where a dot represents the presence of a phe-
nomenon or of a certain quantity of entities.

Label placement problem: The problem of placing text to annotate features
on a map, according to various constraints and optimization criteria.

Line simplification problem: The problem of computing a polygonal line with
fewer vertices from another polygonal line, while satisfying given constraints of
distance.

Cartographic generalization problem: The problem of computing a map at
a coarser (smaller) scale from a data set whose detail would be appropriate for
a map at a finer (larger) scale.

59.3.1 LABEL PLACEMENT

Automated label placement has been the topic of considerable research, both within
cartography and within the field of algorithms. One can distinguish three types of
labels: labels for point objects, labels for line objects, and labels for polygonal
objects. Imhof [Imh75] provides many examples of well-placed and poorly-placed
labels, demonstrating the many different requirements for practical, high-quality
label placement.

The point-label placement problem is the following optimization problem. Given
a set of points, each with a specified label (name or other text), place as many
labels as possible adjacent to their point, but without overlap between any two
labels. One can extend the problem by restricting, or not allowing, overlap with
other map features, avoiding ambiguity, and so on. Another version of point label-
ing is to maximize label size under the condition that all points be labeled. Label
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FIGURE 59.3.1

River labeling due to Wolff et al. [WKK+00].

Guadalquivir

placement for point objects is usually approached as follows. A label is modeled
by an axis-parallel rectangle, the bounding box of the text. For each point, define
a restricted set of positions considered for its label, the candidates. Typically, the
four positions where a corner of the label coincides with the point are chosen. In
the label number maximization problem, the problem is abstracted to maximum
independent set in a graph where edges represent intersections of two candidate
label positions. Tables 59.3.1 and 59.3.2 contain selected results.

TABLE 59.3.1 Point-label placement: size maximization; selected results.

TYPE OF LABEL POSITIONS APPROX. FACTOR TIME SOURCE

Equal-size square 4 2 O(n logn) [FW91, WW97]

Equal-size square 2 1 O(n logn) [FW91]

Arbitrary rectangle 2 1 O(n log2 n) [FW91]

Arbitrary rectangle 4 2 O(n2 logn) [JC04]

Equal-size disk touching 2.98 + ǫ O(n logn) + n(1/ǫ)O(1/ǫ2) [JBQZ04].

TABLE 59.3.2 Point-label placement: number maximization; selected results.

TYPE OF LABEL POSITIONS APPROX. FACTOR TIME SOURCE

Rectangle constant O(logn) O(n logn) [AKS98]

Fixed-height rectangle constant 2 (or PTAS) O(n logn) [AKS98, Cha04]

Fixed-height rectangle touching 2 (or PTAS) O(n logn) [KSW99, PSS+03]

Disk, disk-like constant PTAS nO(1/ǫ2) [EJS05]

Combinatorial optimization approaches have also been applied frequently to
the point-label placement problem [CMS95, DTB99]. However, experiments show
that simple heuristics work well in practice [CMS95, WWKS01].

We next discuss the labeling of line features. Here we distinguish in streets and
rivers. The labeling of street patterns yields a combinatorial optimization problem
similar to point labeling [NW00, Str01]. River labeling is quite different, because
there are several different criteria that constitute a good river label placement. The
label should be close to the river, it should follow the shape of the river, it should
not have too high curvature, it should be as horizontal as possible, and it should
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have few inflection points. The algorithm of Wolff et al. [WKK+00] includes all of
these criteria; Figure 59.3.1.

The labeling of polygonal features appears for instance when placing the name
of a country or lake inside that feature. It is common to either choose horizontal
and straight placement, or let the shape follow the main shape of the polygonal
feature. In the first case, one can place the label in the middle of the largest scaled
copy of the label that fits inside the region. In the second case, one can use the
medial axis to retrieve the main shape and place the label along it.

