
57 SOLID MODELING

Christoph M. Hoffmann and Vadim Shapiro

INTRODUCTION

The objective of solid modeling is to represent, manipulate, and reason about the
3D shape of solid physical objects, by computer.

As an application-oriented field, the scope of solid modeling, as well as the rel-
ative emphasis on its parts, change over time. Since its inception, [RV82, Bra75], in
the 1970s, the focus on modeling shape alone has continued to expand to integrate
widening domains of physical properties. Monographs of the subject appeared in
the late 1980s and include [Chi88, Hof89, Män88]. The expansion was and contin-
ues to be driven by major applications that include manufacturing, architecture,
construction, computer vision, materials science, medicine, biological engineering,
graphics, and virtual reality. With the integration of new applications, and with
the availability of inexpensive, powerful computing platforms, the relative impor-
tance of specific shape representations can change. Along with such shifts, new
modeling and analysis techniques are added. As a result, the field draws on very
diverse technologies, including numerical analysis, symbolic algebraic computation,
approximation theory, point set and algebraic topology, differential geometry, alge-
braic geometry, and computational geometry.

In this chapter, we first review the major representations of solids in Sec-
tion 57.1. They include constructive solid geometry, boundary representation,
spatial subdivisions of various types, and medial surface representations. With
changing scope and focus, different representations enter and exit center stage.
For instance, polygonal meshes and voxel-based representations became relatively
marginal in the late 1990s, only to gain renewed interest and importance recently
with the advent of 3D printing, because they allow representing a structured inte-
rior of modeled shapes. Procedural and declarative representations are becoming
more popular as geometric programming methods are increasingly used for creating
complex solid models and assemblies in architecture and additive manufacturing.

For decades modeled solids were generally assumed to have a homogeneous in-
terior. This fact reflected common manufacturing applications and manufacturing
processes that separated the production of raw materials from subsequent process-
ing of those materials into parts, assemblies, etc. With the advent of additive
manufacturing, that is, machinery that builds physical objects by additive pro-
cesses, laying down material layer by layer, there is growing interest in building
solids that have a complex interior structure. An efficient and comprehensive rep-
resentation of heterogeneous interior has not yet emerged. Along with explorations
of printer technologies and of what can or should be built there is a wide-ranging,
diverse body of research, that we will comment on in Section 57.1.7, tracing this
development.

Next, major layers of abstraction in a typical solid modeling system are char-
acterized in Section 57.2. The lowest level of abstraction comprises a substratum

1503

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1504 C.M. Hoffmann & V. Shapiro

of basic service algorithms. At an intermediate level of abstraction, there are algo-
rithms for larger, more conceptual operations. Many functions and operations have
been devised over the years and at varying levels of abstraction. Note that this
layer can be further sub-structured into a variety of levels. Finally, a yet higher
level of abstraction is offered by constraint- and feature-based designs: the con-
straints and the feature parameters, index instance designs. The resulting generic
design, prior to valuating parameters and constraints, defines families of shape in-
stances, and ventures into territory that is only partially mastered, mathematically
and computationally.

The rich infrastructure of solid modeling representations and operations can be
accessed in several ways:

1. A graphical user interface (GUI) presents the capabilities, usually targeting
specific application areas. This is by far the most common type of access.

2. An application programming interface (API) presents the infrastructure much
like any other software library. Most systems have an API, but the vendor
API does not necessarily expose every system functionality.

3. A current trend in system architecture is a shift toward modularized confed-
erations of plug-compatible functional components. Using a plug-and-play
perspective, components with a specific functionality collaborate in the sys-
tem. This can be done in two ways: (a) design and analysis data is ex-
changed and/or shared by the system components, or (b) components query
each other, so accumulating needed information to do their work.

The first style of plug-and-play requires that the data is understood by the cooper-
ating components. If the components come from different vendors, understanding
the exchanged data has to overcome the absence of a mathematically sound se-
mantics of the data. Approach (3a) thus favors systems implemented by the same
vendor who may use an idiosyncratic data format but can deliver a consistent in-
terpretation. Approach (3b) has an object-oriented character. Moreover, it takes
a page from Geometric Dimensioning and Tolerancing; e.g., [Sri03]. This recent
work seeks to abstract the role of a solid model in applications, reducing the in-
terface to a set of queries so as to avoid representation translation/interpretation
altogether. All this will be discussed in Section 57.3. Open problems are gathered
in Section 57.4.

57.1 MAJOR REPRESENTATION SCHEMATA

GLOSSARY

Solid representation: Any representation allowing a deterministic, algorithmic
point membership test.

Constructive solid geometry (CSG): The solid is represented as union, in-
tersection, and difference of primitive solids that are positioned in space by
rigid-body transformations.

Boundary representation (Brep): The solid surface is represented as a quilt
of vertices, edges, and faces.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 57: Solid modeling 1505

Mesh representation: A boundary representation whose faces are planar poly-
gons. Topological information may be reduced or implicit.

Spatial subdivision: The solid is decomposed into a set of primitive volumes
with nonintersecting interior, for instance voxels.

A solid representation must allow the unambiguous, algorithmic determination
of point membership: given any point p = (x, y, z), there must be an algorithm
that determines whether the point is inside, outside, or on the surface of the solid;
[Req77]. Moreover, restrictions are placed on the topology of the solid and its
embedding, excluding, for example, fractal solids.

These restrictions are eminently reasonable. Increasingly, however, solid model-
ing systems depart from this strict notion of solid and permit representing a mixture
of solids, surfaces, curves, and points, for example, in surface modeling in graphics
via “particle systems.” The additional geometric structures are useful for certain
design processes, for interfacing with applications such as meshing solid volumes,
and for abstracting solid features, to name a few. More than that, solid models
used to partition space into three point sets: points exterior to the solid, points
contained in the solid, and points on the boundary, separating inside from outside.
This is changing with a growing interest in representing structured solid interiors.

GEOMETRIC COVERAGE

The range and geometric representation of solid surfaces is referred to as geometric

coverage. Polyhedral modeling restricts to planes. Classical CSG allows only planes,
cones, cylinders, spheres, and tori. Experimental modelers have been built allowing
arbitrary algebraic halfspaces. SGDL used implicit algebraic surfaces of degree up
to 4.

Most commercial and many research modelers use B-splines (uniform or nonuni-
form, integral or rational) or Bézier surfaces. The properties and algorithmic treat-
ment of these surfaces are studied by computer-aided geometric design. See Chap-
ter 56, as well as the monographs and surveys [Far88, Hos92, HL93].

57.1.1 CONSTRUCTIVE SOLID GEOMETRY

GLOSSARY

Primitive solids: Traditionally: block, sphere, cylinder, cone, and torus. More
general primitives are possible.

Sweep: Volume covered by moving a solid or a closed contour in space.

Extrusion: Sweep along a straight line segment.

Revolution: Circular sweep.

Regularized Boolean operation: The closure of the interior of a set-theoretic
union, intersection, or difference.

Algebraic halfspace: Points such that f(x, y, z) ≤ 0 where f is an irreducible
polynomial.

Irreducible polynomial: Polynomial that cannot be factored over the complex
numbers.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1506 C.M. Hoffmann & V. Shapiro

Constructive Solid Geometry is a special case because it is not only a particular
representation of solid shapes, but is also a methodology for composing primitive
solids to represent complex solid shapes. Visual representation of a CSG solid,
moreover, soon was done converting the CSG representation into boundary repre-
sentation for faster rendering. In this section, we restrict to the representational
aspect of CSG.

Classical Constructive Solid Geometry (CSG) represents a solid as a set-the-
oretic Boolean expression of primitive solid objects, of a simpler structure [RV77].
The traditional CSG primitives are block, sphere, cylinder, cone, and torus. The
traditional operations are regularized union, intersection, and difference. A regular-
ized set operation is obtained by taking the closure of the interior of the set-theoretic
result.

Each solid has a default coordinate system that can be changed with a rigid
body transformation. A Boolean operation identifies the two coordinate systems
of the solids to be combined and makes it the default coordinate system of the
resulting solid.

Primitives, and solids obtained from them with the CSG operations, are rep-
resented by expressions that can be conceptualized as expression trees. The leaves
are the primitives, the internal tree nodes are rigid-body transformations and reg-
ularized Boolean operations.

Both the surface and the interior of the final solid are thereby defined, albeit
implicitly. The CSG representation is valid if the primitives are valid.

FIGURE 57.1.1

Left and middle: CSG primitives block(w, d, h) and cylinder(r, h) with default coordinate systems.
Right: T-bracket as union of two blocks minus a cylinder.

y

z

dw

h

x

z

r

h

x y

As an example, consider Figure 57.1.1. Using the coordinate system conven-
tions shown, the CSG representation of the bracket is the expression

block(8, 3, 1) ∪∗ move(block(2, 2.5, 3), (0, 4.5, 1))
−∗ move(cylinder(0.75, 1), (1.5, 1.5,−0.5))

where the ∗ indicates a regularized operation. (See also Figure 42.4.1.)
Algorithmic infrastructure operations the system can perform include classify-

ing points, curves, and surfaces with respect to a solid; eliminating redundancies in
the CSG expressions; and rendering solids visually. A CSG solid can be rendered
by ray tracing directly, or by converting the solid to a boundary representation and
rendering the resulting data structure.

More general primitives may be added if they support the CSG operations.
Examples include the volume covered by sweeping a solid along a space curve,

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 57: Solid modeling 1507

or by sweeping a planar contour bounding an area. Defining a sweep is delicate,
requiring many parameters to be exactly defined; for instance consider the operation
of blending discussed in Section 57.2.2. However, simple cases are widely used.
They include extrusion, i.e., sweep along a straight line; and revolution, i.e., a
sweep about an axis. The evaluation of general sweeps can be accomplished by a
number of methods.

CSG representations define unambiguously the surface and homogeneous inte-
rior of solids, provided the primitives do, a fact that is straightforward. In contrast,
boundary representations must satisfy both local and global properties if they are
to partition space in a like manner [Wei86].

57.1.2 BOUNDARY REPRESENTATION

In boundary representation (Brep), the surface of a solid is explicitly represented,
and the interior is implicitly represented. As before, the interior is assumed to
be homogeneous. The solid surface is represented as a quilt of faces, edges, and
vertices; [Bra75]. A distinction is drawn between the topological entities, vertex,
edge, and face, related to each other by incidence and adjacency, and the geometric
location and shape of these entities. See also Figure 57.1.2. For example, when
polyhedra are represented, the faces are polygons described geometrically by a face
equation plus a description of the polygon boundary.

Face equations are often parametric, with nonuniform rational B-splines the
dominant form. They can also be implicit algebraic, perhaps of limited maximum
degree. The SGDL modeler used implicit algebraic surface patches of degree 4 or
less.

Geometrically, the entities in a Brep are not permitted to intersect anywhere
except in edges and vertices that are explicitly represented in the topology data
structure. In addition to the classification operations mentioned for CSG, Boolean
union, intersection, and difference operations are usually implemented for Brep
systems. Both regularized and nonregularized Boolean operations may occur. Early
systems maintained Brep and CSG representations in parallel; [RS00].

FIGURE 57.1.2

Topological entities of a box. Adjacency and incidence are
recorded in Brep. Dotted arrows indicate face orientation.

Different Brep schemata appear in the literature, divided into two major fami-
lies. One family restricts the solid surfaces to oriented manifolds. Here, every edge
is incident to two faces, and every vertex is the apex of a single cone of incident
edges and faces. The second family of Brep schemata allows oriented nonmanifolds
in which edges are adjacent to an even number of faces. When these faces are or-

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1508 C.M. Hoffmann & V. Shapiro

dered radially around the common edge, consecutive face pairs alternatingly bound
solid interior and exterior. See Figure 57.1.3 for examples.

FIGURE 57.1.3

A nonmanifold solid without dangling or interior faces, edges,
and vertices; the nonmanifold edges and vertices are drawn
with a thicker pen.

More general nonmanifold Breps are used in systems that combine surface
modeling with solid modeling [Tak92]. In such representation schemata, a solid
may have interior (two-sided) faces, dangling edges, and so on. Solid modelers
often integrate surface modeling capabilities.

The topology may be restricted in other ways. For instance, the interior of a
face may be required to be homeomorphic to a disk, and edges to have two distinct
vertices. In that case, the Brep of a cylinder would have at least four faces, two
planar and two curved. This may be desirable because of the geometric surface
representation, or may be intended to simplify the algorithms operating on solids.

