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INTRODUCTION

Graph drawing addresses the problem of constructing geometric representations of
graphs, and has important applications to key computer technologies such as soft-
ware engineering, database systems, visual interfaces, and computer-aided design.
Research on graph drawing has been conducted within several diverse areas, includ-
ing discrete mathematics (topological graph theory, geometric graph theory, order
theory), algorithmics (graph algorithms, data structures, computational geometry,
vlsi), and human-computer interaction (visual languages, graphical user interfaces,
information visualization). This chapter overviews aspects of graph drawing that
are especially relevant to computational geometry. Basic definitions on drawings
and their properties are given in Section 55.1. Bounds on geometric and topological
properties of drawings (e.g., area and crossings) are presented in Section 55.2. Sec-
tion 55.3 deals with the time complexity of fundamental graph drawing problems.
An example of a drawing algorithm is given in Section 55.4. Techniques for drawing
general graphs are surveyed in Section 55.5.

55.1 DRAWINGS AND THEIR PROPERTIES

TYPES OF GRAPHS

First, we define some terminology on graphs pertinent to graph drawing. Through-
out this chapter let n and m be the number of graph vertices and edges respectively,
and d the maximum vertex degree (i.e., number of edges incident to a vertex).

GLOSSARY

Degree-k graph: Graph with maximum degree d ≤ k.

Digraph: Directed graph, i.e., graph with directed edges.

Acyclic digraph: Digraph without directed cycles.

Transitive edge: Edge (u, v) of a digraph is transitive if there is a directed path
from u to v not containing edge (u, v).

Reduced digraph: Digraphs without transitive edges.

Source: Vertex of a digraph without incoming edges.

Sink: Vertex of a digraph without outgoing edges.

st-digraph: Acyclic digraph with exactly one source and one sink, which are
joined by an edge (also called bipolar digraph).

1451

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.



1452 E. Di Giacomo, G. Liotta, and R. Tamassia

Connected graph: Graph in which any two vertices are joined by a path.

Biconnected graph: Graph in which any two vertices are joined by two vertex-
disjoint paths.

Triconnected graph: Graph in which any two vertices are joined by three (pair-
wise) vertex-disjoint paths.

Layered (di)graph: (Di)graph whose vertices are partitioned into sets, called
layers, such that no two vertices in the same layer are adjacent.

k-layered (di)graph: Layered (di)graph with k layers.

Tree: Connected graph without cycles.

Directed Tree: Digraph whose underlying undirected graph is a tree.

Rooted tree: Directed tree with a distinguished vertex, the root, such that each
vertex lies on a directed path to the root. A rooted tree is also viewed as a
layered digraph where the layers are sets of vertices at the same distance from
the root.

Binary tree: Rooted tree where each vertex has at most two incoming edges.

Ternary tree: Rooted tree where each vertex has at most three incoming edges.

Series-parallel digraph (SP digraph): A digraph with a single source s and
a single sink t recursively defined as follows: (i) a single edge (s, t) is a series-
parallel digraph. Given two series-parallel digraphs G′ and G′′ with sources s′

and s′′, respectively and sinks t′ and t′′, respectively, (ii) the digraph obtained
by identifying t′ with s′′ is a series-parallel digraph; (iii) the digraph obtained
by identifying s′ with s′′ and t′ with t′′ is a series-parallel digraph. The series-
parallel digraphs defined above are often called two-terminal series parallel
digraphs. Throughout this section series-parallel digraphs have no multiple
edges.

Series-parallel graph (SP graph): The underlying undirected graph of a series-
parallel digraph.

Bipartite (di)graph: (Di)graph whose vertices are partitioned into two sets and
each edge connects vertices in different sets. A bipartite (di)graph is also viewed
as a 2-layered (di)graph.