59.3.2 CARTOGRAPHIC GENERALIZATION

Cartographic generalization is the process of transforming and displaying carto-
graphic data with less detail and information (i.e., on a coarser, smaller scale) than
the input data contains. Examples include omitting small towns and minor roads,
using only one color for nature regions rather than a distinction in forest, heath,
moor, etc., aggregating several buildings into one block, and exaggerating the width
of a road on a small-scale map. Generalization is a very important research topic
in automated cartography [MLW95, MRS07].

The changes to the map data for generalization are done by generalization oper-

ators. They include selection, aggregation, typification, reclassification, smoothing,
displacement, exaggeration, symbolization, collapse, and many others. Detecting a
need for generalization is accomplished by computing certain geometric measures
on distance, density, and detail. This will trigger the generalization operators to
perform transformations. It may happen that one operator causes the need of a
change somewhere else on the map, possibly leading to a domino effect. For exam-
ple, one of the common generalization operators is displacement, to ensure a certain
distance between two map features that should not appear adjacent. Moving one
feature may cause the need to move another, leading to iterative displacement al-
gorithms [Høj98, LJ01, MP01].

The problem of (polygonal) line simplification (cf. Section 50.3) is often consid-
ered a cartographic generalization problem, too. However, if the motivation for line
simplification is only data reduction, then line simplification cannot be considered
generalization. But since line simplification methods automatically reduce detail in
polygonal lines, we will discuss some methods here.

The best-known cartographic line simplification method is due to Douglas and
Peucker [DP73]. Starting with a line segment between the endpoints of the polyg-
onal line, it selects the most distant vertex to be added to the simplification, and
then continues recursively on the two parts that appear. This process continues
until the most distant vertex is closer than some chosen threshold value to the
approximating line segment. Theoretically, the method is highly unsatisfactory
because it can create self-intersections in the output, requires quadratic time in
the worst case, and may need many more segments in the approximation than the
optimal approximation. However, it is very simple and usually works well in prac-
tice. Hershberger and Snoeyink devised a different algorithm to compute the same
approximation which runs in O(n log∗ n) time [HS98].

Weibel [Wei97] and van der Poorten and Jones [PJ99] demonstrate that many
aspects are involved in practical line simplification for GIS, and that many different
criteria may be used. Buchin et al. [BMS11b] show that local improvements are
very effective and can also be used for other generalization operators. The GIS
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literature contains several more practical approaches.
Guibas et al. [GHMS93] and Estkowski and Michell [EM01] show that minimum

vertex simplification is NP-hard when self-intersections are not allowed. Selected
algorithmic results are listed in Table 59.3.3.

TABLE 59.3.3 Polygonal line simplification: selected results.

OUTPUT VERTICES COMPLEXITY ERROR CRITERION NOTES SOURCE

From input O(n2) distance min. link, self-inter. [CC96]

From input O(n4/3+δ) vertical distance min. link, self-inter. [AV00]

From input O(n2 logn) distance respects context [BKS98]

From input O(n3) distance subdivision [EM01]

From input O(n2) distance along path [GNS07]

From input O(n3), O(n4) area displacement min. area measures [BCC+06]

From input O(n2) distance angle constraints [CDH+05]

Arbitrary O(n2 logn) distance subdivision [GHMS93]

59.3.3 THEMATIC MAPS

Topographic maps are general-purpose maps that display a variety of themes of
general interest together, like roads, towns, forests, and elevation contours. The-
matic maps, on the other hand, concentrate on a particular theme, and may use
alternative methods of visualizing the information. A choropleth map could, e.g.,
show the population densities of the states of the U.S. by coloring each with a color
from a well-chosen set of colors, for instance, five saturation values of red. The
geographic theme of population density can be seen as a scalar function. Here the
points of the plane are aggregated by state.

There are other ways of visualizing scalar functions cartographically, including
isoline maps, dot maps, and cartograms. The latter again applies to aggregated
regions of the plane. Flow maps visualize a presence and quantity of flow from
one (aggregated) region to another. Schematic maps visualize connections between
locations, such as subway maps. Dent et al. [DTH09] provide a good overview of
several thematic map types.