All such topological representations may be viewed as instances of a chain com-
plex, a concept commonly used in algebraic topology that involves representing a
sequence of boundary relationships between the spaces of k-chains constructed over
cellular decomposition of a solid. When the boundary operators are represented by
sparse incidence matrices, many boundary representations and algorithms reduce
to problems in linear algebra [DPS14].

57.1.3 MESH REPRESENTATIONS

GLOSSARY

Mesh boundary representation: A simplified boundary representation in which
faces are planar, often polygons with few vertices.

Triangulated surface representation: A boundary mesh representation where
all faces are triangles.

STL file format: A triangle mesh specification widely used in 3D printing.

Mesh representations of solids restrict to planar faces. Some topological infor-
mation is usually given, for instance by using vertex identifiers when defining faces.
Which side of a face is to the outside of the solid could be decided using a right-hand
rule and restricting to convex polygons, or be based on locally outward pointing
vertex normals; see, e.g., [CMS98]. Mesh and octree representations are treated
in [BN90, Hof95, Sam89a, Sam89b, TWM85], including the associated conversion
problems.

The STL file format, used in 3D printing, restricts to triangles and uses vertex
normals; e.g., [RW91]. Vertex coordinates are local to the triangle defined. Conse-
quently no adjacencies are explicit and all topology has to be reconstructed/inferred.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 57: Solid modeling 1509

57.1.4 SPATIAL SUBDIVISION REPRESENTATIONS

GLOSSARY

Boundary conforming subdivision: Spatial subdivision of a solid that repre-
sents the boundary of the solid exactly or to within a given tolerance.

Boundary approximating subdivision: Spatial subdivision that represents
the boundary of the solid only approximately to within the size of the subdivision.

Regular subdivision: A subdivision whose cells are congruent. Grids are regular
subdivisions.

Voxel/voxelized subdivision: A regular subdivision whose cells are cubes.

Irregular subdivision: A subdivision with noncongruent cells.

Octree: Recursive selective subdivision of a cuboid volume into eight subcuboids.

Binary space partition (BSP) tree: Recursive irregular subdivision of space,
traditionally by halfplanes. See also Sections 33.8.2 and 42.5.

Spatial subdivision decomposes a solid into cells, each with a simple topolog-
ical structure and often also with a simple geometric structure; [TN87, Mea82].
Subdivision representations are divided into boundary conforming and boundary

approximating.
Important boundary conforming subdivision schemata are finite-element meshes

and the BSP tree. Mesh representations are used in finite element analysis, a
method for solving continuous physical problems. The mesh elements can be ge-
ometric tetrahedra, hexahedra, or other simple polyhedra, or they can be defor-
mations of topological polyhedra so that curved boundaries can be approximated
exactly. See Sections 29.4–5.

FIGURE 57.1.4

A polygon and a representing BSP tree.

b

d

a c1

c2

out

a

c2

d c1

b

outin in

out

out

Binary space partition trees are recursive subdivisions of 3-space. Each interior
node of the tree separates space into two disjoint point sets. In the simplest case,
the root denotes a separator plane. All points of R3 below or on the plane are
represented by one subtree, all points above the plane are represented by the other
subtree. The two point sets are recursively subdivided by halfplanes at the subtree
nodes. The leaves of the tree represent cells that are labeled in or out. The (half)
planes are usually face planes of a polyhedron, and the union of all cells labeled
in is the polyhedron. For an example in R

2 see Figure 57.1.4. Note that algebraic

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1510 C.M. Hoffmann & V. Shapiro

halfspaces can be used as separators, so that curved solids can be represented
exactly.

Boundary approximating representations are grids , voxels , and octrees. In
grids, space is subdivided in conformity with a coordinate system. For Cartesian
coordinates, the division is into hexahedra whose sides are parallel to the coordinate
planes. In cylindrical coordinate systems, the division is into concentric sectors, and
so on. The grids may be regular or adaptive, and may be used to solve continuous
physical problems by differencing schemes. Rectilinear grids that are geometri-
cally deformed can be boundary-conforming. Otherwise, they approximate curved
boundaries. Voxels are rectilinear grids, each hexahedron/voxel of equal size.

An octree divides a cube into eight subcubes. Each subcube may be further
subdivided recursively. Cubes and their subdivision cubes are labeled white, black,
or grey. A grey cube is one that has been subdivided and contains both white
and black subcubes. A subcube is black if it is inside the solid to be represented,
white if it is outside. In some variants, grey cells describe the contained boundary
surface, leading to a boundary-conforming representation [BN90]. Quadtrees, the
two-dimensional analogue of octrees, are used in many geographical information
systems. See Figure 42.5.1. Some 3D printers rasterize the slices to be printed,
using nonconforming spatial subdivisions.

The conversion between boundary representation and CSG can be considered a
generalization of the binary space partition tree and is explored in [Hof93b, Nay90,
NR95, Sha91b, SV93].

57.1.5 MEDIAL SURFACE REPRESENTATIONS

GLOSSARY

Maximal inscribed ball: Ball inscribed in a domain and not properly contained
in another inscribed ball.

Medial surface transformation: Closure of the locus of centers of maximal in-
scribed spheres, and a function giving the minimum distance to the solid bound-
ary. Usually called the MAT for “medial axis transformation.”

Procedural representation: The solid is described by a scripting language
or a notational schema that is declarative and must be evaluated deductively.
Examples include: level sets of a scalar field, R-functions, subdivision surfaces.

The medial axis and medial surface can unambiguously represent two-dimensio-
nal domains and 3D solids, respectively [Blu73]. The representations are not widely
used for this purpose at this time; more frequently they are used for shape recog-
nition (see Section 54.4). However, as explained below, some meshing algorithms
are based on the medial axis and the medial surface [FAR16].

The medial axis of a two-dimensional domain is defined as the closure of the
locus of centers of maximal disks inscribed within the domain. A disk is maximal
if no other disk properly contains it. An example is shown in Figure 57.1.5 along
with some maximal disks.

The medial surface of a solid is the closure of the locus of centers of maximal
inscribed spheres. When we know the radius (the limit radius in case of closure
points) of the corresponding sphere for each point on the medial surface, then an

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 57: Solid modeling 1511

FIGURE 57.1.5

L-shaped domain and associated medial axis. Some maximal in-
scribed circles contributing to the medial axis are shown.

unambiguous solid representation is obtained that is sometimes called the medial
axis transform (MAT). The MAT is the deformation retract of a solid and has
a number of intriguing mathematical properties. For example, by enlarging the
radius values by a constant, the MAT of a dilatation of the solid is obtained.

Inverting, we can construct tubular surfaces as envelope of a family of spheres
centered on (a segment of) a space curve. The torus is a simple example, the Dupin
cyclides a more complex one. Generalized cylinders have been used in so-called
skeleton models. They also play a role in geometric dimensioning and tolerancing
(GD&T).

Early on, solid modeling has investigated the MAT for the purpose of construct-
ing shell solids (obtained by subtracting a small inset), for organizing finite element
meshing algorithms, and for recognizing form features; e.g., [Hof92, SAR95, Ver94].
More recently, the role of the MAT in surface reconstruction has begun to impact
solid modeling; see Chapter 35. Surface reconstruction arises in solid modeling for
its application in reverse engineering where a model is to be constructed from a
physical object by an automated measuring strategy.

57.1.6 CONSTRUCTIVE REPRESENTATIONS

Early on, solid models were constructed by extending a programming language
with special operations for creating primitive solids, arranging them with respect
to a coordinate system, and combining them. The latter used, for the most part,
regularized Boolean operations. This approach created a scripting language that
is effectively a constructive representation. For example, the PADL system and its
variants used Fortran as script language to specify solids. CSG expressions and
directives were embedded into the Fortran program. The solid was then evaluated
into an internal format, usually CSG expressions plus a Brep evaluation for efficient
rendering. Other modeling systems at the time used other programming languages.
Since such scripting languages were based on general, procedural programming lan-
guages, the solid evaluation can be highly complex and may include any determin-
istic, step-by-step computation. Procedural script languages include Fortran for
PADL [Bro82], Lisp for Alpha 1 [GDC94], and Scheme for SGDL [Sys01].

But the same constructive representation can also be declarative, describing
requirements and properties of the complex solid model, without committing to
a specific evaluation sequence. For example, instead of procedurally executing
CSG operations, CSG expressions may be used as implicit representations [BB97]
specifying which subsets of space (points, line segments, faces, voxels, etc.) are

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1512 C.M. Hoffmann & V. Shapiro

contained within the represented set. Specific algorithms for evaluating such sub-
sets vary widely with applications and include polygonization, rendering, and mass
property computations [Rot82, Til80]. Another example of declarative modeling is
variational geometric constraint solving discussed in Section 57.2.5.

Constructive representations (both procedural and declarative) have experi-
enced a resurgence recently, fueled by the need and desire to create complex solid
models in architecture and in additive manufacturing. This resurgence was made
possible by a rich repertoire of advanced constructions, and their compositions,
including sweeps, offsets, projections, Minkowski operations, blends, free-form de-
formations, and interpolations [PASS95, WGG99, PPV+03, MUSA15]. The se-
mantics of these constructions is usually hidden from the user (see Section 57.3.1)
and may be specified in terms of set-theoretic operations, affine and smooth trans-
formations, polynomial constraints, R-functions [Sha07], and B-splines to name a
few. As described in Section 57.3.4, these constructions are usually evaluated into
Breps, mesh representations, or spatial discretizations for further processing and
downstream applications.

57.1.7 MODELS OF INTERIOR

With few exceptions, solid models historically described a division of space into
three point sets: the interior of the solid, its surface, and the exterior of the solid.
Neither exterior nor interior were considered to have further structure. This con-
ceptualization reflects the early focus of solid modeling on engineering applications
for rigid objects with homogeneous interior such as those that were manufactured
by extant manufacturing techniques of that time, including CNC machining and
other unit manufacturing processes [UMP95]. The interior’s homogeneous material
properties were abstracted by appropriate label and material constants describing
how the material behaves under various physical conditions (structural, thermal,
electrical, etc.)

Industry’s adaptation of solid modeling progressed quickly to more complex ap-
plications requiring models and representations of solids with discrete, piecewise ho-
mogeneous interiors partitioned by “interior boundaries,” for example in modeling
VLSI layouts and Micro-Electro-Mechanical Systems (MEMS). Rapid generaliza-
tion of traditional solid modeling representations ensued, as surveyed, for example
in [Tak92]. Notably, Brisson [Bri93] observed that most of such representations are
essentially spatial subdivision representations based on cellular stratifications of d-
dimensional manifolds. Generalizations of both boundary representations [RO89]
and CSG representations [RR91] have been proposed for modeling of such cellular
structures.

However, many natural and engineered objects exhibit continuous spatial vari-
ability of material properties. Such properties include density of bone and other
natural tissues, porosity of mineral materials, volume fraction and anisotropy in
functionally graded materials (FGM), and many other properties of natural and
engineered materials. The continuous properties are naturally abstracted by fields:
functions of spatial coordinates defined over a spatial decomposition of a solid
model. Such fields may be represented in a piecewise continuous fashion over de-
compositions of solids [KD97] or as discrete distributions (algebraic topological
chains defined over cell complexes) [PS93]. The need to model complex spatially
varying fields over decomposed solids gave prominence to a subfield of heterogeneous

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 57: Solid modeling 1513

object modeling, which conceptually is formalized in terms of fiber bundles where
the spatial decomposition of the solid serves as atlas and collections of material
attributes are represented by sections of the bundles [Zag97, KBDH99].

A key technical issue that dominates heterogeneous object modeling is concep-
tualization, representation, and control of continuous property fields, as surveyed in
[KT07]. In a typical modeling scenario, values of material property of interest are
specified by a user or application at certain locations in the solid considered mate-

rial features. From these features, the field values at any location within the solid
must be automatically determined, subject to gradient constraints, experimental
data, as well as empirical and physical laws. As discussed in [BST04], solving such
problems requires combining interpolation methods (most commonly weighted by
powers of distances to material features) and numerical solvers of boundary value
problems. Hence heterogeneous modeling methods may be categorized based on
the methods used for interpolating property values and gradients, and based on the
spatial decomposition used to evaluate the solution. Popular choices for the lat-
ter include cell complexes [KD97, AKK+02], conforming and nonconforming finite
element meshes [JLP+99, BST04] and voxelizations of solid [DKP+92, CT00].

