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INTRODUCTION

Piecewise polynomials of fixed degree and continuously differentiable up to some
order are known as splines or finite elements. Splines are used in applica-
tions ranging from computer-aided design, computer graphics, data visualization,
geometric modeling, and image processing to the solution of partial differential
equations via finite element analysis. The spline-fitting problem of constructing
a mesh of finite elements that interpolate or approximate data is by far the pri-
mary research problem in geometric modeling. Parametric splines are vectors
of a set of multivariate polynomial (or rational) functions while implicit splines
are zero contours of collections of multivariate polynomials. This chapter dwells
mainly on spline surface fitting methods in real Euclidean space. We first discuss
tensor product surfaces (Section 56.1), perhaps the most popular. The next sec-
tions cover generalized spline surfaces (Section 56.2), free-form surfaces (Section
56.3), and subdivision surfaces (Section 56.4). This classification is not strict, and
some overlap exists. Interactive editing of surfaces is discussed in the final section
(Section 56.5).

The various spline methods may be distinguished by several criteria:

Implicit or parametric representations.

Algebraic and geometric degree of the spline basis.

Adaptivity and number of surface patches.

Computation (time) and memory (space) required.

Stability of fitting algorithms.

Local or nonlocal interpolation.

Spline Support and splitting of input mesh.

Convexity of the input and solution.

Fairness of the solution (first- and second-order variation).

These distinctions will guide the discussions throughout the chapter.

56.1 TENSOR PRODUCT SURFACES

Tensor product B-splines have emerged as the polynomial basis of choice for working
with parametric surfaces [Boo68, CLR80]. The theory of tensor product splines
or surface patches requires that the data have a rectangular geometry and that
the parametrizations of opposite boundary curves be similar. It is based on the
concept of bilinear interpolation. B-splines are generated by a rectangular (tensor
product) mesh of control points. A reduced or decimated version of rectangular
control points with T-junctions yields a T-spline tensor product [SZB+03, DCL+08,
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DLP13, Mou10] The most general results obtained to date are further summarized
in Table 56.1.1, and will be discussed below.

GLOSSARY

Affine invariance: A property of a curve or surface generation scheme, im-
plying invariance with respect to whether computation of a point on a curve or
surface occurs before or after an affine map is applied to the input data.

A-spline: Collection of bivariate Bernstein-Bézier polynomials, each over a tri-
angle and with prescribed geometric continuity, such that the zero contour of
each polynomial defines a smooth and single-sheeted real algebraic curve seg-
ment. (“A” stands for “algebraic.”)

A-patch: Smooth and “functional” zero contour of a Bernstein-Bézier polyno-
mial over a tetrahedron.

Barycentric combination: A weighted average where the sum of the weights
equals one.

Barycentric coordinates: A point in R2 may be written as a unique barycen-
tric combination of three points. The coefficients in this combination are its
barycentric coordinates. Similarly, a point in R3 may be written as a unique
barycentric combination of four or more points. These latter are often referred
to as generalized barycentric coordinates.

Basis function: Functions form linear spaces, which have bases. The elements
of these bases are the basis functions.

Bernstein-Bézier form: Let p1, p2, p3, p4 ∈ R3 be affinely independent. Then
the tetrahedron with these points as vertices is V = [p1p2p3p4]. Any polynomial
f(p) of degree n can be expressed in the Bernstein-Bézier (BB) form over V as

f(p) =
∑
|λ|=n

bλ B
n
λ (α), λ ∈ Z4

+ , (56.1.1)

where

Bnλ (α) =
n!

λ1!λ2!λ3!λ4!
αλ1
1 αλ2

2 αλ3
3 αλ4

4

are Bernstein polynomials, |λ| =
∑4
i=1 λi with λ = (λ1, λ2, λ3, λ4)T , the barycen-

tric coordinates of p are α = (α1, α2, α3, α4)T , bλ = bλ1λ2λ3λ4
are the control

points, and Z4
+ is the set of all four-dimensional vectors with nonnegative inte-

ger components.

Bernstein polynomials: The basis functions for Bézier curves and surfaces.

Bézier curve: A curve whose points are determined by the parameter u in the
equation

∑n
i=0B

n
i (u)Pi, where the Bni (u) are basis functions, and the Pi control

points.

Bilinear interpolation: A tensor product of two orthogonal linear interpolants
and the “simplest” surface defined by values at four points on a rectangle.

Blending functions: The basis functions used by interpolation schemes such as
Gordon surfaces.

B-spline surface: Traditionally, a tensor product of curves defined using piece-
wise basis polynomials (B-spline basis). Any B-spline can be written in piecewise
Bézier form. (“B” stands for “basis.”)
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Ck continuity: Smoothness defined in terms of matching of up to kth order
derivatives along patch boundaries.

Control point: The coefficients in the expansion of a Bézier curve in terms of
Bernstein polynomials.

Convex hull: The smallest convex set that contains a given set.

Convex set: A set such that the straight line segment connecting any two points
of the set is completely contained within the set.

Gk continuity: Geometric continuity with smoothness defined in terms of match-
ing of up to kth order derivatives allowing for reparametrization. For example,
G1 smoothness is defined in terms of matching tangent planes along patch bound-
aries.

Knots: A spline curve is defined over a partition of an interval of the real line.
The points that define the partition are called knots.

Manifold Spline: A spline surface defined over a planar domain which can be
extended to 2-manifolds in space, with arbitrary topology, and with or without
boundaries.