TYPES OF DRAWINGS

In a drawing of a graph one has to geometrically represent the vertices and their
adjacencies (edges). This can be done in several different ways. In the most common
types of drawing, vertices are represented by points (or by geometric figures such as
circles or rectangles) and edges are represented by curves such that any two edges
intersect at most in a finite number of points. In other types of drawings vertices
can be represented by various geometric objects (segments, curves, polygons) while
adjacencies can be represented by intersections, contacts, or visibility of the objects
representing the vertices.

GLOSSARY

Polyline drawing: Each edge is a polygonal chain (Figure 55.1.1(a)).

Straight-line drawing: Each edge is a straight-line segment (Figure 55.1.1(b)).
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Orthogonal drawing: Each edge is a chain of horizontal and vertical segments
(Figure 55.1.1(c)).

Bend: In a polyline drawing, point where two segments belonging to the same
edge meet (Figure 55.1.1(a)).

Orthogonal Representation: Description of an orthogonal drawing in terms of
bends along each edge and angles around each vertex with no information about
the length of the segments that connect vertices and bends.

Crossing: Intersection point of two edges that is not a common vertex nor a
touching (tangential) point (Figure 55.1.1(b)).

Grid drawing: Polyline drawing such that vertices and bends have integer coor-
dinates.

Planar drawing: Drawing where no two edges cross (see Figure 55.1.1(d)).

Planar (di)graph: (Di)graph that admits a planar drawing.

Face: A connected region of the plane defined by a planar drawing, where the
unbounded region is called the external face.

Embedded (di)graph: Planar (di)graph with a prespecified topological embed-
ding (i.e., set of faces), which must be preserved in the drawing.

Outerplanar (di)graph: A planar (di)graph that admits a planar drawing with
all vertices on the boundary of the external face.

Convex drawing: Planar straight-line drawing such that the boundary of each
face is a convex polygon.

Upward drawing: Drawing of a digraph where each edge is monotonically non-
decreasing in the vertical direction (see Figure 55.1.1(d)).

Upward planar digraph: Digraph that admits an upward planar drawing.

Layered drawing: Drawing of a layered graph such that vertices in the same
layer lie on the same horizontal line (also called hierarchical drawing).

Dominance drawing: Upward drawing of an acyclic digraph such that there
exists a directed path from vertex u to vertex v if and only if x(u) ≤ x(v) and
y(u) ≤ y(v), where x(·) and y(·) denote the coordinates of a vertex.

hv-drawing: Upward orthogonal straight-line drawing of a binary tree such that
the drawings of the subtrees of each node are separated by a horizontal or vertical
line.

FIGURE 55.1.1

Types of drawings: (a) polyline drawing of
K3,3; (b) straight-line drawing of K3,3; (c)
orthogonal drawing of K3,3; (d) planar up-
ward drawing of an acyclic digraph. (a) (b) (c) (d)

Straight-line and orthogonal drawings are special cases of polyline drawings.
Polyline drawings provide great flexibility since they can approximate drawings
with curved edges. However, edges with more than two or three bends may be
difficult to “follow” for the eye. Also, a system that supports editing of polyline
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drawings is more complicated than one limited to straight-line drawings. Hence,
depending on the application, polyline or straight-line drawings may be preferred. If
vertices are represented by points, orthogonal drawings are possible only for graphs
of maximum vertex degree 4.

PROPERTIES OF DRAWINGS

GLOSSARY

Area: Area of the smallest axis-aligned rectangle (bounding box) containing
the drawing. This definition assumes that the drawing is constrained by some
resolution rule that prevents it from being reduced by an arbitrary scaling (e.g.,
requiring a grid drawing, or stipulating a minimum unit distance between any
two vertices).

Total edge length: Sum of the lengths of the edges.

Maximum edge length: Maximum length of an edge.

Curve complexity: Maximum number of bends along an edge of a polyline draw-
ing.

Angular resolution: Smallest angle formed by two edges, or segments of edges,
incident on the same vertex or bend, in a polyline drawing.