With the advent of additive manufacturing, also referred to as 3D printing, the
need for modeling solids with heterogeneous interior has become obvious and grow-
ing, because heterogeneity is capable of describing composites, active structures,
engineered materials, and so on. Proposed representations vary widely and are, in
many cases, closely focused on specific applications, with voxel representations gain-
ing in popularity as modern 3D printers are capable of depositing unique material
at spatial resolutions of a few microns. Project Maxwell, e.g., [DKP+92], included
efforts to develop heterogeneous manufacturing paradigms. This, and more recent
projects, proposed to employ shape and topology optimization techniques on the
voxel-represented objects to be printed in order to realize functional properties via
geometrical representations.

However mechanical and physical functions of solids are usually designed and
controlled at a much coarser scale, suggesting that it may be beneficial to aggregate
the individual voxels into local unit cells serving particular purpose. Such unit
cells may be selected from a great variety of periodic and stochastic tessellations,
or produced automatically by shape and topology optimization algorithms [Ros07].
Other benefits of using unit cells in design of materials and tissue engineering [Hol05,
SSND05] include increased material and manufacturing efficiency, the ability to
mimic natural and synthetic materials (for example, based on Voronoi diagrams), as
well as creating and fine tuning new custom meta-materials with unusual properties,
such as auxetic materials, medical scaffolds, and lightweight composite structures.

The great variety of unit cells and their combinations lead to the need for mod-
eling and representing graded, anisotropic, periodic and stochastic lattice structures
that can fill the interior of a solid. This is an active area of research with competing
proposals to extend Voronoi and mesh representations [YBSH16], boundary repre-
sentations [WCR05], trivariate parameterizations [Elb15], implicit periodic repre-
sentations [FVP13], and stochastically generated structures [LS15], as well as their
combinations [KT10, LS16]. Such lattices are not, however, boundary-conforming
and additional techniques are needed to blend them with classical representations of
the boundary. In medical imaging applications, organ boundaries may be approx-
imated, resulting in a nonmanifold boundary representation whose cells represent
specific organs or parts thereof. Finally, we note that cells in a lattice themselves
could be further structured, leading to the notion of multi-scale solid modeling.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1514 C.M. Hoffmann & V. Shapiro

The extraordinary diversity of research into the technologies and applications
of 3D printing presages that there will be a great variety of representations of the
interior, and that calls for universal standards [KT07] may not come to pass. Never-
theless, a cell-structured interior, based on Voronoi tessellations, is a popular choice
for material performance models, since it can generate realistic homogeneous and
heterogeneous structures in both 2D and 3D; e.g., material performance sound ab-
sorption [JDKK07], polycrystalline materials [GLM96], thermal insulation [MY14],
and thermo-elastic behavior of functionally graded materials [Bin01]. Other repre-
sentations of cell structures employ medial surfaces to model organ boundaries; e.g.,
[NSK+97], or derive smooth boundaries by approximating (polyhedral) boundaries
of cells or aggregations of cells with B-splines, [KT07]. The representation of fruits
in [MVH+08, AVH+13] uses Voronoi cells whose vertices have been snubbed to
model internal passages for respiration.

Voxel-based representations are basically a sampling of the internal structure.
Uniform sampling has to contend with unfavorable scaling behavior [CMP95]. This
applies as well to procedural voxel representations where the voxels are constructed
on the fly; e.g., [GQD13, Oxm11, DTD+15]. Nonuniform samplings, on the other
hand, argue for an explicit cell representation where different cells would be sampled
at different densities. Khoda and Koc [KK13] propose a layered tissue representa-
tion where each slice to be printed has a preferred grain direction. Slices vary angle
and density of the extruded filament.

57.2 LEVELS OF ABSTRACTION

GLOSSARY

Substratum: Basic computational primitives of a solid modeler, such as inci-
dence tests, matrix algorithms, etc.

Algorithmic infrastructure: Major algorithms implementing conceptual op-
erations, such as surface intersection, edge blending, etc.

Graphical user interface (GUI): Visual presentation of the functionality of
the system.

Application programming interface (API): Presentation of system func-
tionality in terms of methods and routines that can be included in user programs.

Substratum problem: Unreliability of logical decisions based on floating-point
computations.

Large software systems should be structured into layers of abstraction. Doing
so simplifies the implementation effort because the higher levels of abstraction can
be compactly programmed in terms of the functionality of the lower levels. Thereby,
the complexity of the system is reduced. A solid modeling system spans several
levels of abstraction:

1. On the lowest level, there is the substratum of arithmetic and symbolic com-
putations that are used as primitives by the algorithmic infrastructure. This
level contains point and vector manipulation routines, incidence tests, and
so on.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 57: Solid modeling 1515

2. Next, there is an intermediate level comprising the algorithmic infrastruc-
ture. This level implements the conceptual operations available in the user
interface, as well as a wide range of auxiliary tools needed by these opera-
tions. There is often an application programming interface (API) available
with which programs can be written that use the algorithmic infrastructure
of the modeling system.

3. Designing families of shapes is at a higher level yet, through the use of fea-
tures and constraints. Features and constraints are defined using feature
parameters and geometric and dimensional constraints. An instance design
so prepared can be changed to another instance design by changing parame-
ters and/or constraints — which triggers a re-evaluation of the design by the
system in accordance with these changes. This style of shape design can be
conceptualized as a generic design of a family of specific designs or instance
designs.

Ideally, the levels of abstraction should be kept separate, with the higher levels
leveraging the functionality of the lower levels. However, this separation is funda-
mentally limited by the interaction of numeric and symbolic computation. As it
were, the substratum is not fully dependable.

More than that, there is no complete semantic characterization of the generic
design process at the third level, since the re-evaluation of the changed parameters
and constraints requires an understanding of how specific shape elements (vertices,
edges, faces) correspond, between different family members, and what it means
when such a correspondence does not exist or has ambiguities.

The hierarchy of tools and concepts can be used in a variety of ways, creating
different views of the capabilities:

1. Traditionally, a graphical user interface (GUI) presents to the user a view of
the functional capabilities of the system. Interaction with the GUI exercises
these functions, for instance, for solid design. Tools for editing and archiving
solids are included.

2. Another way to access is by an application programming interface (API). An
API exposes functionality of the system much as a software library would.
Most common is access to algorithmic infrastructure, but APIs can also ex-
pose GUI functionality, giving users the tools to customize the GUI for their
purposes.

3. A third style of accessing system capabilities is through a query interface.
Here, a client–server architecture can be constructed that allows various sys-
tems to collaborate using a message-passing paradigm.

57.2.1 THE SUBSTRATUM

The substratum consists of many low-level computations and tests; for example,
matrix computations, simple incidence tests, and computations for ordering points
along a simple curve in space. Ideally, these operations create an abstract machine
whose functionality simplifies the algorithms at the intermediate level of abstrac-
tion. But it turns out that this abstract machine is unreliable in a subtle way when
implemented using floating-point arithmetic. Exact arithmetic would remedy this

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1516 C.M. Hoffmann & V. Shapiro

unreliability, but is held by many to be unacceptably inefficient when dealing with
solids that have curved boundaries. See Section 45.4. Problems include input accu-
racy as well as tolerances used in deciding incidence and other numerical predicates.

A root problem is the dichotomy between approximate numerical floating-point
computation and exact topological incidence decisions based on it; [Hof89][Chap. 4].
It is therefore no surprise that systems built on a substratum that only does exact
computation avoid this unreliability and do not experience consequent failures.
However, exact arithmetic is not efficient unless geometric coverage is very limited.
An interesting variant was proposed in [For97], where for polyhedral solids the
needed predicates are evaluated exactly only when the floating-point computation
cannot be guaranteed to be correct. Although the problem was observed early-on,
its analysis appeared only in the late 1980s; see [Hof01a]. The discovery motivated
work on the use of exact arithmetic in polyhedral modeling [SI89, For97], as well
as for curved surfaces [KKM99a, KKM99b].

Another unavoidable problem arises in systems that use parametric curves and
surfaces as shape elements. Here, the representation of two parametric surfaces is
usually recorded as a parametric curve. Unfortunately, in general the intersection
of two parametric surfaces is not a parametric curve and must be approximated;
e.g., [Hos92, PM02]. It is then difficult to interpret such shape constructs correctly.

Binary arithmetic of fixed precision cannot always encode decimal input of fixed
precision. An example is 1/10 which requires one decimal but is a periodic binary
fraction. For more detail on this subject see Chapter 45.

Work in symbolic algebraic computation (Chapter 37) has foundational impor-
tance, for instance in regard to converting between surface representations. Some of
the applications of symbolic computation are explored in [BCK88, Cho88, Hof90].

57.2.2 ALGORITHMIC INFRASTRUCTURE

Algorithmic infrastructure is a prominent research subject in solid modeling. Among
the many questions addressed is the development of efficient and robust algorithms
for carrying out the geometric computations that arise in solid modeling. The
problems include point/curve/surface-solid classification [Til80], computing the in-
tersection of two solids, determining the intersection of two surfaces [PM02], inter-
polating smooth surfaces to eliminate sharp edges on solids, and many more.

Specific algorithms often require specific data structures and representations.
Together, algorithms and representations develop by co-evolution that occasion-
ally is disrupted. Past disruptions include the design style of Pro/Engineer that
compelled other systems to adopt a similar design vocabulary. It remains to be
seen how technologies such as 3D printing and concepts such as query-based sys-
tem architectures impact the development of the algorithmic infrastructure and its
representations. The examples that are described primarily rely on Brep as system
representation.

Academic work considers structuring application programming interfaces (APIs)
that encapsulate the functional capabilities of solid modelers so they can be used
in other programs; [ABC+00]. Such APIs play a prominent role in applications
because they allow building on existing software functionality and constructing
different abstraction hierarchies than the one implemented by a full-service solid
modeling system. The work attempts to give a system-independent specification of
basic API functionality for solid modeling.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 57: Solid modeling 1517

An important consideration when devising infrastructure is that the algorithms
are often used by other programs, whether or not there is an API. Therefore, they
must be ultra-reliable and in most cases must not require user intervention for ex-
ceptional situations. This requirement becomes crucial for more recent work seeking
to integrate multiple systems, each addressing different aspects of an overarching
application. For instance, one subsystem would be used to design an artifact X ,
a second analyzes thermal properties of X , a third subsystem analyzes tolerance
requirement for given manufacturing processes, and so on. Here, the communi-
cation between subsystems raises critical issues, see Section 57.4. Restricting to
shape design and manipulations, some of the researched design operations, their
implementation, and their presentation in the GUI include the following.

Surface intersection. Given two bounded areas of two surfaces, determine
all intersection curve components. All components of the intersection of the two
patches must be correctly identified, including isolated points and singularities.
Since this computation is done in R

3, classical algebraic geometry is of limited
help. A solution must negotiate well the unreliability of the substratum; see also
[PM02].

Offsetting. Given a surface, its offset is the set of all points that have fixed
minimum distance from the surface. Offsets can have self-intersections that must be
culled. There is a technical relationship between offsetting and forming the MAT.
Namely, when offsetting a curve or surface by a fixed distance, the self-intersections
must lie on the medial axis. Offsetting can be used to determine certain blending
surfaces, and is also useful for shelling that creates thin-walled solids. Offsetting
and shelling are global solid operations, considered in [BW89, For95, PS95, RSB96].

Blending. Given two intersecting surfaces, a third surface is interpolated
between them to smooth the intersection edge. A simple example is shown in
Figure 57.2.1. A locally convex blend surface is often called a round, and a locally
concave one a fillet. The blend surface in Figure 57.2.1 is a fillet.

Blending has been considered almost since the beginning of solid modeling, and
some intuitive and interesting techniques have been developed over the years. For
example, consider blending two primary surfaces f and g. Roll a ball of fixed radius
r along the intersection such that it maintains contact with both f and g. Then the
surface of the volume swept by the ball can be used as a blending surface, suitably
trimmed. Note that the center of the ball lies on the intersection of the offsets, by

FIGURE 57.2.1

Left: two cylinders intersecting in a closed edge. Right: edge blended with a constant-radius, rolling-
ball blend; the bounding curves of the blend are shown.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1518 C.M. Hoffmann & V. Shapiro

r, of both f and g. In more complicated schemes the radius of the ball is varied
along the intersection.