Mesh: A decomposition of a geometric domain into finite elements; see Chap-
ter 29.

Radial basis function: A real-valued function with value dependent on the
distance from a point. Euclidean distance norm is typical. Quadric, multi-
quadric, poly-harmonic and thin-plate splines are based on radial basis functions.

Ruled (lofted) surface: A surface that interpolates two given curves using linear
interpolation.

Subdivision surface: A surface that is iteratively refined from a surface mesh
using splitting and averaging (linear) operations.

Tensor product surfaces: A surface represented with basis functions that are
constructed as products of univariate basis functions. A tensor product Bézier
surface is given by the equation

∑n
i=0

∑m
j=0B

n
i (u)Bmj (v)Pij , where the Bni (u)

and Bmj (v) are the univariate Bernstein polynomial basis functions, and the Pij
are control points.

T-spline surface: A reduced or decimated version of rectangular control points
of B-splines with T-junctions produces or a reduced representation of the same
tensor product B-spline.

Transfinite interpolation: Interpolating entire curves as opposed to values at
discrete points.

Variation diminishing: A curve or surface scheme has this property if its out-
put “wiggles less” than the control points from which it is constructed.

PARAMETRIC BÉZIER AND B-SPLINES

Tensor product Bézier surfaces are obtained by repeated applications of bilinear
interpolation. Properties of tensor product Bézier patches include affine invariance,
the “convex hull property,” and the variation diminishing property. The boundary
curves of a patch are polynomial curves that have their Bézier polygon given by
the boundary polygons of the control net of the patch. Hence the four corners of
the control net lie on the patch.
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TABLE 56.1.1 Tensor product surfaces.

TYPE INPUT PROPERTIES

Piecewise Bézier and
Hermite

rectangular grid of points, corner
twists

C1, initial global data survey data to
determine the tangent and cross-
derivative vectors at patch corners

Bicubic B-spline rectangular grid of points C1

Coons patches 4 boundary curves C1

Gordon surfaces rectangular network of curves C1, Gregory square

Biquadratic B-spline limit of Doo-Sabin subdivision of
rectangular faces

C1

Bicubic B-spline limit of Catmull-Clark subdivision
of rectangular faces

C1

Biquadratic splines control points on mesh with
arbitrary topology

G1, system of linear equations for
smoothness conditions around
singular vertices

Biquartic splines cubic curve mesh C1, interpolate second-order data at
mesh points

Bisextic B-spline rectangular network of cubic curves C1

Triquadratic/tricubic
A-patches

rectilinear 3D grid points C1, local calculation of first-order
cross derivatives

Triple products of
B-splines

rectangular boxes mixed orders possible

T-spline surface reduced rectangular mesh with some

T-junctions

C1

Piecewise bicubic Bézier patches may be used to fit a C1 surface through a rect-
angular grid of points. After the rectangular network of curves has been created,
there are four coefficients left to determine the corner twists of each patch. These
four corner twists cannot be specified independently and must satisfy a “compati-
bility constraint.” Common twist estimation methods include zero twists, Adini’s
twist, Bessel twist, and Brunet’s twist [Far98]. To obtain C1 continuity between two
patches the directions and lengths of the polyhedron edges must be matched across
the common polyhedron boundary defining the common boundary curve. Piece-
wise bicubic Hermite patches are similar to the piecewise bicubic Bézier patches,
but take points, partials, and mixed partials as input. The mixed partials affect
only the interior shape of the patch, and are also called twist vectors.

It is not possible to model a general closed surface or a surface with han-
dles as a single non-degenerate B-spline. To represent free-form surfaces a sig-
nificant amount of recent work has been done in the areas of geometric con-
tinuity, non-tensor product patches, and generalizing B-splines [CF83, Pet90a,
Pet90b, GW91, DM83, GH87]. Common schemes include splitting, convex combi-
nations of blending functions, subdivision, and local interpolation by construction
[For95, HF84, MLL+92, Pet93, Pet02, PR08].

IMPLICIT BÉZIER AND B-SPLINES

Patrikalakis and Kriezis [PK89] demonstrate how implicit algebraic surfaces can be
manipulated in rectangular boxes as functions in a tensor product B-spline basis.
This work, however, leaves open the problem of selecting weights or specifying knot
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sequences for C1 meshes of tensor product implicit algebraic surface patches that fit
given spatial data. Moore and Warren [MW91] extend the “marching cubes” scheme
to compute a C1 piecewise tensor product triquadratic approximation to scattered
data using a Powell-Sabin-like split over subcubes. In [BBC+99] an incremental
and adaptive approach is used to construct C1 spline functions defined over an
octree subdivision that approximate a dense set of multiple volumetric scattered
scalar values. Further details are provided in subsequent sub-sections on A-patches
and implicit free-form surfaces.

COONS PATCHES AND GORDON SURFACES

Coons patches interpolate four boundary curves. They are constructed by com-
posing two ruled, or lofted, surfaces and one bilinear surface, and hence are called
bilinearly blended surfaces. A Coons patch has four blending functions fi(u),
gi(v), i = 1, 2. There are only two restrictions on the fi and gi: each pair must
sum to one, and we must have f1(0) = g1(0) = 1 and f2(1) = g2(1) = 0 in order to
interpolate.