Perfect angular resolution: A drawing has perfect angular resolution if for
every vertex v the angle formed by any two consecutive edges around v is 2π

d(v) ,

where d(v) is the degree of v.

Aspect ratio: Ratio of the longest to the shortest side of the smallest rectangle
with horizontal and vertical sides covering the drawing.

There are infinitely many drawings for a graph. In drawing a graph, we would
like to take into account a variety of properties. For example, planarity and the
display of symmetries are highly desirable in visualization applications. Also, it is
customary to display trees and acyclic digraphs with upward drawings. In general,
to avoid wasting valuable space on a page or a computer screen, it is important to
keep the area of the drawing small. In this scenario, many graph drawing prob-
lems can be formalized as multi-objective optimization problems (e.g., construct a
drawing with minimum area and minimum number of crossings), so that tradeoffs
are inherent in solving them. Typically, it is desirable to maximize the angular
resolution and to minimize the other measures.

FIGURE 55.1.2

(a–b) Tradeoff between planarity and sym-
metry in drawing K4. (c–d) Tradeoff be-
tween planarity and upwardness in drawing
an acyclic digraph G. (a) (b) (c) (d)

The following examples illustrate two typical tradeoffs in graph drawing prob-
lems. Figure 55.1.2(a–b) shows two drawings of K4, the complete graph on four
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vertices. The drawing of part (a) is planar, while the drawing of part (b) “maxi-
mizes symmetries.” It can be shown that no drawing of K4 is optimal with respect
to both criteria, i.e., the maximum number of symmetries cannot be achieved by
a planar drawing. Figure 55.1.2(c–d), shows two drawing of the same acyclic di-
graph G. The drawing of part (c) is upward, while the drawing of part (d) is planar.
It can be shown that there is no drawing of G which is both planar and upward.

55.2 BOUNDS ON DRAWING PROPERTIES

For various classes of graphs and drawing types, many universal/existential upper
and lower bounds for specific drawing properties have been discovered. Such bounds
typically exhibit tradeoffs between drawing properties. A universal bound applies
to all the graphs of a given class. An existential bound applies to infinitely many
graphs of the class. In the following tables, the abbreviations PSL, PSLO, PO,
and PPL are used for planar straight-line, planar straight-line orthogonal, planar
orthogonal, and planar polyline, respectively.

BOUNDS ON THE AREA

Tables 55.2.1 and 55.2.2 summarize selected universal upper bounds and existen-
tial lower bounds on the area of drawings of trees and graphs, respectively. The
following comments apply to Tables 55.2.1 and 55.2.2, where specific rows of the
table are indicated within parentheses. Linear or almost-linear bounds on the area
can be achieved for several families of trees (1–7, 10–14, and 17–27); typically, su-
perlinear lower bounds are associated with order preserving drawings (6, 9, 12, 14,
16, 19, 26). For directed trees, if a given embedding must be preserved, exponen-
tial area is required (28). See Table 55.2.5 for tradeoffs between area and aspect
ratio in drawings of trees. Planar graphs admit planar drawings with quadratic
area both in the straight-line, polyline and orthogonal model (10–12). For planar
straight-line drawings, outerplanar graphs are the only class of graphs for which
a sublinear upper bound is known (4). For polyline drawings this is true also for
series-parallel graphs (5 and 7). Series-parallel graphs are the only subclass of
planar graphs for which a superlinear lower bound is known both for straight-line
and polyline drawings (6–7). If drawings are not required to be planar, linear area
can be achieved for planar graphs (13). If, however, the drawing is required to be
orthogonal, then superlinear lower bounds exists both for planar and non-planar
graphs (2 and 3). In this case, almost linear area can be achieved for planar graphs
(2), while linear area is possible for outerplanar graphs (1). Studies about the
nature of the crossings in compact straight-line drawings of planar graphs are pre-
sented in [DDLM12, DDLM13]. Upward planar drawings provide an interesting
tradeoff between area and having straight-line edges or not (15–24). Indeed, if a
straight-line drawing is required, the area can become exponential even for sub-
classes of upward planar digraphs like outerplanar or bipartite DAGs (15, 18, 20,
22). In these cases a quadratic area bound is achieved only at the expense of a
linear number of bends (16, 19, 21, 24). Other cases for which a polynomial bound
is known are series-parallel graphs, when one is allowed to change the embedding
(17), and upward dominance drawings of reduced planar st-graphs (23).
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TABLE 55.2.1 Universal upper and existential lower bounds on the area of drawings of trees.