Blends can interfere: Figure 57.2.2 shows the problem of overlapping blends.
The fillet and round constructed separately do not meet in the region of overlap.
Possible resolutions can be proposed but are difficult to systematize. Multiple
surfaces have to be composed and shown to have appropriate global characteristics,
primary surfaces have to be cut back appropriately.

When the primary surfaces meet at a vertex tangentially, blending surfaces
must “dissipate.” Figure 57.2.3 shows several methods to dissipate round and fillet
at the end vertices. The examples are from [Bra97] and illustrate the dimensions
of the global problem.

Deformations. Given a solid body, deform it locally or globally. The deforma-
tion could be required to obey constraints such as preserving volume or optimizing
physical constraints. For example, we could deform the basic shape of a ship hull
to minimize drag in fluids of various viscosities.

Shelling. Given a solid, hollow out the volume so that a thin-wall solid shape
remains whose outer surface is part of the boundary of the input solid. The wall
thickness is a parameter of the operation. Variations include designating parts of
the solid surface as “open.” For instance, taking a solid cylinder and designating

FIGURE 57.2.2

Global blend interference [Bra97]: The round of the front edge overlaps with the fillet of the cylinder
edge on top (left). Without further action, the two blends do not connect, leaving a gap in the
surface. The solution shown in the middle modifies the front round. Other possibilities include
modifying the fillet or inserting a separate blend in the overlap region (right).

FIGURE 57.2.3

Global blend interference [Bra97]: At ending vertex, the round and the fillet must be merged into a
compatible structure. Several solutions are illustrated.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 57: Solid modeling 1519

both flat end faces as open the operation creates a hollow tube of the same outside
diameter. Conceptually, the operation subtracts an inset of the solid, obtained by
shrinking the original solid, an offset operation.

57.2.3 FEATURES AND CONSTRAINTS

GLOSSARY

Form feature: Any stereotypical shape detail that has application significance.

Geometric constraint: Prescribed distance, angle, collinearity, concentricity,
etc.

Generic design: Solid design with constraints and parameters without regard
to specific values.

Design instance: Resulting solid after substituting specific values for parame-
ters and constraints.

Parametric constraint solving: Solving a system of nonlinear equations, aris-
ing in geometric constraint solving, that has a fixed triangular structure.

Variational constraint solving: Solving a system of nonlinear simultaneous
equations arising in geometric constraint solving.

In solid modeling, two design paradigms have become standard for manufactur-
ing applications, feature-based design and constraint-based design. The paradigms
expose a need to reconsider solid representations at a different level of abstraction.

The representations reviewed before are for individual, specific solids. However,
we need to represent entire classes of solids, comprising a generic design. Roughly
speaking, solids in a class are built structurally in the same way, from complex shape
primitives, and are instantiated subject to constraints that interrelate specific shape
elements and parameters. How these families should be defined precisely, how each
generic design should be represented, and how designs should be edited are all
important research issues of considerable depth.

Neither features nor constraints are new concepts, so there is a sizable literature
on both. The confluence of the two issues in solid modeling systems, however, is
new and raises a number of questions that have only more recently been articulated
and addressed. [SHL92, KRU94] discuss feature work. Constraints are the subject
of [BFH+95, HV94, Kra92]. The confluence of the two strands and some of the
implications are discussed in [HJ92]. Some of the technical issues that must be
addressed are explained in [Hof93a, CH95a], and there is more work emerging on
this subject. In particular, Shapiro and Raghothama propose several criteria for
defining a family of solids; [RS02a, RS98].

57.2.4 FEATURE-BASED DESIGN

Feature-based design is usually understood to mean designing with shape elements
such as slots, holes, pockets, etc., that have significance to manufacturing applica-
tions relating to function, manufacturing process, performance, cost, and so on. Fo-
cusing on shape primarily, we can conceptualize solid design in terms of three classes
of features: generative, modifying, and referencing features; [CCH94, CH95a]. A

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1520 C.M. Hoffmann & V. Shapiro

feature is added to an existing design using attachment attributes and placement
conditions. Subsequent editing may change both types of attachment information.

As an example, consider the solid shown to the right in Figure 57.2.4. A
hole was added to the design on the left, and this could be specified by giving
the diameter of the hole, placing its cross section, a circle, on the side face, and
requiring that the hole extend to the next face. Should the slot at which the hole
ends be moved or altered by subsequent editing, then the hole would automatically
be adjusted to the required extent.

FIGURE 57.2.4

Left: Solid block with a profiled slot. Right: After adding a hole with the attribute “through next
face,” an edited solid is obtained. If the slot is moved later, the hole will adjust automatically.

57.2.5 CONSTRAINT-BASED DESIGN

Constraint-based design refers to specifying shape with the help of constraints,
when placing features or when defining shape parameters [Owe91, BFH+95]. For
instance, assume that we are to design a cross section for use in specifying a solid of
revolution. A rough topological sketch is prepared (Figure 57.2.5, left), annotated
with constraints, and instantiated to a sketch that satisfies the constraints exactly
(Figure 57.2.5, right). Auxiliary geometric structures can be added, such as an
axis of rotation. There is an extensive literature on constraint solving, from a
variety of perspectives. Surveys with a solid modeling perspective include, e.g.,
[HJA05, FHJA16].

FIGURE 57.2.5

Geometric constraint solving. Input to the constraint solver shown on the left. Here, the arc should
be tangent to the adjacent segments, and the two other segments should be perpendicular. Output
of the constraint solver shown on the right.

30.0

70.080.0

75.0 55.0

30.0

70.0

80.0

75.0

55.0

Most solid modeling systems use both features and constraints in the design
interface. The constraints on cross sections and other two-dimensional structures

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 57: Solid modeling 1521

are usually unordered, but the constraints on 3D geometry may restrict to a fixed
sequence. Solving systems of unordered constraints is also referred to as variational
constraint solving. Mathematically, it is equivalent to solving a system of nonlinear
simultaneous equations. Solving constraints in a fixed sequence is also known as
parametric constraint solving. The latter is equivalent to solving a system of non-
linear equations that has a triangular structure where each equation introduces a
new variable.

A well-constrained geometric constraint problem corresponds naturally to a sys-
tem of nonlinear algebraic equations with a finite set of solutions. In general, there
will be several solutions of a single, well-constrained geometric problem. An exam-
ple is shown in Figure 57.2.6. This raises the question of exactly how a constraint
solver should select one of those solutions efficiently, and why.

FIGURE 57.2.6

The well-constrained geometric problem of placing 4 points by 5 distances has two distinct solutions.

85.0

120.0

90.0
90.0

80.0
85.0120.0

90.0

90.0

80.0

From symbolic computation we know that there are algorithms to convert a
system of nonlinear equations that is not triangular, into an equivalent, triangular
system. The distinction between parametric and variational constraint solving is
therefore artificial in theory. However, full-scale triangularization of systems of
nonlinear equations is not tractable in many cases, so the distinction is relevant in
practice.

Many constraint solvers proceed in two major phases; see [Owe91, BFH+95,
HLS01b, HLS01a].

In the first phase, the constraint problem is abstracted into a graph whose ver-
tices represent the geometric primitives to be placed, and whose edges represent
the given constraints. Vertices are labeled by the number of independent coordi-
nates needed to position the represented primitive in a coordinate system. Edges
are labeled by the number of independent equations needed to express the repre-
sented constraint. The constraint solver analyzes this constraint graph seeking to
determine a set of small subproblems that can be solved separately.

In the second phase, the solver processes the subproblems, found by the first
phase, solving the associated equations and combining their solutions, thereby de-
termining the solution of the original constraint problem.

In principle, the graph patterns for constraint problems in 2D can be of arbi-
trary complexity. However, when restricting to problems involving only points, lines
and circles, a small set of patterns suffices for the first phase. They can be found
with straightforward graph algorithms. Moreover, a small set of simple equations
arises in the second phase: when the radius of the circles is given, only univariate
quadratic equations must be solved in the second phase. [Owe91].

Spatial constraint solving is very much more demanding than planar constraint

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1522 C.M. Hoffmann & V. Shapiro

solving. In particular, the subsystems of equations that must be solved in the second
solver phase ramp up steeply. Spatial constraint problems appear in two different
species in the literature.

1. The geometric elements connected by constraints are points, lines and planes
in 3-space. The constraints are distance, angle, perpendicularity, parallel, etc.
See, e.g., [HV94, GHY04].

2. The geometric elements connected by constraints are as before but they are
elements of a solid. The constraints are as before. See, e.g., [JS13]

From an application perspective the second variety appears to be of greater signif-
icance. See also Section 57.4.

57.3 ARCHITECTURES AND SYSTEMS

Today, solid modeling technology is at the core of most scientific, engineering, and
consumer applications that require unambiguous representation of shape informa-
tion. The methods for utilizing the rich infrastructure of solid modeling may be
divided into three broad categories:

1. application-specific user interfaces that allow maximum leveraging of the
constraint-based and feature-based layers;

2. application programming interfaces (API) that support packaging of selective
solid modeling capabilities and components, much like any other software
library; and

3. plug-compatible functional components to support the current trend towards
modularized and distributed system architectures.

Both efficacy and limitations of these methods are often determined by their ability
to use more than one representation at the same time and convert between them if
necessary.

57.3.1 USER INTERFACES

Ultimately, the functional capabilities of a solid modeling system have to be pre-
sented to a user, typically through a graphical user interface (GUI). It would be a
mistake to dismiss GUI design as a simple exercise. If the GUI merely presents the
functionality of the infrastructure literally, an opportunity for operational lever-
aging has been lost. Instead, the GUI should conceptualize the functionalities an
application needs. As in programming language design, this conceptual view can be
convenient or inconvenient for a particular application. Research on GUIs therefore
is largely done with a particular application area in mind.

User interfaces are intimately tied to specific solid modeling representations
supported at an appropriate level of abstraction. For example, in mechanical engi-
neering product design, an important aspect of the GUI might be to allow the user
to specify the shape conveniently and precisely. Early solid modeling systems relied
heavily on parametric constructive and procedural representations to express the

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 57: Solid modeling 1523

intended shape which were usually converted to other representations for visualiza-
tion and downstream applications such finite element meshing and manufacturing
process planning [RV83]. Common target representations included boundary rep-
resentations and various spatial discretizations.

As solid modeling systems gained acceptance in industry, user interfaces be-
gan to require direct references to boundary representations to support sketching,
reference datums, and direct surface manipulations needed to support advanced
automotive and aerospace applications. With time, advanced interfaces emerged to
support mechanical design in terms of constraints (on distances, radii, angles, and
other dimensions and parameters) and application-specific features (sheet metal,
NC machining, structural, molding, etc.) that would combine elements of con-
structive and boundary representations [CH95b]. To support such user interfaces,
the algorithmic infrastructure must be capable of supporting and maintaining con-
sistency of both types of representations within a single system [RS00].

In interfaces for virtual environment definition and navigation, on the other
hand, approximate constraints and direct manipulation interfaces would be bet-
ter. More recently, widespread use of solid modeling in architecture, industrial de-
sign, 3D printing, and many consumer applications witnessed renewed popularity of
procedural and declarative specifications that are presented to users as functional
programming compilers [PPV+03], visual programming languages [M+10], cloud-
hosted web browser interfaces, and open source systems [KW14]. Increased popu-
larity of meshes and voxels led to interfaces designed specifically for the creation
and editing of such representations and algorithms for many emerging applications,
including scanning and shape reconstruction, geometric signal processing, and 3D
printing [CCC+08, SS10, DTD+15].

57.3.2 APPLICATION PROGRAMMING INTERFACES (API)

The widespread demand for solid modeling technology in many different appli-
cations and industries led to componentization and packaging of different layers
into standalone libraries that are accessible via Application Programming Inter-
faces (APIs). The most popular packages are solid modeling kernels that comprise
the substratum and algorithmic layers for boundary representations supporting
low-degree polynomial and spline surfaces, notably Parasolid, ACIS, openNURBS,
Open Cascade and others. The constraint management layer is usually available as
a separate component, for example from D-Cubed [Hof01b]. Modeling kernels based
on other representation schemes are also available, but are less popular, e.g., PADL-
2 (based on CSG and quadric surface Breps) and Hyperfun (based on declarative
implicit functional representations). Solid modeling capabilities are also being ex-
posed in APIs of more general purpose systems that aim at broader computational
arenas, notably in computational geometry systems such as CGAL [FP09], visual-
ization toolkits (VTK), and mesh processing systems such as Meshlab, to name a
few.