A network of curves may be filled in with a C1 surface using bicubically blended
Coons patches. For this, the four twists at the data points and the four cross
boundary derivatives must be computed. Compatibility problems may arise in
computing the twists. If x(u, v) is twice differentiable, we have xuv = xvu, but
this simplification does not apply here. One approach is to adjust the given data
so that the incompatibilities disappear. Or if the data cannot be changed one can
use a method known as Gregory’s square that replaces the constant twist terms
by variable twists that are computed from the cross boundary derivatives. The
resulting surface does not have continuous twists at the corners and is rational
parametric, which may not be acceptable geometry for certain geometric modeling
systems.

Gordon surfaces are a generalization of Coons patches used to construct a
surface that interpolates a rectangular network of curves. The idea is to take a
univariate interpolation scheme, apply it to all curves, add the resulting surfaces,
and subtract the tensor product interpolant that is defined by the univariate scheme.
Polynomial interpolation or spline interpolation schemes may be used. Methods for
Coons patches and Gordon surfaces can be formulated in terms of Boolean sums
and projectors. This has also been generalized to create triangular Coons patches.

56.2 GENERALIZED SPLINE SURFACES

B-PATCHES

The B-patches developed by Seidel [Sei89, DMS92] are based on the study of sym-
metric recursive evaluation algorithms, and are defined by generalizing the deBoor
algorithm for the evaluation of a B-spline segment from curves to surfaces. A
polynomial surface that has a symmetric recursive evaluation algorithm is called
a B-patch. B-patches generalize Bézier patches over triangles, and are charac-
terized by control points and a three-parameter family of knots. Every bivariate
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polynomial F : R2 → Rd of degree n has a unique representation

F (U) =
∑
|~i|=n

Nn
~i

(U)P~i, P~i ∈ Rd

as a B-patch, with parameters K = R0, . . . , Rn−1, S0, . . . , Sn−1, T0, . . . , Tn−1 in
R2, if the parameters (Ri, Sj , Tk) are affinely independent for 0 ≤ |~i| ≤ n− 1. The
real-valued polynomials Nn

~i
(U) are called the normalized B-weights of degree n

over K.

MULTISIDED PATCHES

Multisided patches can be generated in basically two ways. Either the polygonal
domain which is to be mapped into R3 is subdivided in the parametric plane, or
one uniform equation is used as a combination of equations. In the former case,
triangular or rectangular elements are put together or recursive subdivision is ap-
plied. In the latter case, either the known control point methods are generalized,
or a weighted sum of interpolants is used. With constrained domain mapping, a
domain point for an n-sided patch is represented by n dependent parameters. If the
remainder of the parameters can be computed when any two parameters are inde-
pendently chosen, it is called a symmetric system of parameters. The main results
from multisided patch schemes obtained to date are summarized in Table 56.2.1.

TABLE 56.2.1 Multisided schemes.

TYPE LIMITATIONS PROPERTIES DOMAIN POINTS

Sabin n=3,5 C1 constrained domain mapping, symmetric
system of parameters

Gregory/Charrot n=3,5 C1 barycentric coordinates

Hosaka/Kimura n ≤ 6 C1 constrained domain mapping, symmetric
system of parameters

Varady V C1 2n variables constrained along polygon sides

Base points n = 4, 5, 6 rational Bézier
surfaces

base points in the parametric domain map
to rational curves in R3

S-patches multisided G1 rational bi-
quadratic and

bicubic B-splines

embed n-sided domain polygon into simplex
of dimension n− 1

Multisided
A-patches

“polynomial
surfaces”
boundary
curves

C1, C2 implicit
Bezier surfaces

Hermite interpolation of boundary curves

Generalized

Barycentric

Finite Elements

”functional”

multisided

G1 rational bi-
quadratic and

bicubic B-splines

defined on n-sided domain polygons

TRIANGULAR RATIONAL PATCHES WITH BASE POINTS

Another approach to creating multisided patches is to introduce base points into ra-
tional parametric functions. Base points are parameter values for which the homog-
eneous coordinates (x, y, z, w) are mapped to (0, 0, 0, 0) by the rational parametriza-
tion. Gregory’s patch [Gre83] is defined using a special collection of rational basis
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functions that evaluate to 0/0 at vertices of the parametric domain, and thus in-
troduce base points in the resulting parametrization. Warren [War92] uses base
points to create parametrizations of four-, five-, and six-sided surface patches us-
ing rational Bézier surfaces defined over triangular domains. Setting a triangle of
weights to zero at one corner of the domain triangle produces a four-sided patch
that is the image of the domain triangle.

S-PATCHES

Loop and DeRose [LD89, LD90] present generalizations of biquadratic and bicubic
B-spline surfaces that are capable of representing surfaces of arbitrary topology by
placing restrictions on the connectivity of the control mesh, relaxing C1 continuity
to G1 (geometric) continuity, and allowing n-sided finite elements. This generalized
view considers the spline surface to be a collection of possibly rational polynomial
maps from independent n-sided polygonal domains, whose union possesses conti-
nuity of some number of geometric invariants, such as tangent planes. This more
general view allows patches to be sewn together to describe free-form surfaces in
more complex ways.

An n-sided S-patch S is constructed by embedding its n-sided domain polygon
P into a simplex 4 whose dimension is one less than the number of sides of the
polygon. The edges of the polygon map to edges of the simplex. A Bézier simplex
B is then constructed using 4 as a domain. The patch representation S is obtained
by restricting the Bézier simplex to the embedded domain polygon.