CLASS OF GRAPHS DRAWING TYPE AREA

1 Fibonacci tree strict upw PSL Ω(n) trivial O(n) [Tre96]

2 AVL tree strict upw PSL Ω(n) trivial O(n) [CPP98]

3
Balanced binary

tree
strict upw PSL Ω(n) trivial O(n) [CP98]

4 Binary tree PSL Ω(n) trivial O(n) [GR04]

5 Binary tree ord pres PSL Ω(n) trivial O(n log logn) [GR03a]

6 Binary tree
strict upw ord pres

PSL
Ω(n logn) [CDP92] O(n logn) [GR03a]

7 Binary tree PSLO Ω(n) trivial O(n log logn) [SKC00]

8 Binary tree ord pres PSLO Ω(n) trivial O(n1.5) [Fra08b]

9 Binary tree
upw ord pres

PSLO
Ω(n2) [Fra08b] O(n2) [Fra08b]

10 Binary tree ord pres PO Ω(n) trivial O(n) [DT81]

11 Binary tree upw PO Ω(n log logn) [GGT96]
O(n log logn)

[GGT96, Kim95, SKC00]

12 Binary tree upw ord pres PO Ω(n logn) [GGT96] O(n logn) [Kim95]

13 Binary tree upw PPL Ω(n) trivial O(n) [GGT96]

14 Binary tree upw ord pres PPL Ω(n logn) [GGT96] O(n logn) [GGT96]

15 Ternary tree PSLO Ω(n) trivial O(n1.631) [Fra08b]

16 Ternary tree ord pres PSLO Ω(n2) [Fra08b] O(n2) [Fra08b]

17 Ternary tree PO Ω(n) trivial O(n) [Val81]

18 Ternary tree ord pres PO Ω(n) trivial O(n) [DT81]

19 Ternary tree upw ord pres PO Ω(n logn) [GGT96] O(n logn) [Kim95]

20
deg-O(1) rooted

tree
upw PSL Ω(n) trivial O(n log logn) [SKC00]

21
deg-O(n

a

2 ) rooted

tree
PSL Ω(n) trivial O(n) [GR03b]

22
deg-O(na) rooted

tree
upw PPL Ω(n) trivial O(n) [GGT96]

23 Rooted tree ord pres PSL Ω(n) trivial O(n logn) [GR03a]

24 Rooted tree upw PSL Ω(n) trivial O(n logn) [CDP92]

25 Rooted tree strict upw PSL Ω(n logn) [CDP92] O(n logn) [CDP92]

26 Rooted tree
strict upw ord pres

PSL
Ω(n logn) [CDP92] O(n4

√
2 log2 n) [Cha02]

27 Directed trees upw PSL Ω(n logn) [CDP92] O(n logn) [Fra08a]

28 Directed trees upw ord pres PSL Ω(bn) [Fra08a] O(cn) [GT93]

Note: n is the number of vertices, a, b, and c are constants such that 0 ≤ a < 1, 1 < b < c.

All bounds assume grid drawings.
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TABLE 55.2.2 Universal upper and existential lower bounds on the area of drawings of

graphs.