While APIs have been the primary means for integrating solid modeling tech-
nology in thousands of applications, it is important to note that APIs are usually
fine tuned to the representation and algorithmic infrastructure they encapsulate.
As such, they do not cleanly encapsulate the internal implementation details: These
APIs and are not interchangeable in that replacing one solid modeling component
with another is usually difficult or impossible). Moreover, APIs are not necessar-

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1524 C.M. Hoffmann & V. Shapiro

ily interoperable when they are based on incompatible mathematical models and
representations. [ABC+00] describes a significant effort to design a representation-
independent API for solid modeling. The approach is based on the idea that most
representations, including CSG, boundary, and spatial discretizations, may be put
into a canonical stratified form similar to a cell complex where individual strata
are (primitive) sign-invariant k-manifolds in the decomposition of shape [Sha91b].
The results of the effort remained largely academic because such stratifications are
nontrivial to compute, lead to excessive fragmentation of geometric information,
and are rarely used in practice.

57.3.3 MODEL EXCHANGE AND PLUG-COMPATIBILITY

Given the great diversity of modeling representation schemes, standalone systems,
and APIs, the need for interchanging, sharing, and combining solid models from
different sources has become greater than ever. To meet this need, there have
been, and continue to be, many efforts to find standards for exchanging shape
models. These efforts began already in the early days of solid modeling research;
[RV82, Fre96]. Abstractly, the problem may be stated as follows:

Let M be a solid model authored in system C. In order to use M in
another (modeling) system C′, M has to be converted into an “equiva-
lent” model M ′ in the native representation of system C′. The model
M ′ would then be used as if it had been authored by C′.

This informal formulation masks the fundamental challenge underlying the task:
the notion of equivalence assumes the existence of a rigorous model semantics that
is common to both systems and is adhered to when authoring and/or converting
the two models. Unfortunately, this is often not the case. Conceptually, there are
three plausible approaches to achieve flawless model interoperability and exchange
as discussed below: (1) exchange of generic models, (2) exchange of representations
of model instances, and (3) query-supported interchangeability of models.

The simplest and the most elegant method to solve the above problem is to
treat M and M ′ as instances of a common generic model corresponding to some
specific valuation of parameters and dimensional constraints. The generic model
may then be construed as a procedure for generating model M in any system C
which is capable of evaluating this procedure. This approach has been advocated
for generic Erep models [HJ92], and as a method for interoperability between major
commercial CAD systems [SR04]. Because generic models are not fully instanti-
ated, they tend to be compact and contain mostly symbolic information, thereby
supporting efficient and robust solutions to the interchange problem. The problem
with this approach is the lack of standard semantics and lack of consistent support
for generic models in different systems [Sha91a, KPIS08]. Thus, a “slot” feature
may well be instantiated differently in systems C and C′. Initial efforts towards
standardization of two-dimensional procedural definitions is reported in [KMHP11].
Formal semantics is known for many constructive representations, such as CSG, but
they can express only a small subset of widely used generic models.

The second approach attempts to solve the problem directly by exchanging in-
stantiated and fully evaluated representations ofM and M ′. The approach assumes
that the two representations can in fact be converted into each other, either exactly
or approximately, but well enough to be considered equivalent in some sense. The

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 57: Solid modeling 1525

representations are imported (exported) in representation-specific file format. One
way to avoid a quadratic number of such convertors is to convert M into a neutral
format as model MN that can also be read by C′ and that C′ can convert to M ′. By
the far the most popular neutral exchange format is STEP [Kem99] which covers
many flavors of boundary representations and some basic constructive representa-
tions. Unfortunately, these standardization and data translation efforts continue to
have limited success. A percentage of exchanges result in models M ′ that must be
manually repaired subsequently.

The difficulty realizing the first two scenarios is due in part to mathematical
facts. It is also in part due to the fact that the systems C and C′ may interpret
the same data items differently. Consider a system C that models curved surfaces
as trimmed nonuniform, rational B-splines (NURBs) and can evaluate them to
an accuracy of 10−9, and a system C′ that models faceted surfaces only and can
evaluate them to an accuracy of 10−6. The evaluation accuracy could be absolute,
in system C, but relative in system C′. Moreover, the trim curves of NURB faces
in system C can only be approximated in the NURB framework, necessitating
algorithms that make sophisticated interpretations when evaluating the model M ,
based on assumptions which may not be represented in MN . It is natural then to
look for a notion by which a model M , authored in C, is almost equal to a model
M ′ authored in C′, based on some specific metric. But, again, the metrics concepts
fail usually for lack of transitivity.

The third approach to the exchange problem is inspired by the notion of in-
terchangeable parts in mechanical assembly [HSS14] and works as follows. Instead
of ascertaining that two part models are almost the same, a relation that is not
transitive, one ascertains that two part models M and M ′ are each within allow-
able tolerance of the reference model M0. This induces a relation between M and
M ′ that is transitive. Note that the models are never compared to each other, and
the common formal semantics is embodied into the measurement procedure that
is performed according to the Geometric Dimensioning and Tolerancing (GD&T)
standard [ASME09]. An analogous approach for solid modeling suggests that dif-
ferent systems C and C′ should exchange not models but formally defined and
standardized queries . The closeness of a given model M to a reference model M0

is established by queries of M and M0. Queries are simple geometric predicates.
They request the authoring system C to query a model M , thereby avoiding the
translation problems characterized above. Examples of standard queries include
point-membership classification (PMC) where a query point p is classified as being
in the interior of the modeled solid, on the surface, or outside of the solid; distance
from a point to the boundary of a solid. A line-solid classification intersects a query
line with a solid, and segments the line accordingly. Such classification queries are
analogous to testing a physical part with a coordinate measuring machine. In com-
puter science terms, a solid model M is encapsulated as an object model with a
query-based interface that, in contrast to APIs, does not expose the internal details
of representation or implementations in the authoring system C. The authoring sys-
tem interprets the solid model, M , thereby actualizing all inferences and particular
interpretations of M , whether explicit or implicit in the model.

Queries can be used to make CAD systems interoperate, as well as exchange
partial or complete model information [HSS14]. They have also been used to inte-
grate solid modeling systems with engineering analysis systems [FST06, FST11].

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1526 C.M. Hoffmann & V. Shapiro

57.3.4 REPRESENTATION CONVERSIONS

Representation conversions have influenced the architecture and evolution of solid
modeling systems from early days in several important ways [RV83]. They are
needed when interchanging solid data between systems that use different native
representations. They are also used when certain operations require them, either
within the same system or for interoperability between different systems. For in-
stance, the conversion from CSG to Brep supports rendering the solid shapes, using
algorithms that are optimized for rendering triangles. Rendering CSG-represented
solids directly, by ray casting for example, would be much less efficient. Meshing is
another common example where Brep is converted into a finite element mesh used
for engineering analysis. The problem may be formulated as follows:

A solid model M is given in a representation X . We seek to represent
M in another representation Y , either exactly or approximately.

The statement assumes that M is a well-defined mathematical model, or at least
that it is possible to check if two representations X and Y represent the same solid.

Conversions may be broadly divided into two categories: deterministic evalua-

tions when the source representation X contains more information than the target
information Y , and nondeterministic comprehensions when additional information
in Y has to be synthesized based on additional assumptions or goals [HSS11].

Computational properties of evaluation procedures are widely researched and
are mostly well understood. In abstract terms, suppose that the target representa-
tion Y can be described as a finite collection of primitive geometric elements {y}.
Then any evaluation procedure implements a generate and test paradigm [Sha97]:

1. Generate a sufficient set of candidates y;

2. test each y against the source representation X ;

3. assemble the target representation Y from those elements y that passed the
test.

Details vary depending on the mathematical properties of the two representations
and the efficiency of the first two steps. We discuss evaluation conversions first.

Boundary evaluation is an evaluation conversion that generates the Brep Y
from a constructive representation X . It is used in most commercial systems to
evaluate generic and feature-based representations. The procedure is a generaliza-
tion of the well-known CSG to Brep conversion [RV85], and amounts to generating
candidate faces and edges from the primitives in CSG, classifying them with re-
spect to the constructive definition, and merging those passing the test into an
optimized boundary data structure. Brep solids are usually converted into polyg-
onal (most commonly, triangle) mesh representations that are required in many
applications, including rendering and 3D printing. These polygonizations can also
be produced directly from constructive representations, a common approach when
dealing with implicit representations [ALJ+15]. Spatial discretizations are com-
monly computed from constructive, boundary, and mesh representations; genera-
tion of a nonconforming regular discretization is straightforward with voxelization
or Delaunay tetrahedralization [Si15].

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 57: Solid modeling 1527

Constructing conforming discretizations is more challenging, particularly when
conversion is done for finite element analysis or other numerical treatments of con-
tinuum problems. In that case, the problem is not a geometric problem alone: the
quality of the discretization must also be judged by nongeometric criteria that de-
rive from the nature of the physical problem and the numerical algorithms used to
solve it. This is an active area of research with many approaches based on octree
subdivision, on Delaunay triangulation, and on MAT computations.

Algorithms for constructing the MAT from constructive and boundary repre-
sentations involve generating a sufficient set of bisectors (curves or surfaces) for
primitives in the source representation X , trimming them against each other, and
assembling the pieces into a complete medial axis [CKM04, MCD11]. Because sim-
ple boundary geometry elements can produce very complicated curve segments and
surface patches in the MAT, approximation approaches are favored in practice.
Some are based on geometric principles, some on a Delaunay triangulation of an
approximated boundary, and some on a grid subdivision of ambient space. The
conversion from MAT to Brep has been addressed by Vermeer [Ver94] and later by
Amenta [ACK01]. Note that a polyhedral MAT produces a solid boundary that
can contain spherical, conical, and cylindrical elements.

The comprehension conversion procedures are similar to the evaluation conver-
sions, except that the step of generating a sufficient set of primitives {y}, needed to
construct the target representation Y , usually involves application-specific heuris-
tics. For example, Breps may be constructed from either spatial discretizations or
from meshes by fitting surfaces, but the type of the surfaces to be fitted (splines,
algebraic, quadratic, etc.) must be assumed. Constructing generic feature-based
representations from Breps is a further generalization of this class of conversions
that requires heuristically matching procedural and parametric primitives to sets
of boundary surfaces [HPR00, NMLS15].

Constructing a CSG representation from a Brep is a classical problem. For
Breps with polygonal faces the problem amounts to constructing a BSP tree. The
solution in [SV93] for Brep faces that include natural quadrics (sphere, cone and
cylinder) reveals that the core problem for curved boundary faces concerns the first
step of generating sufficient candidates {y}. The set of candidates {y}, here cells,
requires finding additional (nonunique) separating primitives that do not contribute
to the boundary and hence are not explicitly present in the boundary representation.
This problem is mostly solved for second-degree surfaces, but for higher degree
surfaces it is open.

FIGURE 57.3.1

A Brep solid that cannot be converted to a CSG expression when
restricting to the three half spaces A, B, and C, and their comple-
ments, that contribute nonempty boundary face areas.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1528 C.M. Hoffmann & V. Shapiro

Figure 57.3.1 shows an example of conversion for a simple solid: The solid’s
boundary is a union of three faces: two spherical and one cylindrical. However the
solid cannot be represented as a Boolean set combination of the three correspond-
ing halfspaces A, B, and C, and their complements A′, B′ and C′, as shown in the
figure. The intersection term A′BC′ contains both points inside and points out-
side the solid. A CSG representation becomes possible when using two additional
(nonunique) separating halfspaces D and E. A canonical CSG representation of
the solid, as a union of intersection terms, is

ABC′D′E +AB′C′D′E +A′BCDE′ +A′B′CDE′+
ABC′DE +A′BC′DE +A′BCDE +A′BC′DE,

where regularized ∩ and ∪ operations are represented by multiplication and addi-
tion respectively, and X ′ stands for regularized complement of X . An equivalent
optimized CSG expression for the same solid is

A+ CDE +B.

57.4 OPEN PROBLEMS

Most major problems in solid modeling contain a distorting conceptualization as-
pect. That is, a precise, technical formulation of the problem commits to a specific
conceptualization of the larger context that may be contentious. For example,
consider the following technical problem:

Given an implicit algebraic surface S and a distance d, find the “offset”

of S by d.