A-PATCHES

The A-patch technique provides simple ways to guarantee that a constructed im-
plicit surface is single-sheeted and free of undesirable singularities. The technique
uses the zero contouring surfaces of trivariate Bernstein-Bézier polynomials to con-
struct a piecewise smooth surface. We call such iso-surfaces A-patches. Algorithms
to fill an n-sided hole, using either a single multisided A-patch or a network of
A-patches, are given in [BE95]. The blends may be C0, C1, or C2 exact fits (inter-
polation), as well as C1 or C2 least squares fits (interpolation and approximation).

For degree-bounded patches, a triangular network of A-patches for the hole
may be generated in two ways. First, the n-sided hole is projected onto a plane
and the result of a planar triangulation is projected back onto the hole. Second, an
initial multisided A-patch is created for the hole and then a coarse triangulation
for the patch is generated using a rational spline approximation [BX94].

MULTIVARIATE SPLINES, SIMPLEX AND BOX SPLINES

Multivariate splines are a generalization of univariate B-splines to a multivariate
setting [Dah80, DM83, Boo88, Hol82]. Multivariate splines have applications in
data fitting, computer-aided design, the finite element method, and image analysis.
Work on splines has traditionally been for a given planar triangulation using a
polynomial function basis. Box splines are multivariate generalizations of B-splines
with uniform knots. Many of the basis functions used in finite element calculations
on uniform triangles occur as special instances of box splines. In general a box
spline is a locally supported piecewise polynomial. One can define translates of box
splines that form a negative partition of unity.
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In the bivariate case, box splines correspond to surfaces defined over a regular
tessellation of the plane. If the tessellation is composed of triangles, it is possible
to represent the surface as a collection of Bernstein-Bézier patches. The two most
commonly used special tessellations arise from a rectangular grid by drawing in lines
in north-easterly diagonals in each subrectangle or by drawing in both diagonals
for each subrectangle. For these special triangulations there is an elegant way to
construct locally supported splines.

Multivariate splines defined as projections of simplices are called simplex
splines. Auerbach [AGM+91] constructs approximations with simplex splines over
irregular triangles. Bivariate quadratic simplicial B-splines defined by their corre-
sponding sets of knots derived from a (suboptimal) constrained Delaunayi triangu-
lation of the domain are employed to obtain a C1 surface. This approach is well
suited for scattered data.

Fong and Seidel [FS86, FS92] construct multivariate B-splines for quadratics
and cubics by matching B-patches with simplex splines. The surface scheme is an
approximation scheme based on blending functions and control points and allows
the modeling of Ck−1 continuous piecewise polynomial surfaces of degree k over
arbitrary triangulations of the parameter plane. The resulting surfaces are defined
as linear combinations of the blending functions, and are parametric piecewise poly-
nomials over a triangulation of the parameter plane whose shape is determined by
their control points.

SPHERICAL SPLINES

Spherical splines are piecewise representations of functions on the sphere. These
can be applied to data fitting problems: (a) the input data is scattered on a unit
sphere, (b) a boundary value approximation where the boundary is a unit sphere,
(c) solving spherical partial differential equations. The splines can be defined using
BB-basis polynomials on spherical triangles, or spherical quads, and are linearly
independent and form a basis for functions on the sphere [LS07].

56.3 FREE-FORM SURFACES

The representation of free-form surfaces is one of the major issues in geometric
modeling. These surfaces are generally defined in a piecewise manner by smoothly
joining several, mostly four-sided, patches. Common approaches to constructing
surfaces over irregular meshes are local construction, blending polynomial pieces,
and splitting.

GLOSSARY

Blending polynomial pieces: Constructing k pieces for a k-sided mesh facet
such that each piece matches a part of the facet data, and a convex combination
of the pieces matches the whole.

Vertex enclosure constraint: Not every mesh of polynomial curves with a
well-defined tangent plane at the mesh points can be interpolated by a smooth
regularly parametrized surface with one polynomial piece per facet. This con-
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straint on the mesh is a necessary and sufficient condition to guarantee the
existence of such an interpolant [Pet91]. Rational patches, singular parametriza-
tions, and the splitting of patches are techniques to enforce the vertex enclosure
constraint.

MAIN RESULTS

Blending approaches prescribe a mesh of boundary curves and their normal deriva-
tives. For this approach, however, the existence of a well-defined tangent plane
at the data points is not sufficient to guarantee the existence of a C1 mesh in-
terpolant, because the mixed derivatives puv and pvu are given independently at
any point p. Splitting approaches, on the other hand, expect to be given at least
tangent vectors at the data points, and sometimes the complete boundary. Mann
et al. [MLL+92] conclude that local polynomial interpolants generally produce un-
satisfactory shapes.

With splitting schemes, every triangle in the triangulation of the data points
(also called a macro-triangle) is split into several mini-triangles. Split-triangle in-
terpolants do not require derivative information of higher order than the continuity
of the desired interpolant. The simplest of the split-triangle interpolants is the C1

Clough-Tocher interpolant. Each vertex is joined to the centroid, and the macro-
triangle is split into three mini-triangles. The first-order data that this interpolant
requires are position and gradient value at the macro-triangle vertices, plus some
cross-boundary derivative at the midpoint of each edge. There are twelve data per
macro-triangle, and cubic polynomials are used over each mini-triangle. The C1

Powell-Sabin interpolants produce C1 piecewise quadratic interpolants to C1 data
at the vertices of a triangulated data set. Each macro-triangle is split into six or
twelve mini-triangles.