CLASS OF GRAPHS DRAWING TYPE AREA

1 Outerpl deg-4 graph orthogonal Ω(n) trivial O(n) [Lei80]

2 Planar deg-4 graph orthogonal Ω(n logn) [Lei84] O(n log2 n) [Lei80, Val81]

3 Deg-4 graph orthogonal Ω(n2) [Val81]
O(n2) [BK98a, BS15,

PT98, Sch95, Val81]

4 Outerplanar graph PSL Ω(n) trivial O(n1.48) [DF09]

5 Outerplanar graph PPL Ω(n) trivial O(n logn) [Bie11]

6 SP graph PSL Ω(n2
√

log2 n) [Fra10] O(n2) [FPP90, Sch90]

7 SP graph PPL Ω(n2
√

log2 n) [Fra10] O(n1.5) [Bie11]

8 Triconn pl graph convex PSL
Ω(n2) [FPP90, FP08,

MNRA11, Val81]

O(n2) [BFM07, CK97,

DTV99, ST92]

9 Triconn pl graph strict convex PSL
Ω(n3) [And63, BP92,

BT04, Rab93]
O(n4) [BR06]

10 Planar graph PSL Ω(n2) [FPP90] O(n2) [FPP90, Sch90]

11 Planar graph PPL Ω(n2) [FPP90]
O(n2)

[DT88, DTT92, Kan96]

12 Planar graph PO Ω(n2) [FPP90]
O(n2) [BK98a, Kan96,

Tam87, TT89]

13 Planar graph straight-line Ω(n) trivial O(n) [Woo05]

14 General graph polyline Ω(n) trivial
O((n+ χ)2) [BK98a,

Kan96, Tam87, TT89]

15 Outerplanar DAG upw PSL Ω(bn) [Fra08a] O(cn) [GT93]

16 Outerplanar DAG upw PPL Ω(n2) [Fra08a] O(n2) [DT88, DTT92]

17 SP digraph upw PSL Ω(n2) trivial O(n2) [BCD+94]

18 Embed SP digraph upw PSL Ω(bn) [BCD+94] O(cn) [GT93]

19 Embed SP digraph upw PPL Ω(n2) trivial O(n2) [DT88, DTT92]

20 Bipartite DAG upw PSL Ω(bn) [Fra08a] O(cn) [GT93]

21 Bipartite DAG upw PPL Ω(n2) [Fra08a] O(n2) [DT88, DTT92]

22 Upward pl digraph upw PSL Ω(bn) [DTT92] O(cn) [GT93]

23
Reduced pl st-

digraph

upw PSL domi-

nance
Ω(n2) [FPP90] O(n2) [DTT92]

24 Upward pl digraph upw PPL Ω(n2) [FPP90] O(n2) [DT88, DTT92]

Note: n is the number of vertices, χ is the number of crossings in the drawing,

a, b, and c are constants such that 0 ≤ a < 1, 1 < b < c. All bounds assume grid drawings.

BOUNDS ON THE ANGULAR RESOLUTION

Table 55.2.3 summarizes selected universal lower bounds and existential upper
bounds on the angular resolution of drawings of graphs. The bounds of the first
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row are stated for n ≥ 5 because any planar straight-line drawing of K4 has angular
resolution lower than π

4 .

TABLE 55.2.3 Universal lower and existential upper bounds on angular resolution.

CLASS OF GRAPHS DRAWING TYPE ANGULAR RESOLUTION

deg-3 plan graph † PSL ≥ π
4

[DLM14] ≤ π
4

[DLM14]

SP graph PSL Ω
(

1
d

)

[LLMN13] O
(

1
d

)

trivial

General graph straight-line Ω
(

1

d2

)

[FHH+93] O
(

log d
d2

)

[FHH+93]

Planar graph straight-line Ω
(

1
d

)

[FHH+93] O
(

1
d

)

trivial

Planar graph PSL Ω
(

1

cd

)

[MP94] O

(

√

log d
d3

)

[GT94]

Planar graph PSL Ω
(

1

n2

)

[FPP90, Sch90] O
(

1
n

)

trivial

Planar graph PPL Ω
(

1
d

)

[Kan96] O
(

1
d

)

trivial

Note: n is the number of vertices, d is the maximum vertex degree c is a constant such that c > 1.