Assuming a precise definition of offset, and a restriction to irreducible algebraic
surfaces S, the problem statement ignores the fact that a solid model is not bounded
by a single, implicit surface, and that implicit surfaces of high algebraic degree may
cause severe computational problems when used in a solid modeler.

CONSTRAINT SOLVING

Geometric constraint solvers trade efficiency for generality. Some very interesting
techniques have been developed for planar problems that are fast but not very gen-
eral. Nevertheless, they are useful in solid modeling applications. They could be
extended in various ways without substantially impacting on efficiency. Such exten-
sions, for constraint solving in the plane, include the incorporation of parametric
curve segments as geometric elements, more general constraint configurations, as
well as relations among distances and angles. The bulk of the work needed is a
robust equation solver for the second phase.

Formulating explicit constraints on more general representations of polynomial
and rational curves and surfaces is a challenging problem. Recent proposals call to
replace explicit constraints with “black box” constraints that are defined implicitly
by queries they support [GFM+16].

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 57: Solid modeling 1529

Recall from Section 57.2.5 the definition of the constraint graph. In a sense, the
graph captures structure: by varying the valuation of the dimensional constraints,
angle and distance, we obtain a family of constraint problems of a particular struc-
ture. Several questions come to mind:

1. Is the family of problems generically well-constrained? That is, does there ex-
ist a valuation of the dimensional constraints for which the resulting constraint
problem is well-defined. The same question for over- and under-constrained
families; see Chapter 61.

2. Constraint valuations for which a problem is well-constrained represent a
manifold in a space of high dimension. What is the geometry of that manifold?
The same question is of interest for under-constrained families since they
include linkages; see Chapter 9.

3. Restricting to points and Euclidean distance, we obtain linkages whose prop-
erties have been studied in mathematics; e.g., [Max64, Hen08]. Characterize
graphs that are rigid; see Chapter 63.

For points and lines in the plane there is a characterization of generically well-
defined graphs [Lam70]. When circles are allowed as well, the result of [Lam70]
no longer holds. For spatial constraint problems, with points, lines and planes as
primitives, the problem is open. However, when the geometric primitives are drawn
from the Brep of a set of solids, then at least a partial characterization is known
[JS13].

Spatial geometric constraint solving in particular poses many other open prob-
lems, both variational and parametric. The set of parametric/sequential problems
for points and planes is straightforward. Minimal variational problems for points
and planes are understood; e.g., [Ver94]. One of the sequential construction prob-
lems for lines is to find all common tangents of four spheres in space. Equivalently,
construct a line at prescribed distances from four fixed points. There are up to 12
common tangents determined by an equation system of degree 24 [HY00].

Constraint problems involving points, planes and lines have been investigated
by Gao. Here the number of minimal configurations involving only a few primitives
is large: [GHY04] shows that the minimal configurations with four, five and six
lines number, respectively, 1, 12, and 494.

FEATURES

Manufacturing applications need cogent definitions of features to accelerate the
design process. Such definitions ought to be in terms of generic mechanisms of
form and of function, which are largely missing. Most feature definitions rely on
specific representations and are not interchangeable. Also needed are mapping
algorithms interrelating different feature schemata.

A set of features, say those conceptualizing machining a shape from stock, rep-
resents a particular view of the shape. In manufacturing applications there are many
views, including machining, tolerancing, design view, etc. The problem of altering
a design in one view with an automatic update of the other views is challenging.
Some approaches have been based on subdividing the shape by superimposing all

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1530 C.M. Hoffmann & V. Shapiro

feature boundaries, and then tracking how the subdivision is affected by changes
to one of the features. Abstractly, this problem is a generalization of a representa-
tion conversion problem where multiple representations of the same shape must be
maintained simultaneously [RS00]. Maintaining multiple views for additively man-
ufactured material structures is much more difficult because each view may not only
require a different representation but may also be based on a distinct mathematical
model and geometric shape [RRSS16].

SEMANTICS OF CONSTRAINT-BASED DESIGN

A solid shape design in terms of constraints can be changed simply by changing
constraint values. To date, all such changes have been specified in terms of the
procedures and algorithms that effect the change. What is needed is an abstract
definition of shape change under such constraint changes to obtain a semantic
definition of generic design and constraint-based editing. Such a definition must be
visually intuitive.

Cellular homotopy has been proposed as a basic principle that formalizes the no-
tion of intuitive update for both constructive and boundary representations [RS02b,
RS98], but practical applications of this principle require a solution to the persistent
naming problem [MP02].

MODEL TOLERANCES AND RECTIFICATION

Because of the substratum problem, Brep data structures can be invalid in the sense
that the geometric description does not agree fully with the topological description.
For instance, there may be small cracks between adjacent faces, the edge between
two adjacent faces may not be where the curve description would place it, and
so on. This has motivated work to “heal” the defective surface by closing cracks,
eliminating overlaps, and so on. Some approaches sew up cracks with smaller faces,
and in the case of polyhedra with triangles. Optimal healing is known to be NP-
hard.

An intuitive idea is to assign tolerances to faces, edges and vertices, effectively
thickening them so that the surface closes up [Jac95]. The difficulty is to work
out what happens when nonadjacent faces merge into adjacent ones. The natu-
ral geometric enlargement, moreover, creates mathematically difficult surfaces; for
instance, the offset surface of an ellipsoid increases the algebraic degree by a fac-
tor of 4. So, an interval-based approach has been proposed in which there is no
closed-form description of the enlarged geometric elements [SSP01]. More formally,
model rectification requires establishing validity of the enlarged sets[QS06] and its
consistency with the intended exact representation [Sha08, SPB04].

INTEROPERABILITY

The broad term of interoperability subsumes a number of problems that have not
been fully resolved, including model interchangeability and plug compatibility, sys-
tem interoperation, and system integration. While progress has been made in all

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 57: Solid modeling 1531

of these areas, interoperability challenges represent a major technological and eco-
nomic barrier to wider adaption of solid modeling [HSS11]. A key open issue is
lack of common formal semantics model that spans the broad spectrum of solid
modeling models, representations, and systems.

The departure from a data-centric to a query-based approach as basis of system
integration and interoperation is recent and appear promising [HSS14]. More work
is needed to better understand the pros and cons. Technical issues that are clear
include completeness and soundness of various query systems, how to structure
queries appropriately for applications, granularity of the communication substrate,
latency, and efficiency, to name a few. There are also nontechnical issues: the total
number of queries needed to integrate foreign models may reveal more about the
model creation and use than either system would be willing to share. These consid-
erations should become clearer as the approach is tested over time and investigated
scenarios are found to be compelling or otherwise.

MODELS OF INTERNAL STRUCTURE

Representation problems for the interior of solid models are closely linked to mate-
rial modeling applications [PKM13]. Given the diversity of application needs, the
absence of unified representations of the solid interior stands out as a key issue that
ought to be addressed. To get a feel for the diversity, consider the following.

Laminated, composite objects, such as airplane wings and ship hulls, need to
be represented. Embedded sensors, even computers and actuators may have to
be added to create active structures. Polycrystalline materials may require differ-
ent representational constructs, as do porous materials, insulating materials, etc.
Functionally graded materials must be represented and analyzed. In medical ap-
plications, organ shape and tissue structure must be represented and understood.

These, and other areas of applications all require new ideas on the representa-
tion side so that they can fully explore and analyze their research questions com-
putationally [RRSS16]. A unified representation would therefore have significant
scientific value.

57.5 SOURCES AND RELATED MATERIAL

RELATED CHAPTERS

Chapter 29: Triangulations and mesh generation
Chapter 35: Curve and surface reconstruction
Chapter 42: Geometric intersection
Chapter 45: Robust geometric computation
Chapter 52: Computer graphics
Chapter 56: Splines and geometric modeling
Chapter 61: Rigidity and scene analysis
Chapter 68: Two computational geometry libraries: LEDA and CGAL

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1532 C.M. Hoffmann & V. Shapiro

REFERENCES

[ABC+00] C. Armstrong, A. Bowyer, S. Cameron, J. Corney, G. Jared, R. Martin, A. Middle-

ditch, M. Sabin, and J. Salmon. Djinn: A Geometric Interface for Solid Modelling.

Information Geometers, Winchester, 2000.

[ACK01] N. Amenta, S. Choi, and R.K. Kolluri. The power crust. In Proc. 6th ACM Sympos.

Solid Modeling Appl., pages 249–260, 2001.

[AKK+02] V. Adzhiev, E. Kartasheva, T. Kunii, A. Pasko, and B. Schmitt. Cellular-functional

modeling of heterogeneous objects. In Proc. 7th ACM Sympos. Solid Modeling Appl.,

pages 192–203, 2002.

[ALJ+15] B.R. de Araújo, D.S. Lopes, P. Jepp, J.A. Jorge, and B. Wyvill. A survey on implicit

surface polygonization. ACM Comp. Surv., 47:60, 2015.

[ASME09] ASME. Dimensioning and Tolerancing: Y.14.5-2009. American Society of Mechanical

Engineers, New York, 2009.

[AVH+13] M.K. Abera, P. Verboven, E. Herremans, T. Defraeye, S.W. Fanta, Q.T. Ho,

J. Carmeliet, and B.M. Nicoläı. 3D virtual pome fruit tissue generation based on

cell growth modeling. Food Bioprocess Tech., 7:542–555, 2013.

[BB97] J. Bloomenthal and C.L. Bajaj, editors. Introduction to Implicit Surfaces. Morgan

Kaufmann, San Francisco, 1997.

[BCK88] B. Buchberger, G.E. Collins, and B. Kutzler. Algebraic methods for geometric reason-

ing. Annual Reviews Comp. Sci., 3:85–120, 1988.

[BFH+95] W. Bouma, I. Fudos, C. Hoffmann, J. Cai, and R. Paige. A geometric constraint solver.

Comput.-Aided Des., 27:487–501, 1995.

[Bin01] S. Biner. Thermo-elastic analysis of functionally graded materials using Voronoi ele-

ments. Materials Sci. Engrg: A, 31:136–146, 2001.

[Blu73] H. Blum. Biological shape and visual science (part I). J. Theoret. Biol., 38:205–287,

1973.

[BN90] P. Brunet and I. Navazo. Solid representation and operation using extended octrees.

ACM Trans. Graphics, 9:170–197, 1990.

[Bra75] I. Braid. The synthesis of solids bounded by many faces. Comm. ACM, 18:209–216,

1975.

[Bra97] I. Braid. Non-local blending of boundary models. Comput.-Aided Des., 29:89–100,

1997.

[Bri93] E. Brisson. Representing geometric structures in d dimensions: Topology and order.

Discrete Comput. Geom., 9:387–426, 1993.

[Bro82] C.M. Brown. PADL-2: A technical summary. IEEE Comput. Graph. Appl., 2:69–84,

1982.

[BST04] A. Biswas, V. Shapiro, and I. Tsukanov. Heterogeneous material modeling with dis-

tance fields. Comput. Aided Geom. Design, 21:215–242, 2004.

[BW89] M.I.G. Bloor and M.J. Wilson. Generating blending surfaces with partial differential

equations. Comput.-Aided Des., 21:165–171, 1989.

[CCC+08] P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli, and G. Ranzuglia.

Meshlab: An open-source mesh processing tool. In Proc. Eurographics Italian Chapter

Conf., pages 129–136, 2008.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 57: Solid modeling 1533

[CCH94] V. Capoyleas, X. Chen, and C.M. Hoffmann. Generic naming in generative, constraint-

based design. Comput.-Aided Des., 28:17–26, 1994.

[CH95a] X. Chen and C.M. Hoffmann. On editability of feature based design. Comput.-Aided

Des., 27:905–914, 1995.

[CH95b] X. Chen and C.M. Hoffmann. Towards feature attachment. Comput.-Aided Des.,

27:695–702, 1995.

[Chi88] H. Chiyokura. Solid Modeling with Designbase. Addison-Wesley, Boston, 1988.

[Cho88] S.-C. Chou. Mechanical Geometry Theorem Proving. Vol. 41 of Mathematics and Its

Applications, Reidel Publishing Co., Dordrecht, 1988.

[CKM04] T. Culver, J. Keyser, and D. Manocha. Exact computation of the medial axis of a

polyhedron. Computer Aided Geom. Design, 21:65–98, 2004.

[CMP95] V. Chandru, S. Manohar, and C.E. Prakash. Voxel-based modeling for layered manu-

facturing. IEEE Comput. Graphics Appl., 15:42–47, 1995.