PARAMETRIC PATCH SCHEMES

These patches are given in vector-valued parametric form, generally mapping a
rectangular or triangular parametric domain into R3. Parametric free-form surface
patch schemes are summarized in Table 56.3.1.

TABLE 56.3.1 Free-form parametric schemes.

DEGREE SCHEME INPUT PROPERTIES

Piecewise biquartic local interpolation cubic curve mesh C1, interpolate second-order
data at mesh points

Piecewise
biquadratic

G-edges control points on
a mesh with ar-
bitrary topology

G1, system of linear eqns for
smoothness conditions
around singular vertices

Sextic triangular
pieces

approximation, no
local splitting

triangular control
mesh

G1

Quadratic/cubic
triangular pieces

splitting,
subdivision

irregular mesh of
points

C1, refine mesh by Doo-Sabin
to isolate regions of
irregular points
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IMPLICIT PATCH SCHEMES

While it is possible to model a general closed surface of arbitrary genus as a single
implicit surface patch, the geometry of such a global surface is difficult to specify,
interactively control, and polygonize. The main difficulties stem from the fact that
implicit representations are iso-contours which generally have multiple real sheets,
self-intersections, and several other undesirable singularities. Looking on the bright
side, implicit polynomial splines of the same geometric degree have more degrees of
freedom compared with parametric splines, and hence potentially are more flexible
for approximating a complicated surface with fewer pieces and for achieving a higher
order of smoothness. The potential of implicits remains largely latent: virtually
all commercial and many research modeling systems are based on the parametric
representation. An exception is shastra, which allows modeling with both implicit
and parametric splines [Baj93]. Implicit free-form surface schemes are summarized
in Table 56.3.2.

TABLE 56.3.2 Free-form implicit schemes.

DEGREE SCHEME INPUT PROPERTIES

5, 7 local interpolation, no splitting curve mesh from
spatial triangulation

C1 interpolate or
approximate

2 simplicial hull construction spatial triangulation

3 simplicial hull construction, Clough-
Tocher split

spatial triangulation C1

3 simplicial hull construction, Clough-
Tocher split of coplanar faces

spatial triangulation C1 A-patches,
3 or 4 sides

5 simplicial hull construction, Clough-
Tocher split of coplanar faces

spatial triangulation C2 A-patches

A-SPLINES

An A-spline is a piecewise Gk-continuous chain of real algebraic curve segments,
such that each curve segment is a smooth and single-sheeted zero contour of a bivari-
ate Bernstein-Bézier polynomial (called a regular curve segment). A-splines are
a suitable polynomial form for working with piecewise implicit polynomial curves.
A characterization of A-splines defined over triangles or quadrilaterals is avail-
able [BX99, XB00], as is a detailing of their applications in curve design and fit-
ting [BX01a].

CURVILINEAR MESH SCHEMES

Bajaj and Ihm [BI92a] construct implicit surfaces to solve the scattered data-fitting
problem. The resulting surfaces approximate or contain with C1 continuity any
collection of points and algebraic space curves with derivative information. Their
Hermite interpolation algorithm solves a homogeneous linear system of equations to
compute the coefficients of the polynomial defining the algebraic surface. This idea
has been extended to Ck (rescaling continuity) interpolate or least squares approx-
imate implicit or parametric curves in space [BIW93]. This problem is formulated
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as a constrained quadratic minimization problem, where the algebraic distance is
minimized instead of the geometric distance.

In a curvilinear-mesh-based scheme, Bajaj and Ihm [BI92b] construct low-
degree implicit polynomial spline surfaces by interpolating a mesh of curves in
space using the techniques of [BI92a, BIW93]. They consider an arbitrary spatial
triangulation T consisting of vertices in R3 (or more generally, a simplicial poly-
hedron P when the triangulation is closed), with possibly normal vectors at the
vertex points. Their algorithm constructs a C1 mesh of real implicit algebraic sur-
face patches over T or P. The scheme is local (each patch has independent free
parameters) and there is no local splitting. The algorithm first converts the given
triangulation or polyhedron into a curvilinear wire frame, with at most cubic para-
metric curves which C1 interpolate all the vertices. The curvilinear wire frame is
then fleshed to produce a single implicit surface patch of degree at most 7 for each
triangular face T of P. If the triangulation is convex then the degree is at most
5. Similar techniques exist for parametrics [Pet91, Sar87]; however, the geometric
degrees of the solution surfaces tend to be prohibitively high.

SIMPLEX- AND BOX-BASED SCHEMES

In a simplex-based approach, one first constructs a tetrahedral mesh (called the
simplicial hull) conforming to a surface triangulation T of a polyhedron P. The
implicit piecewise polynomial surface consists of the zero set of a Bernstein-Bézier
polynomial, defined within each tetrahedron (simplex) of the simplicial hull. A
simplex-based approach enforces continuity between adjacent patches by enforc-
ing that vertex/edge/face-adjacent trivariate polynomials are continuous with one
another.

Similar to the trivariate interpolation case, Powell-Sabin or Clough-Tocher
splits are used to introduce degree-bounded vertices to prevent the continuity sys-
tem from propagating globally. Such splitting, however, could result in a large
number of patches. However, as only the zero set of the polynomial is of interest,
one does not need a complete mesh covering the entire space.