† n ≥ 5;

BOUNDS ON THE NUMBER OF BENDS

Table 55.2.4 summarizes selected universal upper bounds and existential lower
bounds on the total number of bends and on the curve complexity of orthogo-
nal drawings. Some bounds are stated for n ≥ 5 or n ≥ 7 because the maximum
number of bends is at least two for K4 and at least three for the skeleton graph of
an octahedron, in any planar orthogonal drawing.

TABLE 55.2.4 Orthogonal drawings: universal upper and existential lower bounds on

the number of bends.

CLASS OF GRAPHS DRAWING TYPE TOTAL NUM. OF BENDS CC REF

deg-4 † orthog ≥ n ≤ 2n+ 2 2 [BK98a]

Planar deg-4 † orthog planar ≥ 2n− 2 ≤ 2n+ 2 2 [BK98a, TTV91]

Embed deg-4 orthog planar ≥ 2n− 2 ≤ 12
5
n+ 2 3

[EG95, LMS91,

TT89, TTV91]

Biconn embed deg-4 orthog planar ≥ 2n− 2 ≤ 2n+ 2 3
[EG95, LMS91,

TT89, TTV91]

Triconn embed deg-4 orthog planar ≥ 4
3
(n−1)+2 ≤ 3

2
n+ 4 2 [Kan96]

Embed deg-3 ‡ orthog planar ≥ 1
2
n+ 1 ≤ 1

2
n+ 1 1 [Kan96, LMPS92]

Note: CC stands for curve complexity, while n is the number of vertices. † n ≥ 7; ‡ n ≥ 5.
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TRADEOFF BETWEEN AREA AND ASPECT RATIO

The ability to construct area-efficient drawings is essential in practical visualization
applications, where screen space is at a premium. However, achieving small area is
not enough, e.g., a drawing with high aspect ratio may not be conveniently placed
on a workstation screen, even if it has modest area. Hence, it is important to
keep the aspect ratio small. Ideally, one would like to obtain small area for any
given aspect ratio in a wide range. This would provide graphical user interfaces
with the flexibility of fitting drawings into arbitrarily shaped windows. A variety of
tradeoffs for the area and aspect ratio arise even when drawing graphs with a simple
structure, such as trees. Table 55.2.5 summarizes selected universal bounds that
can be simultaneously achieved on the area and the aspect ratio of various types
of drawings of trees. Only for a few cases there exist algorithms that guarantee
efficient area performance and that can accept any user-specified aspect ratio in a
given range. For such cases, the aspect ratio in Table 55.2.5 is given as an interval.

TABLE 55.2.5 Trees: Universal upper bounds simultaneously achievable for area and aspect

ratio.

CLASS OF GRAPHS DRAWING TYPE AREA ASPECT RATIO REF

Binary tree PSL O(n) [O(1), O(nb)] [GR04]

Binary tree ord pres PSL O(n logn)
[

O(1), O
(

n
logn

)]

[GR04]

Binary tree ord pres PSL O(n log logn) O
(

n log log n
log2 n

)

[GR04]

Binary tree upw ord pres PSL O(n logn) O
(

n
log n

)

[GR04]

Binary tree PSLO O(n log logn)
[

O(1), O
(

n log log n
log2 n

)]

[SKC00]

Binary tree upward PO O(n log logn) O
(

n log log n
log2 n

)

[GGT96]

Binary tree upward PSLO O(n logn)
[

O(1), O
(

n
logn

)]

[CGKT02]

deg-4 tree orthogonal O(n) O(1) [Lei80, Val81]

deg-4 tree
orthogonal, leaves

on hull
O(n logn) O(1) [BK80]

Rooted deg-O(na)

tree
upward PPL O(n) [O(1), O(nb)] [GGT96]

Rooted tree
upward PSL lay-

ered
O(n2) O(1) [RT81]

Rooted tree upward PSL O(n logn) O
(

n
log n

)

[CDP92]

Note: n is the number of vertices, a and b are constants such that 0 ≤ a, b < 1.