Cartograms show values for regions by shrinking and expanding those regions,
so that the area of each region corresponds to the value represented. The most
important usage is the population cartogram, where a region A with a population
twice that of region B will be shown twice as large as B. Necessarily, cartograms
show a distortion of the geographic space. To keep the regions more or less recog-
nizable, they should keep their shape, location, and adjacency as much as possible.

Several algorithms have been proposed to construct cartograms, given an ad-
ministrative subdivision and a value for each region. Tobler [Tob86] simply uses
scaling on the x- and y-coordinates, which may prevent regions from being shown
at the correct size. Dougenick et al. [DCN85] compute a centroid for each region,
which is assigned a repelling force if the region should grow and an attracting force
if the region should shrink. The forces of all centroids on all boundaries of the map
then result in new positions of these boundaries. This is used in an iterative algo-
rithm. Kocmoud and House’s approach [KH98] is constraint programming. They
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FIGURE 59.3.2

Left, regions with a K4 as adjacency graph cannot be represented by adjacent rectangles. Right, four
rectangles inside a rectangular outline and with specified adjacencies cannot realize the specified
areas without changing the adjacencies.
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also attempt to preserve the main orientations of the boundaries. Edelsbrunner and
Waupotitsch [EW97] give a cartogram construction algorithm based on simplicial
complexes in the plane, where paths of triangles are used to define deformations
that let one region grow at the expense of the size of another.

The first algorithmic study of rectangular cartograms, where all regions are
rectangles, was done by van Kreveld and Speckmann [KS07]; extensions and refine-
ments were presented by Buchin et al. [BSV12]. Broadly speaking, there are two
reasons why correct rectangle sizes and correct adjacencies are not always possible,
see Figure 59.3.2. To overcome these problems, rectilinear cartograms were intro-
duced, where regions can have more than four corners. De Berg et al. [BMS09]
showed that only constantly many corners are needed in rectilinear cartograms.
Their bound on the number of corners was improved by Alam et al. [ABF+13] to
eight corners per region, which is worst-case optimal.

In linear cartograms, distances are distorted rather than areas. This is useful
when a map serves to represent travel time [BK12, KWFP10, SI09]. Alternatively,
one can use edge length to represent travel time [BGH+14].

Flow maps show the movement of objects between geographic locations on a
map using thick arrows, see Figure 59.3.3. Edge bundling is commonly used to avoid
visual clutter. Using a modification of Steiner minimal trees, Buchin et al. [BSV15]
modeled this problem and solved it with an approximation algorithm, since the
general problem is NP-hard.

Dot maps show values by dots, where one dot represents, e.g., ten thousand
people. This allows the distribution of the population to be shown better than
in cartograms, but the relative populations for two regions are more difficult to
compare. De Berg et al. [BBCM02] show the connection between dot maps and
discrepancy, and compare various heuristics to construct dot maps.

Schematic maps are commonly used for public transportation systems. Di-
rect lines, or connections between major stations, are shown with a polygonal
line that is highly abstracted: it has only a few segments and often, these seg-
ments are restricted to be horizontal, vertical, or have slope +1 or −1. Cabello et
al. [CBK05] place the connections incrementally in a pre-computed order, leading
to an O(n log n) time algorithm. Neyer [Ney99] views the problem as a line sim-
plification problem and approximates each connection with the minimum number
of segments in the specified orientations. Nöllenburg and Wolff [NW11] give an
integral approach to the problem that takes multiple constraints into account and
solve it with mixed-integer programming. Brandes and Wagner [BW98] show con-
nections between stations by circular arcs and address the visualization problem as
a graph layout problem (Chapter 55).
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FIGURE 59.3.3

Flow map showing migration from Colorado (from Buchin et al. [BSV11]).