Sederberg [Sed85] showed how various smooth implicit algebraic surfaces, rep-
resented in trivariate Bernstein basis form, can be manipulated as functions in
Bézier control tetrahedra with finite weights. He showed that if the coefficients
of the Bernstein-Bézier form of the trivariate polynomial on the lines that parallel
one edge, say L, of the tetrahedron all increase (or decrease) monotonically in the
same direction, then any line parallel to L will intersect the zero contour algebraic
surface patch at most once.

Guo [Guo91] used cubics to create free-form geometric models and enforced
monotonicity conditions on a cubic polynomial along the direction from one vertex
to a point of the face opposite the vertex. A Clough-Tocher split is used to subdivide
each tetrahedron of the simplicial hull. Dahmen and Thamm-Scharr [DTS93] utilize
a single cubic patch per tetrahedron, except for tetrahedra on coplanar faces.

Lodha [Lod92] constructed low degree surfaces with both parametric and im-
plicit representations and investigated their properties. A method is described for
creating quadratic triangular Bézier surface patches that lie on implicit quadric sur-
faces. Another method is described for creating biquadratic tensor product Bézier
surface patches that lie on implicit cubic surfaces. The resulting patches satisfy
all the standard properties of parametric Bézier surfaces, including interpolation of
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the corners of the control polyhedron and the convex hull property.
Bajaj and Ihm, Guo, and Dahmen [BI92b, Guo91, Guo93, Dah89] provide

heuristics based on monotonicity and least square approximation to circumvent the
multiple-sheeted and singularity problems of implicit patches.

Bajaj, Chen, and Xu [BCX95] construct 3- and 4-sided A-patches that are
implicit surfaces in Bernstein-Bézier (BB) form and that are smooth and single-
sheeted. They give sufficiency conditions for the BB form of a trivariate polynomial
within a tetrahedron, such that the zero contour of the polynomial is a single-
sheeted nonsingular surface within the tetrahedron, and its cubic-mesh complex for
the polyhedron P is guaranteed to be both nonsingular and single-sheeted. They
distinguish between convex and non-convex facets and edges of the triangulation.
A double-sided tetrahedron is built for nonconvex facets and edges, and single-sided
tetrahedra are built for convex facets and edges. A generalization of Sederberg’s
condition is given for a three-sided j-patch where any line segment passing through
the jth vertex of the tetrahedron and its opposite face intersects the patch only
once. Instead of having coefficients be monotonically increasing or decreasing there
is a single sign change condition. There are also free parameters for both local and
global shape control.

Reconstructing surfaces and scalar fields defined over the surface from scat-
tered data using implicit Bézier splines is described in [BBX95, BX01b]. See also
Chapter 35.

GENERALIZED BARYCENTRIC FINITE ELEMENTS

A generalized-barycentric scheme for the construction of free-form curve or sur-
face elements, is an extension of the afore-mentioned simplex and box based schemes
to meshes of convex polytopes, especially in dimensions 2 and 3 [War96, FHK06,
GRB16]. It is well known that on simplicial and tensor product meshes, stan-
dard barycentric coordinates provide a local basis for scalar-valued finite element
spaces, commonly called the Lagrange interpolation elements. Using generalized
barycentric coordinates on can construct local interpolation bases with the same
global continuity and polynomial reproduction properties as their simplicial coun-
terparts. Further, local bases for the lowest-order vector-valued Brezzi-Douglas-
Marini [BDM85], Raviart-Thomas [RT77], and Nedelec [BDD+87, Néd80, Néd86]
finite element spaces on simplices can also be defined in a canonical fashion from
an associated set of standard barycentric functions.

In [GRB12, RGB13] linear order, scalar-valued interpolants on polygonal meshes
are considered use four different types of generalized barycentric coordinates: Wach-
spress [Wac11], Sibson [Far90, Sib80], harmonic [Chr08, JMD+07, MKB+08], and
mean value [Flo03, FHK06, FKR05]. The analysis was extended by Gillette, Floater,
and Sukumar in the case of Wachspress coordinates to convex polytopes in any
dimension [FGS14], based on work by Warren and colleagues [JSW+05, War96,
WSH+07]. In a related vein, it has also been shown how taking pairwise prod-
ucts of generalized barycentric coordinates can be used to construct quadratic or-
der methods on polygons [RGB14]. Applications of generalized barycentric coor-
dinates to finite element methods have primarily focused on scalar-valued PDE
problems [MP08, RS06, SM06, ST04, WBG07] though extensions to vector-valued
interpolants on dual meshes is the method of choice for solution of mixed or coupled
PDEs [AFW09].
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56.4 MULTIRESOLUTION SPLINE SURFACES

SUBDIVISION SURFACES

Subdivision techniques can be used to produce generally pleasing surfaces from
arbitrary control meshes. The faces of the mesh need not be planar, nor need the
vertices lie on a topologically regular mesh. Subdivision consists of splitting and
averaging. Each edge or face is split, and each new vertex introduced by the splitting
is positioned at a fixed affine combination of its neighbor’s weights. Subdivision
schemes are summarized in Table 56.4.1.

TABLE 56.4.1 Subdivision schemes.