All bounds assume grid drawings.

While upward planar straight-line drawings are the most natural way of visual-
izing rooted trees, the existing drawing techniques are unsatisfactory with respect
to either the area requirement or the aspect ratio. Regarding polyline drawings, lin-
ear area can be achieved with a prescribed aspect ratio. However, for rooted trees,
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straight-line drawing remains by far the most used convention. For non-upward
drawings of trees, linear area and optimal aspect ratio are possible for planar or-
thogonal drawings, and a small (logarithmic) amount of extra area is needed if the
leaves are constrained to be on the convex hull of the drawing (e.g., pins on the
boundary of a vlsi circuit). However, the non-upward drawing methods for rooted
trees are better suited for vlsi layout than for visualization applications.

TRADEOFF BETWEEN AREA AND ANGULAR RESOLUTION

Table 55.2.6 summarizes selected universal bounds that can be simultaneously
achieved on the area and the angular resolution of drawings of graphs. Univer-
sal lower bounds on the angular resolution exist that depend only on the degree of
the graph. Also, substantially better bounds can be achieved by drawing a planar
graph with bends or in a nonplanar way. Concerning trade-offs between area and
angular resolution, Garg and Tamassia [GT94] proved that for any chosen angular
resolution ρ, there exists a planar graph such that any planar straight-line draw-
ing with angular resolution ρ has area Ω(aρn), for a constant a > 1. Duncan et
al. [DEG+13] proved that there are trees that require exponential area for any order
preserving planar straight-line drawing having perfect angular resolution. Duncan
et al. also proved that perfect angular resolution and polynomial area can be si-
multaneously achieved for trees if order is not preserved or if the edges are drawn
as circular arcs.

TABLE 55.2.6 Universal upper bounds for area and lower bounds for angular

resolution, simultaneously achievable.

CLASS OF GRAPHS DRAWING TYPE AREA
ANGULAR

RESOLUTION
REF

Tree PSL O(n8) Ω
(

1
d

)

[DEG+13]

Planar graph SL grid O(d6n) Ω
(

1

d2

)

[FHH+93]

Planar graph SL grid O(d3n) Ω
(

1
d

)

[FHH+93]

Planar graph PSL grid O(n2) Ω
(

1

n2

)

[FPP90, Sch90]

Planar graph PSL grid O(bn) Ω
(

1

cd

)

[MP94]

Planar graph PPL grid O(n2) Ω
(

1
d

)

[Kan96]

Note: n is the number of vertices, d is the maximum vertex degree,

b and c are constants such that b > 1 and c > 1.

OPEN PROBLEMS

1. Determine the area requirement of planar straight-line orthogonal drawings of
binary and ternary trees. There are currently wide gaps between the known
upper and lower bounds (Table 55.2.1, rows 8 and 15).
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2. Determine the area requirement of (upward) planar straight-line drawings of
trees. There is currently an O(log n) gap between the known upper and lower
bounds (Table 55.2.1, row 24).

3. Determine the area requirement of (outer)planar straight-line grid drawings
of outerplanar graphs. There is currently an O(n0.48) gap between the known
upper and lower bounds (Table 55.2.2, row 4).

4. Determine the area requirement of planar straight-line grid drawing of series-
parallel graphs. In particular it would be interesting to prove a subquadratic
upper bound (Table 55.2.2, row 6).

5. Determine the area requirement of orthogonal (or, more generally, polyline)
nonplanar drawings of planar graphs. There is currently an O(log n) gap
between the known upper and lower bounds (Table 55.2.2, row 2).

6. Close the gap between the Ω( 1
d2 ) universal lower bound and the O( log d

d2 )
existential upper bound on the angular resolution of straight-line drawings of
general graphs (Table 55.2.3).