59.3.4 DYNAMIC AND ANIMATED MAPS

Besides computations for traditional paper maps, a more recent trend is to study
dynamic maps, animated maps, interactive maps, Web maps, and multimedia
maps [KB01, CPG99]. This area leads to a number of new computational issues,
where efficiency is very important and quality is less critical. At the same time, the
computational problems involved may become harder. For example, where label
maximization on static maps is generally NP-hard, a related version on dynamic
maps is PSPACE-hard [BG14]. Several other results on dynamic and interactive
map labeling exist [BFH01, PPH99].

Zooming out on a map also makes real-time cartographic generalization nec-
essary. The problem is that not only the size of features must be changed, but
also the way of visualization. On large-scale maps, cities are shown by polygonal
outlines, but on small-scale maps, they are shown by point symbols. The pro-
cess is called dynamic or on-the-fly generalization [BNPW10, MG99, GNN13,
GNR16, Oos95, SHWZ14]. Ideally, the changes made during zooming should be
made in a continuous manner, with no major, sudden changes on the map [Kre01].
In static generalization, the objective is to compute a new representation, but in
dynamic generalization, the problem is the computation of the transition.

59.4 DIGITAL ELEVATION MODELS

We have concentrated on types of data based on subdivisions with well-marked
boundaries. Another important type of data is the scalar function in two variables.
The most common example from geography is elevation above sea level, also called
terrain. Three other examples are annual precipitation, nitrate concentration per
cubic meter, and average noise level.
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There are two common representations for elevation: the regular square grid,
or elevation matrix, which is a raster representation, and the triangular irregular
network (TIN), which is a vector representation. For the latter representation, the
Delaunay triangulation is often used.

GLOSSARY

Digital elevation model (DEM): Representation of a scalar function in two
variables. Sometimes specifically used for the raster-based representation.

Triangular irregular network (TIN): Vector-based representation of a digital
elevation model defined by a triangulation of a point set. Also called polyhedral
terrain.

Drainage network: Collection of linear features that represent the locations
where water on a terrain has formed rivers.

Viewshed analysis: The study of visibility on a terrain.

59.4.1 CONSTRUCTION AND SIMPLIFICATION OF TINS

The problem of simplifying a digital elevation model, or performing raster to vector
conversion for a digital elevation model, is a higher-dimensional version of line
simplification. The best algorithm known is similar in approach to the Douglas-
Peucker algorithm for line simplification given in Section 59.3.2. Assume that the
outer boundary of the DEM is rectangular, a set of points with their elevation is
given (e.g., based on a regular square grid), and assume that a maximum allowed
vertical error ǫ > 0 is specified. An initial coarse simplification of the TIN is a
triangulation of the four corners of the rectangle. If that simplification is vertically
within a distance ǫ from all points, then it is accepted. Otherwise, the point with
largest vertical distance is selected and added to the triangulation, which is restored
by flipping to the Delaunay triangulation. The process is then repeated.

The method requires quadratic time in the worst case, but an implementation
can be given which, under natural assumptions, takes O(n log n) time in prac-
tice [Hel90, Fjä91, HG95].

Agarwal and Suri [AS98] show that a corresponding optimization problem is
NP-hard, and give an approximation algorithm that requires O(n8) time. Ifm is the
size of the optimal piecewise linear ǫ-approximation of the n given points, then the
computed approximation has size O(m logm). Agarwal and Desikan [AD97] give a
cubic time ǫ-approximation algorithm with a worse size bound on the approxima-
tion, but with some assumptions the approximation has the same size asymptoti-
cally and runs in near-quadratic time.

When a TIN is constructed for modeling terrains, various geometric computa-
tion problems arise. When the input is a set of (digitized) contour lines, a triangu-
lation between the contour lines such as the constrained Delaunay triangulation can
be used [DP89, Sch98]. Care must be taken that no triangle with all three vertices
on the same contour line is created, as this gives undesirable artifacts. Thibault and
Gold [TG00] provide a solution that avoids flat triangles by adding vertices on the
medial axis or skeleton, which are given intermediate elevations (see also [GD02]).
If information on rivers is present too, then these can be included as edges of the
TIN using a constrained Delaunay triangulation [MS99]. Other approaches of in-
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terest are those by Silva et al. [SMK95], Little and Shi [LS01], and van Kreveld
and Silveira [KS11]. These methods concern the construction of a TIN that can
integrate or preserve important features like valleys and ridges of the terrain.