TYPE PROPERTIES

Doo-Sabin; Catmull-Clark C1, interpolate centroids of all faces at each step

Nasri interpolate points/normals on irregular networks

Loop C1, split each triangle of a triangular mesh into 4 triangles

Hoppe et al. extends Loop’s method to incorporate shape edges in limit surfaces;
initial vertices belong to vertex, edge, or face of limit surface

Storry and Ball C1 n-sided B-spline patch to fit in bicubic surface, one dof

Dyn, Levin, and Gregory interpolatory butterfly subdivision, modify set of deterministic
rules for subdivision

Bajaj, Chen, and Xu approximation, one step subdivision to build simplicial hull,
C1 cubic and C2 quintic A-patches

Reif regularity conditions

MAIN ALGORITHMS

Subdivision algorithms start with a polyhedral configuration of points, edges, and
faces. The control mesh will in general consist of large regular regions and isolated
singular regions. Subdivision enlarges the regular regions of the control net and
shrinks the singular regions. Each application of the subdivision algorithm con-
structs a refined polyhedron, consisting of more points and smaller faces, tending
in the limit to a smooth surface. In general the new control points are computed
as linear combinations of old control points. The associated matrix is called the
subdivision matrix. Except for some special cases, the limiting surface does not
have an explicit analytic representation. If each face of the polyhedron is a rectan-
gle, the Doo-Sabin subdivision rules generate biquadratic tensor product B-splines,
and the Catmull-Clark subdivision rules generate bicubic tensor product B-splines.
Also, the subdivision technique of Loop generates three-direction box splines.

Reif [Rei92] presents a unified approach to subdivision algorithms for meshes
with arbitrary topology and gives a sufficient condition for the regularity of the
surface. The existence of a smooth regular parametrization for the generated surface
near the point is determined from the leading eigenvalues of the subdivision matrix
and an associated characteristic map. Details and further discussion of recent
subdivision schemes are available from [WW02].
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APPROXIMATING SCHEMES

Bajaj, Chen, and Xu [BCX94] construct an “inner” simplicial hull after one step of
subdivision of the input polyhedron P. As in traditional subdivision schemes, P is
used as a control mesh for free-form modeling, while an inner surface triangulation
T of the hull can be considered as the second-level mesh. Both a C1 mesh with cubic
A-patches and a C2 mesh with quintic patches can be constructed to approximate
the polyhedron P [XBE01].

INTERPOLATING SCHEMES

There are two key approaches to constructing interpolating subdivision surfaces.
One approach is to first compute a new configuration of vertices, edges, and faces
with the same topology such that the vertices of the new configuration converge to
the given vertices in the limit. The subdivision technique is then applied to this
new configuration The other approach is to modify the deterministic subdivision
rules so that the limiting surface interpolates the vertices.

HIERARCHICAL SPLINES

Hierarchical splines are a multiresolution approach to the representation and ma-
nipulation of free-form surfaces. A hierarchical B-spline is constructed from a base
surface (level 0) and a series of overlays are derived from the immediate parent in
the hierarchy. Forsey and Bartels [FB88] present a refinement scheme that uses
a hierarchy of rectangular B-spline overlays to produce C2 surfaces. Overlays can
be added manually to add detail to the surface, and local or global changes to the
surface can be made by manipulating control points at different levels.

Forsey and Wang [FW93] create hierarchical bicubic B-spline approximations
to scanned cylindrical data. The resulting hierarchical spline surface is interactively
modifiable using editing capabilities of the hierarchical surface representation, al-
lowing either local or global changes to surface shape while retaining the details of
the scanned data. Oscillations occur, however, when the data have high-amplitude
or high-frequency regions. Forsey and Bartels use a hierarchical wavelet-based
representation for fitting tensor product parametric spline surfaces to gridded data
in [FB95]. The multiresolution representation is extend to include arbitrary meshes
in [EDD+95]. The method is based on approximating an arbitrary mesh by a spe-
cial type of mesh and using a continuous parametrization of the arbitrary mesh
over a simple domain mesh.

Multiresolution representations for spherical splines or spherical wavelets is
given in [SS95] Further discussion of wavelet based multiresolution schemes and
some of their applications is available from [SDS96].
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56.5 PHYSICALLY BASED APPROACHES TO SURFACE MOD-
ELING

ENERGY-BASED SPLINES

A group of researchers [TF88, PB88, TPB+87, WFB87, BHN99] have presented
discrete models which are based extensively on the theory of elasticity and plastic-
ity, using energy fields to define and enforce constraints [AFW06, AFW10]. Hau-
mann [Hau87] used the same approach but used a triangulated model and a simpler
physical model based on points, springs, and hinges. Thingvold and Cohen [TC90]
defined a model of elastic and plastic B-spline surfaces which supports both anima-
tion and design operations. The basis for the physical model is a generalized point-
mass/spring/hinge model that has been adapted into a simultaneous refinement of
the geometric/physical model. Always having a sculptured surface representation as
well as the physical hinge/spring/mesh model allows the user to intertwine physical-
based operations, such as force application, with geometrical modeling. Refinement
operations for spring and hinge B-spline models are compatible with the physics and
mathematics of B-spline models. The models of elasticity and plasticity are written
in terms of springs and hinges, and can be implemented with standard integration
techniques to model realistic motions of elastic and plastic surfaces. These motions
are controlled by the physical properties assigned and by kinematic constraints on
various portions of the surface. Terzopoulos and Qin [TQ94] develop a dynamic
generalization of the nonuniform rational B-spline (NURBS) model. They present
a physics-based model that incorporates mass distributions, internal deformation
energies, and other physical quantities into the NURBS geometric substrate. These
dynamic NURBS can be used in applications such as rounding of solids, optimal
surface fitting to unstructured data, surface design from cross-sections, and free-
form deformations.