[CMS98] P. Cignoni, C. Montani, and R. Scopigno. A comparison of mesh simplification algo-

rithms. Computers & Graphics, 22:37–54, 1998.

[CT00] M. Chen and J.V. Tucker. Constructive volume geometry. In Computer Graphics

Forum, 19:281–293, 2000.

[DKP+92] D. Dutta, N. Kikuchi, P. Papalmbros, F. Prinz, and L. Weiss. Project Maxwell:

Towards rapid realization of superior products. In Proc. Solid Freeform Fabrication

Sympos., pages 54–62, University of Texas at Austin, 1992.

[DPS14] A. DiCarlo, A. Paoluzzi, and V. Shapiro. Linear algebraic representation for topological

structures. Comput.-Aided Des., 46:269–274, 2014.

[DTD+15] E.L. Doubrovski, E.Y. Tsai, D. Dikovsky, J.M.P. Geraedts, H. Herr, and N. Oxman.

Voxel-based fabrication through material property mapping: A design method for

bitmap printing. Comput.-Aided Des., 60:3–13, 2015.

[Elb15] G. Elber. Precise construction of micro-structures and porous geometry via functional

composition. Comput.-Aided Des., 2015. Manuscript submitted for publication.

[Far88] G. Farin. Curves and Surfaces for Computer-Aided Geometric Design. Academic Press,

San Diego, 1988.

[FAR16] H.J. Fogg, C.G. Armstrong, and T.T. Robinson. Enhanced medial-axis-based block-

structured meshing in 2-d. Comput.-Aided Des., 72:87–101, 2016.

[FHJA16] I. Fudos, C.M. Hoffmann, and R. Joan-Arinyo. Tree-decomposable and undercon-

strained geometric constraint problems. Preprint, arXiv:1608.05205, 2016.

[For95] M. Forsyth. Shelling and offsetting bodies. In Proc. 3rd ACM Sympos. Solid Modeling

Appl., pages 373–381, 1995.

[For97] S. Fortune. Polyhedral modeling with multi-precision integer arithmetic. Comput.-

Aided Des., 29:123–133, 1997.

[FP09] A. Fabri and S. Pion. CGAL: The computational geometry algorithms library. In

Proc. 17th ACM SIGSPATIAL GIS, pages 538–539, 2009.

[Fre96] S. Frechette. Interoperability requirements for CAD data transfer in the AutoSTEP

project. Technical Report NISTIR 5844, National Institute of Standards and Technol-

ogy, Gaithersburg, 1996.

[FST06] M. Freytag, V. Shapiro, and I. Tsukanov. Field modeling with sampled distances.

Comput.-Aided Des., 38:87–100, 2006.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

arXiv:1608.05205

1534 C.M. Hoffmann & V. Shapiro

[FST11] M. Freytag, V. Shapiro, and I. Tsukanov. Finite element analysis in situ. Finite

Elements in Analysis and Design, 47:957–972, 2011.

[FVP13] O. Fryazinov, T. Vilbrandt, and A. Pasko. Multi-scale space-variant frep cellular

structures. Comput.-Aided Des., 45:26–34, 2013.

[GDC94] The Geometric Design and Computation Group, University of Utah. Alpha 1 advanced

experimental CAD modeling system, www.cs.utah.edu/gdc/projects/alpha1/, 1994.

[GFM+16] G. Gouaty, L. Fang, D. Michelucci, M. Daniel, J.-P. Pernot, R. Raffin, S. Lanquetin,

and M. Neveu. Variational geometric modeling with black box constraints and dags.

Comput.-Aided Des., 75:1–12, 2016.

[GHY04] X.-S. Gao, C.M. Hoffmann, and W.-Q. Yang. Solving spatial basic geometric constraint

configurations with locus intersection. Comput.-Aided Des., 36:111–122, 2004.

[GLM96] S. Ghosh, K. Lee, and S. Moorthy. Two scale analysis of heterogeneous elastic-plastic

materials with asymptotic homogenization and Voronoi cell finite element model. Com-

puter Methods Appl. Mechanics Engrg., 132:63–116, 1996.

[GQD13] Q. Ge, H.J. Qi, and M.L. Dunn. Active materials by four-dimension printing. Applied

Physics Letters, 103:131901, 2013.

[Hen08] L. Henneberg. Die graphische Statik der starren Körper. In F. Klein and C. Müller,

editors, Encyklopädie der Mathematischen Wissenschaften mit Einschluss ihrer An-

wendungen, pages 345–434, Springer, Wiesbaden, 1908.

[HJ92] C.M. Hoffmann and R. Juan. Erep: An editable, high-level representation for geomet-

ric design and analysis. In P. Wilson, M. Wozny, and M. Pratt, editors, Geometric

Modeling for Product Realization, pages 129–164, North-Holland, Amsterdam, 1992.

[HJA05] C.M. Hoffmann and R. Joan-Arinyo. A brief on constraint solving. Comput.-Aided

Des., 2:655–663, 2005.

[HL93] J. Hoschek and D. Lasser. Computer Aided Geometric Design. A.K. Peters, Natick,

1993.

[HLS01a] C.M. Hoffmann, A. Lomonosov, and M. Sitharam. Decomposition plans for geometric

constraint problems, part II: New algorithms. J. Symbolic Comput., 31:409–427, 2001.

[HLS01b] C.M. Hoffmann, A. Lomonosov, and M. Sitharam. Decomposition plans for geometric

constraint systems, part I: Performance measures for CAD. J. Symbolic Comput.,

31:367–408, 2001.

[Hof89] C.M. Hoffmann. Geometric and Solid Modeling. Morgan Kaufmann, San Francisco,

1989.

[Hof90] C.M. Hoffmann. Algebraic and numerical techniques for offsets and blends. In W. Dah-

men, M. Gasca, and C.A. Micchelli, editor, Computations of Curves and Surfaces,

pages 499–528, Kluwer Academic, Dordrecht, 1990.

[Hof92] C.M. Hoffmann. Computer vision, descriptive geometry, and classical mechanics. In

B. Falcidieno and I. Herman, editors, Computer Graphics and Mathematics, pages

229–244, Springer, Berlin, 1992.

[Hof93a] C.M. Hoffmann. On the semantics of generative geometry representations. In Proc.

19th ASME Design Automation Conf., vol. 2, pages 411–420, 1993.

[Hof93b] C.M. Hoffmann. On the separability problem of real functions and its significance in

solid modeling. In Computational Algebra, vol. 151 of Lecture Notes Pure Appl. Math.,

pages 191–204, Marcel Dekker, New York, 1993.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

www.cs.utah.edu/gdc/projects/alpha1/

Chapter 57: Solid modeling 1535

[Hof95] C. Hoffmann. Geometric approaches to mesh generation. In I. Babuska, J. Flaherty,

W. Henshaw, J. Hopcroft, J. Oliger, and T. Tezduyar, editors, Modeling, Mesh Genera-

tion, and Adaptive Numerical Methods for Partial Differential Equations, pages 31–51,

Springer, Berlin, 1995.

[Hof01a] C.M. Hoffmann. Robustness in geometric computations. J. Comput. Inf. Sci. Eng.,

1:143–155, 2001.

[Hof01b] C.M. Hoffmann. D-cubed’s dimensional constraint manager. J. Comput. Inf. Sci. Eng.,

1:100–101, 2001.

[Hol05] S.J. Hollister. Porous scaffold design for tissue engineering. Nature Materials, 4:518–

524, 2005.

[Hos92] M. Hosaka. Modeling of Curves and Surfaces in CAD/CAM. Springer, New York,

1992.

[HPR00] J. Han, M. Pratt, and W.C. Regli. Manufacturing feature recognition from solid

models: A status report. IEEE Trans. Robot. Autom., 16:782–796, 2000.

[HSS11] C.M. Hoffmann, V. Shapiro, and V. Srinivasan. Geometric interoperability for resilient

manufacturing. Technical report CSD 11-015, Purdue University, 2011.

[HSS14] C. Hoffmann, V. Shapiro, and V. Srinivasan. Geometric interoperability via queries.

Comput.-Aided Des., 46:148–159, January 2014.

[HV94] C.M. Hoffmann and P. Vermeer. Geometric constraint solving in R
2 and R

3. In D.Z.

Du and F. Hwang, editors, Computing in Euclidean Geometry, 2nd edition, World

Scientific, Singapore, 1994.

[HY00] C.M. Hoffmann and B. Yuan. On spatial constraint solving approaches. In Proc.

3rd Workshop on Automated Deduction in Geometry, vol. 2061 of LNCS, pages 1–15,

Springer, Berlin, 2000.

[Jac95] D.J. Jackson. Boundary representation modelling with local tolerancing. In Proc. 3rd

ACM Sympos. Solid Modeling Appl., pages 247–253, 1995.

[JDKK07] L.J.M. Jacobs, K.C.H. Danen, M.F. Kemmere, and J.T.F. Keurentjes. Quantita-

tive morphology analysis of polymers foamed with supercritical carbon dioxide using

Voronoi diagrams. Comput. Materials Sci., 38:751–758, 2007.

[JLP+99] T.R. Jackson, H. Liu, N.M. Patrikalakis, E.M. Sachs, and M.J. Cima. Modeling and

designing functionally graded material components for fabrication with local compo-

sition control. Materials & Design, 20:63–75, 1999.

[JS13] A.L.S. John and J. Sidman. Combinatorics and the rigidity of CAD systems. Comput.-

Aided Des., 45:473–482, 2013.

[KBDH99] V. Kumar, D. Burns, D. Dutta, and C. Hoffmann. A framework for object modeling.

Comput.-Aided Des., 31:541–556, 1999.

[KD97] V. Kumar and D. Dutta. An approach to modeling multi-material objects. In Proc.

4th ACM Sympos. Solid Modeling Appl., pages 336–345, 1997.

[Kem99] S.J. Kemmerer. STEP: the grand experience. US Department of Commerce, Technol-

ogy Administration, National Institute of Standards and Technology, 1999.

[KK13] A.K.M.B. Khoda and B. Koc. Functionally heterogeneous porous scaffold design for

tissue engineering. Comput.-Aided Des., 45:1276–1293, 2013.

[KKM99a] J. Keyser, S. Krishnan, and D. Manocha. Efficient and accurate B-rep generation

of low degree sculptured solids using exact arithmetic: I—representations. Comput.

Aided Geom. Design, 16:841–859, 1999.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1536 C.M. Hoffmann & V. Shapiro

[KKM99b] J. Keyser, S. Krishnan, and D. Manocha. Efficient and accurate B-rep generation of

low degree sculptured solids using exact arithmetic: II—computation. Comput. Aided

Geom. Design, 16:861–882, 1999.

[KMHP11] B.C. Kim, D. Mun, S. Han, and M.J. Pratt. A method to exchange procedurally rep-

resented 2D CAD model data using ISO 10303 STEP. Comput.-Aided Des., 43:1717–

1728, 2011.

[KPIS08] J. Kim, M.J. Pratt, R.G. Iyer, and R.D. Sriram. Standardized data exchange of CAD

models with design intent. Comput.-Aided Des., 40:760–777, 2008.

[Kra92] G. Kramer. Solving Geometric Constraint Systems. MIT Press, Cambridge, 1992.

[KRU94] F.-L. Krause, E. Rieger, and A. Ulbrich. Feature processing as kernel for integrated

CAE systems. In Proc. IFIP Conf. Feature Modeling and Recognition in Advanced

CAD/CAM Systems, vol. II, pages 693–716, 1994.

[KT07] X.Y. Kou and S.T. Tan. Heterogeneous object modeling: A review. Comput.-Aided

Des., 39:284–301, 2007.

[KT10] X.Y. Kou and S.T. Tan. A simple and effective geometric representation for irregular

porous structure modeling. Comput.-Aided Des., 42:930–941, 2010.

[KW14] M. Kintel and C. Wolf. Openscad. GNU General Public License, p GNU General

Public License, 2014.

[Lam70] G. Laman. On graphs and the rigidity of plane skeletal structures. J. Engrg. Math.,

4:331–340, 1970.

[LS15] X. Liu and V. Shapiro. Random heterogeneous materials via texture synthesis. Com-

put. Materials Sci., 99:177–189, 2015.

[LS16] X. Liu and V. Shapiro. Sample-based design of functionally graded material struc-

tures. In ASME Design Engineering Technical Conf. and Computers and Inf. in Engng.

Conf., pages IDETC2016–60431, 2016.