Gudmundsson et al. [GHK02] define a class of well-shaped triangulations called
higher-order Delaunay triangulations, and use them to create TINs with fewer local
minima in the terrain, because such minima generally do not occur. The idea was
developed further by de Kok et al. [KKL07].

Multi-resolution terrain modeling has been studied extensively, see Puppo and
Scopigno [PS97] for an overview. The approach of de Berg and Dobrindt [BD98]
allows multiple levels of detail, and even the combination of multiple levels of detail
in one terrain, but still uses a Delaunay triangulation in all cases. See [Ros04] for
more information on surface simplification and multi-resolution representations.

59.4.2 VISUALIZATION OF DEMS

Digital elevation models may be visualized in several ways. A traditional way is
by contour maps, and the process of deriving a contour map is called contour-
ing [Wat92].

A perspective view of a digital elevation model can be obtained by back-to-
front rendering of the grid elements or triangles. If a vector representation of a
perspective view is needed, an algorithm of Katz et al. [KOS92] achieves this for a
TIN in O((n + k) logn log logn) time, where n is the number of triangles and k is
the complexity of the visibility map.

59.4.3 DERIVED MAPS AND PRODUCTS

In the analysis of terrain—e.g., for land suitability studies—slope and aspect maps
are important derived products of a digital elevation model. They are straightfor-
ward to compute. Similarly, the plan and profile curvature can be of importance,
for example for waterflow and erosion modeling.

The computation of the drainage network, based on the shape of the terrain,
has been frequently studied, most often for grid data. Besides the drainage network,
watersheds also provide important terrain information. A surprising combinatorial
result on TINs of de Berg et al. [BBD+96] is that if water always follows the
direction of steepest descent, and the drainage network consists of all points that
receive flow from some region with positive area, then triangulations exist with n
triangles for which the drainage network has complexity Θ(n3), see also de Berg et
al. [BHT11].

Viewshed analysis is the study of visibility in the terrain [BCK08, BHT10,
HLM+14, KOS92]. Viewshed analysis has applications in urban and touristical
planning, and for telecommunication, for example, to place a small number of
antennas so that every point on the terrain has direct visibility to at least one
antenna [BMM+04, Fra02]. Other visibility results for terrains may be found in
Section 33.8.3.

The computation of shortest paths between two points on a terrain is a prob-
lem of both theoretical and practical interest. The approach of Alexandrov et
al. [AMS05, LMS97] is significant both theoretically and practically, because it also
deals with the weighted version. The main idea is to place Steiner points on edges
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to convert the problem into a graph problem, and then apply Dijkstra’s algorithm.
This gives a simple approximation algorithm for least-cost paths.

59.5 TRAJECTORY DATA

Trajectory data is a type of geographic data that has become of increasing impor-
tance. Due to high-quality GPS and RFID technology, large data sets of trajectories
have been collected and stored, with applications in pedestrian and vehicle move-
ment analysis, weather forecasting, behavioral ecology, security, and more. The
processing and analysis of such data gives rise to algorithmic problems that have
been studied in the areas of GIS and computational geometry [ZZ11]. Geometri-
cally, a trajectory can be seen as a polygonal line, but the time component implies
that different methods are needed from those for polygonal line processing. Most
algorithmic research models a trajectory by a sequence of time-stamped points (the
vertices) and assumes linear interpolation in both space and time in between these
vertices. This makes location change over time in a piecewise-linear manner and
velocity in a piecewise-constant manner.

Since processing and analyzing trajectories may be time-consuming, trajectory
simplification can be important as a preprocessing step. One could consider any
algorithm for polygonal line simplification to simplify trajectories, but it is better
to use a dedicated trajectory simplification method [CWT06, GKM+09, LK11].