DIFFERENTIAL EQUATIONS AND SURFACE SPLINES

Early research on using partial differential equations (PDEs) to handle surface
modeling problems traces back to Bloor et al.’s work at the end of the 1980s
([BW89a, BW89b, BW90]). The basic idea of these papers is the use of biharmonic
equations on a rectangular domain to solve blending and hole filling problems. One
of the advantages of using the biharmonic equation is that it is linear, and there-
fore easier to solve. However, the solution of the equation depends on the surface
parametrization.

The evolution technique, based on the heat equation ∂tx −∆x = 0, has been
extensively used in the area of image processing (see [PM87, PR99, Wei98], where
∆ is a 2D Laplace operator. This was extended later to smoothing or fairing noisy
surfaces (see [CDR00, DMS+99, DMS+03]). For a surface M , the counterpart of the
Laplacian ∆ is the Laplace-Beltrami operator ∆M (see [Car92]). One then obtains
the geometric diffusion equation ∂tx − ∆Mx = 0 for a surface point x(t) on the
surface M(t). Taubin [Tau95] discusses the discretized operator of the Laplacian
and related approaches in the context of generalized frequencies on meshes. Kobbelt
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[Kob96] considers discrete approximations of the Laplacian in the construction of
fair interpolatory subdivision schemes. This work was extended in [KCV+98] to
arbitrary connectivity for purposes of multi-resolution interactive editing. Desbrun
et al. [DMS+99] used an implicit discretization of geometric diffusion to obtain a
strongly stable numerical smoothing scheme. The same strategy of discretization is
also adopted and analyzed by Deckelnick and Dziuk [DD02] with the conclusion that
this scheme is unconditionally stable. Clarenz et al. [CDR00] introduced anisotropic
geometric diffusion to enhance features while smoothing. Ohtake et al. [OBB00]
combined an inner fairness mechanism in their fairing process to increase the mesh
regularity. Bajaj and Xu [BX03] smooth both surfaces and functions on surfaces, in
a C2 smooth function space defined by the limit of triangular subdivision surfaces
(quartic Box splines).

Similar to surface diffusion using the Laplacian, a more general class of PDE
based methods called flow surface techniques have been developed which sim-
ulate different kinds of flows on surfaces (see [WJE00] for references) using the
equation ∂tx − v(x, t) = 0, where v(x, t) represents the instantaneous stationary
velocity field.

Level set methods were also used in surface fairing and surface reconstruction;
see [BCO+01, BSC+00, CS99, MBW+02, OF03, WB98, ZOF01, ZOM+00]. In these
methods, surfaces are formulated as iso-surfaces (level surfaces) of 3D functions,
which are usually defined from the signed distance over Cartesian grids of a volume.
An evolution PDE on the volume governs the behavior of the level surface. These
level-set methods have several attractive features including, ease of implementation,
arbitrary topology [BW01] and a growing body of theoretical results. Often, fine
surface structures are not captured by level sets, although it is possible to use
adaptive [PR99] and triangulated grids as well as Hermite data [JLS+02, KBS+01].
To reduce the computationally complexity, Bertalmio et al. [BCO+01, BSC+00]
solve the PDE in a narrow band for deforming vectorial functions on surfaces (with
a fixed surface represented by the level surface).

Recently, surface diffusion flow has been used to solve the surface blending
problem and free-form surface design problem. In [SK00], fair meshes with G1

conditions are created in the special case where the meshes are assumed to have
subdivision connectivity. In this work, local surface parametrization is still used
to estimate the surface curvatures. A later paper [SK01] uses the same equation
for smoothing meshes while satisfying G1 boundary conditions. Outer fairness (the
smoothness in the classical sense) and inner fairness (the regularity of the vertex
distribution) criteria are used in their fairing process.

Another category of surface fairing research is based on utilizing optimization
techniques. In this category, one constructs an optimization problem that minimizes
certain objective functions [Gre94, GL10, HG00, MS92, Sap94, Wah90, WW92],
such as thin plate energy, membrane energy [KCV+98], total curvature [KHP+97,
WW94], or sum of distances [Mal92]. Using local interpolation or fitting, or re-
placing differential operators with divided difference operators, the optimization
problems are discretized to arrive at finite dimensional linear or nonlinear systems.
Approximate solutions are then obtained by solving the constructed systems. In
general, such an approach is quite computationally intensive.
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56.6 SOURCES AND RELATED MATERIAL

SURVEYS

All results not given an explicit reference above may be traced in these surveys.

[Alf89]: Scattered data fitting and multivariate splines.

[Baj97]: Summary of data fitting with implicit algebraic splines.

[BBB87]: Application of B-splines.

[Dau92]: An introduction to wavelets.

[BHR93]: An introduction to Box splines.

[DM83]: Scattered data fitting and multivariate splines.

[Far98]: Summary of the history of triangular Bernstein-Bézier patches.

[GL93]: An introduction to Knot manipulation techniques in splines.

[Hol82]: Scattered data fitting and multivariate splines.

[SDS96]: Application of wavelet representations.

[Wah90]: Penalized regression splines.

[WW02, PR08]: Subdivision techniques.

RELATED CHAPTERS

Chapter 29: Triangulations and mesh generation
Chapter 37: Computational and quantitative real algebraic geometry
Chapter 52: Computer graphics
Chapter 57: Solid modeling
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