[M+10] R. McNeel et al. Grasshopper-generative modeling with rhino.

http://www.grasshopper3d.com, 2010.

[Män88] M. Mäntylä. An Introduction to Solid Modeling. Computer Science Press, New York,

1988.

[Max64] J.C. Maxwell. On reciprocal figures and diagrams of forces. Philos. Mag., 27:250–261,

1864.

[MCD11] S. Musuvathy, E. Cohen, and J. Damon. Computing medial axes of generic 3D regions

bounded by B-spline surfaces. Comput.-Aided Des., 43:1485–1495, 2011.

[Mea82] D. Meagher. Geometric modeling using octree encoding. Computer Graphics Image

Processing, 19:129–147, 1982.

[MP02] D. Marcheix and G. Pierra. A survey of the persistent naming problem. In Proc. 7th

ACM Sympos. Solid Modeling Appl., pages 13–22, 2002.

[MUSA15] O. Morgan, K. Upreti, G. Subbarayan, and D.C. Anderson. Higeom: A symbolic

framework for a unified function space representation of trivariate solids for isogeo-

metric analysis. Comput.-Aided Des., 65:34–50, 2015.

[MVH+08] H.K. Mebatsion, P. Verboven, Q.T. Ho, B.E. Verlinden, and B.M. Nicoläı. Modelling

fruit (micro)structures, why and how? Trends Food Sci. Tech., 19:59–66, 2008.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

http://www. grasshopper3d. com

Chapter 57: Solid modeling 1537

[MY14] M.Y. Ma and H. Ye. An image analysis method to obtain the effective thermal con-

ductivity of metallic foams via a redefined concept of shape factor. Appl. Thermal

Engrg., 73:1277–1282, 2014.

[Nay90] B. Naylor. Binary space partitioning trees as an alternative representation of polytopes.

Comput.-Aided Des., 22:250-252, 1990.

[NMLS15] Z. Niu, R.R. Martin, F.C. Langbein, and M.A. Sabin. Rapidly finding CAD features

using database optimization. Comput.-Aided Des., 69:35–50, 2015.

[NR95] B. Naylor and L. Rogers. Constructing binary space partitioning trees from piecewise

Bézier curves. In Proc. Graphics Interface, pages 181–191, 1995.

[NSK+97] M. Näf, G. Székely, R. Kikinis, M.E. Shenton, and O. Kübler. 3D Voronoi skeletons

and their usage for the characterization and recognition of 3D organ shape. Computer

Vision and Image Understanding, 66:147–161, 1997.

[Owe91] J.C. Owen. Algebraic solution for geometry from dimensional constraints. In Proc. 1st

ACM Sympos. Solid Modeling Found. and CAD/CAM Appl., pages 397–407, 1991.

[Oxm11] N. Oxman. Variable property rapid prototyping. Virtual Physical Prototyping, 6:3–31,

2011.

[PASS95] A. Pasko, V. Adzhiev, A. Sourin, and V. Savchenko. Function representation in geo-

metric modeling: Concepts, implementation and applications. The Visual Computer,

11:429–446, 1995.

[PKM13] J.H. Panchal, S.R. Kalidindi, and D.L. McDowell. Key computational modeling issues

in integrated computational materials engineering. Comput.-Aided Des., 45:4–25, 2013.

[PM02] N.M. Patrikalakis and T. Maekawa. Shape Interrogation for Computer-Aided Design

and Manufacture. Springer, Berlin, 2002.

[PPV+03] A. Paoluzzi, V. Pascucci, M. Vicentino, C. Baldazzi, and S. Portuesi. Geometric

Programming for Computer Aided Design. John Wiley & Sons, New York, 2003.

[PS93] R.S. Palmer and V. Shapiro. Chain models of physical behavior for engineering analysis

and design. Research Engrg. Design, 5:161–184, 1993.

[PS95] A. Pasko and V. Savchenko. Algebraic sums for deformation of constructive solids. In

Proc. 3rd ACM Sympos. Solid Modeling Appl., pages 403–408, 1995.

[QS06] J. Qi and V. Shapiro. ε-topological formulation of tolerant solid modeling. Comput.-

Aided Des., 38:367–377, 2006.

[Req77] A.A.G. Requicha. Mathematical models of rigid solids. Technical Report PAP 28,

University of Rochester, 1977.

[RO89] J.R. Rossignac and M.A. O’Connor. SGC: A Dimension-Independent Model for

Pointsets with Internal Structures and Incomplete Boundaries. IBM TJ Watson Re-

search Center, Yorktown Heights, 1989.

[Ros07] D.W. Rosen. Computer-aided design for additive manufacturing of cellular structures.

Computer-Aided Design Appl., 4:585–594, 2007.

[Rot82] S.D. Roth. Ray casting for modeling solids. Computer Graphics Image Processing,

18:109–144, 1982.

[RR91] J.R. Rossignac and A.A.G. Requicha. Constructive non-regularized geometry.

Comput.-Aided Des., 23:21–32, 1991.

[RRSS16] W. Regli, J. Rossignac, V. Shapiro, and V. Srinivasan. The new frontiers in computa-

tional modeling of material structures. Comput.-Aided Des., 77:73–85, 2016.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

1538 C.M. Hoffmann & V. Shapiro

[RS98] S. Raghothama and V. Shapiro. Boundary representation deformation in parametric

solid modeling. ACM Trans. Graphics, 17:259–286, 1998.

[RS00] S. Raghotama and V. Shapiro. Consistent updates in dual representation systems.

Comput.-Aided Des., 32:463–477, 2000.

[RS02a] S. Raghotama and V. Shapiro. Topological framework for part families. In Proc. 7th

ACM Sympos. Solid Modeling Appl., pages 1–12, 2002.

[RS02b] S. Raghothama and V. Shapiro. Topological framework for part families. J. Comput.

Inf. Sci. Eng., 2:246–255, 2002.

[RSB96] A. Rappoport, A. Sheffer, and M. Bercovier. Volume-preserving free-form solids. IEEE

Trans. Visualization Computer Graphics, 2:19–27, 1996.

[RV77] A.A.G. Requicha and H.B. Voelcker. Constructive solid geometry. Tech. Report 25,

University of Rochester, 1977.

[RV82] A.A.G. Requicha and H.B. Voelcker. Solid modeling: A historical summary and con-

temporary assessment. IEEE Comput. Graphics Appl., 2:9–24, 1982.

[RV83] A.A.G. Requicha and H.B. Voelcker. Solid modeling: Current status and research

directions. IEEE Comput. Graphics Appl., 3:25–37, 1983.

[RV85] A.A.G. Requicha and H.B. Voelcker. Boolean operations in solid modeling: Boundary

evaluation and merging algorithms. Proc. IEEE, 73:30–44, 1985.

[RW91] S.J. Rock and M.J. Wozny. A flexible file format for solid freeform fabrication. In

Proc. Solid Freeform Fabrication Sympos., pages 1–12, University of Texas at Austin,

1991.

[Sam89a] H.J. Samet. Applications of Spatial Data Structures: Computer Graphics, Image Pro-

cessing, and GIS. Addison–Wesley, Boston, 1989.

[Sam89b] H.J. Samet. Design and analysis of Spatial Data Structures: Quadtrees, Octrees, and

other Hierarchical Methods. Addison–Wesley, Boston, 1989.

[SAR95] D.J. Sheehy, C.G. Armstrong, and D.J. Robinson. Computing the medial surface of a

solid from a domain Delaunay triangulation. In Proc. 3rd ACM Sympos. Solid Modeling

Appl., pages 201–212, 1995.

[Sha91a] J.J. Shah. Assessment of features technology. Comput.-Aided Des., 23:331–343, 1991.

[Sha91b] V. Shapiro. Representations of Semialgebraic Sets in Finite Algebras Generated by

Space Decompositions. PhD thesis, Sibley School of Mechanical Engineering, Cornell

University, 1991.

[Sha97] V. Shapiro. Errata: Maintenance of geometric representations through space decom-

positions. Internat. J. Comput. Geom. Appl., 7:383–418, 1997.

[Sha07] V. Shapiro. Semi-analytic geometry with r-functions. Acta Numer., 16:239, 2007.

[Sha08] V. Shapiro. Homotopy conditions for tolerant geometric queries. In Reliable Imple-

mentation of Real Number Algorithms: Theory and Practice, pages 162–180, Springer,

Berlin, 2008.

[SHL92] J. Shah, D. Hsiao, and J. Leonard. A systematic approach for design-manufacturing

feature mapping. In P. Wilson, M. Wozny, and M. Pratt, editors, Geometric Modeling

for Product Realization, pages 205–222, North Holland, Amsterdam, 1992.

[SI89] K. Sugihara and M. Iri. A solid modeling system free from topological inconsistency.

J. Inform. Process., 12:380–393, 1989.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

Chapter 57: Solid modeling 1539

[Si15] H. Si. TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Trans.

Math. Software, 41:11, 2015.

[SPB04] T. Sakkalis, T.J. Peters, and J. Bisceglio. Isotopic approximations and interval solids.

Comput.-Aided Des., 36:1089–1100, 2004.

[SR04] S. Spitz and A. Rappoport. Integrated feature-based and geometric CAD data ex-

change. In Proc. 9th ACM Sympos. Solid Modeling Appl., pages 183–190, 2004.

[Sri03] V. Srinivasan. Theory of Dimensioning: An Introduction to Parameterizing Geometric

Models. CRC Press, Boca Raton, 2003.

[SS10] R. Schmidt and K. Singh. Meshmixer: An interface for rapid mesh composition. In

Proc. ACM SIGGRAPH, article 6, 2010.

[SSND05] W. Sun, B. Starly, J. Nam, and A. Darling. Bio-CAD modeling and its applications

in computer-aided tissue engineering. Comput.-Aided Des., 37:1097–1114, 2005.

[SSP01] G. Shen, T. Sakkalis, and N. Patrikalakis. Analysis of boundary representation model

rectification. In Proc. 6th ACM Sympos. Solid Modeling Appl., pages 149–158, 2001.

[SV93] V. Shapiro and D. Vossler. Separation for boundary to CSG conversion. ACM Trans.

Graphics, 12:35–55, 1993.

[Sys01] S. Systems. The SGDL Language. www.sgdl-sys.com, 2001.

[Tak92] T. Takala. A taxonomy on geometric and topological models. In B. Falcidieno, I.

Herman, and C. Pienovi, editors, Computer Graphics Math., pages 147–171, Springer,

Berlin, 1992.

[Til80] R.B. Tilove. Set membership classification: A unified approach to geometric intersec-

tion problems. IEEE Trans. Computers, 100:874–883, 1980.

[TN87] W.C. Thibault and B.F. Naylor. Set operations on polyhedra using binary space

partitioning trees. In Proc. 14th ACM Conf. Comp. Graphics, pages 153–162, 1987.

[TWM85] J.E. Thompson, Z.U.A. Warsi, and C.W. Mastin. Numerical Grid Generation. North

Holland, Amsterdam, 1985.

[UMP95] Unit Manufacturing Process Research Committee. Unit Manufacturing Processes: Is-

sues and Opportunities in Research. National Academies Press, Washington, 1995.

[Ver94] P. Vermeer. Medial Axis Transform to Boundary Representation Conversion. PhD

thesis, Purdue University, 1994.

[WCR05] H. Wang, Y. Chen, and D.W. Rosen. A hybrid geometric modeling method for large

scale conformal cellular structures. In Proc. ASME Internat. Design Engineering Tech-

nical Conf. and Computers and Inf. in Engng. Conf., pages 421–427, 2005.

[Wei86] K. Weiler. Topological Structures for Geometric Modeling. PhD thesis, Rensselaer

Polytechnic Inst., 1986.

[WGG99] B. Wyvill, A. Guy, and E. Galin. Extending the CSG tree. Warping, blending and

Boolean operations in an implicit surface modeling system. Computer Graphics Forum,

18:149–158, 1999.

[YBSH16] U. Yaman, N. Butt, E. Sacks, and C. Hoffmann. Slice coherence in a query-based

architecture for 3D heterogeneous printing. Comput.-Aided Des., 75:27–38, 2016.

[Zag97] J. Zagajac. Engineering Analysis over Subsets. PhD thesis, The Sibley School of

Mechanical and Aerospace Engineering, Cornell University, 1997.

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition, CRC Press, Boca Raton, FL, 2017.

www.sgdl-sys.com