59.5.1 TRAJECTORY SEGMENTATION

Just like images can be segmented into semantically meaningful parts, so can tra-
jectories. A segmentation of a trajectory partitions it into parts where each part
corresponds to a type of motion that could indicate a type of behavior, a mode of
transport, an environment in which movement takes place, or a reason for move-
ment. The parts of a segmentation are subtrajectories, but confusingly, they are
also referred to as segments.

The formal, algorithmic study of trajectory segmentation was initiated by
Buchin et al. [BDKS11], who distinguish attribute values associated to each time
instance of the trajectory (location at time t, speed at time t, etc.) and criteria
relating to these attributes that specify when two time instances may not be in the
same segment of the segmentation. The objective is a minimum-segment segmenta-
tion. For a class of criteria, an optimal segmentation can be computed in O(n logn)
time. There are, however, criteria that are important in practice which are not in
this class. Examples are some relaxed criteria that allow some small deviations to
their strict versions. Follow-up research has identified wider classes of criteria that
also allow polynomial-time optimal segmentation [ADK+13, ABB+14].

59.5.2 TRAJECTORY SIMILARITY

Determining the similarity two trajectories is important, also for clustering of tra-
jectories. A similarity measure can be based on the geometry of the trajectories
only, in which case the Hausdorff distance or Fréchet distance may be used. If the
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time aspect should influence similarity then other similarity measures are needed.
One of the most widely used measures is called dynamic time warping [BC94].
Unfortunately, dynamic time warping does not satisfy the triangle inequality, it re-
quires quadratic time to compute, and it uses only the distances between vertices.
A large body of follow-up research has tried to overcome these problems.

When time cannot be conceptually stretched to get a better match, simpler
similarity measures can be used [CW99, NP06]. These can be used for subtrajectory
similarity computation: find the subtrajectories of two given trajectories of at least a
given length whose distance is minimum [BBKL11]. Other research allows rotation
and scaling for computing the similarity of two complete trajectories [TDS+07]. Yet
another direction is to incorporate the context when computing similarity [BDS14].

59.5.3 PATTERNS IN TRAJECTORY DATA

When a collection of trajectories is given, analysis involves finding patterns in these
trajectories. One of the most common data analysis tasks is clustering, and indeed,
trajectory clustering has been studied extensively [HLT10, NP06]. However, most
patterns in trajectory data concern parts of trajectories, for instance trajectories
that move together for a certain length of time (and not necessarily the full duration
of the trajectory). This pattern is referred to as a flock. For a flocking model that
limits the involved trajectories to the ones that can fit together in a fixed-size
disk, computing a maximum-duration flock is NP-hard [GK06], but approximation
algorithms exist that do not fix the size of the disk exactly. Various other models
for flocks and accompanying algorithms have been presented [BGHW08, GKS07,
KMB05]. Besides finding flocks, it is also possible the study the changes in the
grouping structure. The Reeb graph has been identified as a useful structure for
this [BBK+13].

Patterns may involve identifying individuals that take on a specific role. The
most common pattern of this type is the leadership pattern [AGLW08, GKS07].
A model for leadership describes a leader as an entity such that there are other
entities that move in the direction of the leader and are close by. A related pattern
is the single-file movement pattern [BBG08].

Patterns may involve the discovery of frequently visited places or hotspots
[BDGW10, DGPW11, GKS13]. In these patterns, the region of interest may be
given, or to be determined from the trajectories while only the size and shape is
given. In some versions, we are interested in the longest consecutive visit, in other
versions we are interested in the longest total visit.

59.6 OTHER GEOMETRIC ALGORITHMS IN GIS

The previous sections gave a brief overview of the main topics in which geometric
algorithms play a role. There are a number of other topics, the most important of
which are mentioned in this section.

GPS data from cars have been used as a source to construct road networks. This
requires large-scale averaging, because many traces represent the same road [AW12,
AKPW15, CGHS10, GSBW11]. To analyze the similarity of two road networks, an
appropriate measure is needed. Here the geometric aspects of the network should be
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taken into account, and not just the graph structure [AFHW15]. By studying the
average number of times a network is intersected by a random line, point location
and ray-shooting navigation queries can be done efficiently [EGT09]. Generally,
road networks are not planar graphs, and therefore many algorithmic results on
planar graphs do not automatically transfer to road networks. Using other natural
properties of road networks, several algorithmic results apply nevertheless [EG08]
Clusters of points in networks are stretches of the network whose point density is
relatively high. One can consider paths, trees, or other connected subgraphs of the
network [BCG+10].

The search for I/O-efficient algorithms for GIS-related problems has led to
a substantial amount of research [AVV07]. Besides the R-tree and its variants
mentioned earlier, terrain analysis has been the main application area for such
algorithms [AAMS08].

Motivated by geographic information retrieval, the Internet can be used as a
data source for vernacular regions. The delineation of such regions involves finding
a reasonable boundary for a given set of inliers and outliers [BMS11a, RBK+08].

Privacy considerations play a major role in location-based services. With this
in mind, data-oblivious geometric algorithms can be devised which allow secure
multi-party computation protocols [EGT10].

59.7 ALGORITHMIC CHALLENGES IN GIS

The application area GIS is the source of a number of interesting research problems.
Many of these are simply-stated algorithmic problems, such as finding the most effi-
cient algorithm for a well-defined problem, or finding the best approximation factor
for some computationally hard problem. But from the application perspective, the
study of relatively simple solutions for problems in which a number of different
requirements must be satisfied or optimized simultaneously is more important. For
example, label placement with high cartographic quality has to be achieved with
no overlap between different labels, no or little overlap of a label with other map
features, clear association between a feature and its label, and avoidance of areas
that are too dense with text. There is no simple problem statement with optimiza-
tion that can capture this. As a second example, in realistic terrain reconstruction,
seven constraints have been listed [Sch98]. Such constraints cannot be formulated
straightforwardly as algorithmic optimization. It is usually more important which
requirements can be handled simultaneously and effectively, than how efficient a
solution is.

Challenges for algorithms research on GIS problems include developing methods
that deal with multiple criteria simultaneously, either as a whole solution or as
part of an optimization approach such as genetic or evolutionary algorithms. The
appropriate formulation of the GIS problem itself, and comparison of results based
on different formulations, are also issues of major importance.

A more specific research direction is the study of movement patterns where en-
tities are not modeled as single points, like a model for a moving glacier [SBL+12].
In extension to this, the computations involved in the modeling of geographic pro-
cesses is a good source of problems for computational geometers. Another research
direction is the handling of data imprecision in a computational model that is valid,
relevant, and simple enough to be accepted in GIS.
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59.8 SOURCES AND RELATED MATERIAL

BOOKS

[Sam06]: Book on data structures for GIS and other applications.

[HCC11, LGMR11]: Two general GIS books.

[WD04]: A GIS book with a computing focus.

[DTH09, RMM+95]: Two books that focus on cartography aspects of GIS.

[Lau14, ZZ11]: Two books on movement and trajectories.

OTHER

Other surveys: computational geometry and GIS [DMP00], terrain modeling [HT14],
patterns in trajectories [GLW08].

Journals: Journal of Spatial Information Science, ACM Transactions on Spatial
Algorithms and Systems, GeoInformatica, International Journal of Geographical
Information Science (IJGIS), Transactions in GIS, Cartography & GIS.

Conference proceedings: SIGSPATIAL Conference, GIScience, Symposium on Spa-
tial and Temporal Databases (SSTD), International Symposium on Spatial Data
Handling (SDH), Auto-Carto, International Cartographic Conference (ICC), Con-
ference on Spatial Information Theory (COSIT).

RELATED CHAPTERS

Chapter 23: Computational topology of graphs on surfaces
Chapter 27: Voronoi diagrams and Delaunay triangulations
Chapter 32: Proximity algorithms
Chapter 51: Robotics
Chapter 52: Computer graphics
Chapter 54: Pattern recognition
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