7. Close the gap between the Ω( 1
cd ) universal lower bound and the O(

√

log d
d3 )

existential upper bound on the angular resolution of planar straight-line draw-
ings of planar graphs (Table 55.2.3).

8. Determine the best possible aspect ratio and area that can be simultaneously
achieved for (upward) planar straight-line drawings of trees (Table 55.2.5).

55.3 COMPLEXITY OF GRAPH DRAWING PROBLEMS

Tables 55.3.1–55.3.4 summarize selected results on the time complexity of some
fundamental graph drawing problems.

It is interesting that apparently similar problems exhibit very different time
complexities. For example, while planarity testing can be done in linear time,
upward planarity testing is NP-hard. Note that, as illustrated in Figure 55.1.2 (c–
d), planarity and acyclicity are necessary but not sufficient conditions for upward
planarity. While many efficient algorithms exist for constructing drawings of trees
and planar graphs with good universal area bounds, exact area minimization for
most types of drawings is NP-hard, even for trees.

OPEN PROBLEMS

1. Reduce the time complexity of upward planarity testing for embedded di-
graphs (which is currently O(n2)), biconnected series-parallel digraphs (cur-
rently O(n4)), and biconnected outerplanar digraphs (currently O(n2)), or
prove a superlinear lower bound (Table 55.3.1).

2. Reduce the time complexity of computing a planar straight-line drawing of
an outerplanar graph such that the vertices are represented by a set of given
points in general position (currently O(n log3 n)) or prove an ω(n logn) lower
bound (Table 55.3.2).
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TABLE 55.3.1 Time complexity of some fundamental graph drawing problems: gen-

eral graphs and digraphs.

CLASS OF GRAPHS PROBLEM TIME COMPLEXITY

General graph minimize crossings NP-hard [GJ83]

2-layered graph

minimize crossings in layered

drawing with preassigned order

on one layer

NP-hard [EW94]

General graph
planarity testing and comput-

ing a planar embedding

Ω(n)

trivial

O(n)

[BL76, CNAO85,

FR82, ET76,

HT74, LEC67]

General graph maximum planar subgraph NP-hard [GJ79]

General graph maximal planar subgraph
Ω(n+m)

trivial

O(n+m)

[CHT93, Dji95,

DT89, La94]

General graph

test the existence of a drawing

where each edge is crossed at

most once

NP-hard [GB07, KM09]

General graph with

m = 4n− 8

test the existence of a drawing

where each edge is crossed at

most once

Ω(n)

trivial

O(n3) †
[CGP06]

General graph

test the existence of a straight-

line drawing where edges cross

forming right angles

NP-hard [ABS12]

2-layered graph

test the existence of a straight-

line layered drawing where

edges cross forming right an-

gles

Ω(n)

trivial

O(n)

[DDEL14]

General digraph upward planarity testing NP-hard [GT95]

Embedded digraph upward planarity testing
Ω(n)

trivial

O(n2)

[BDLM94]

Biconnected series-

parallel digraphs
upward planarity testing

Ω(n)

trivial

O(n4)

[DGL10]

Biconnected outerpla-

nar digraphs
upward planarity testing

Ω(n)

trivial

O(n2)

[Pap95]

Biconnected bipartite

digraphs
upward planarity testing

Ω(n)

trivial

O(n)

[DLR90]

Single-source digraph upward planarity testing
Ω(n)

trivial

O(n)

[BDMT98, HL96]

General graph

draw as the intersection graph

of a set of unit diameter disks

in the plane

NP-hard [BK98b]

Note: n is the number of vertices, m is the number of edges.

†Brandenburg [Bra15] recently announced an O(n) time algorithm for this problem.
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TABLE 55.3.2 Time complexity of some fundamental graph drawing problems: Planar

graphs and digraphs.

CLASS OF GRAPHS PROBLEM TIME COMPLEXITY

Planar graph
planar straight-line drawing with pre-

scribed edge lengths
NP-hard [EW90]

Planar graph
planar straight-line drawing with maxi-

mum angular resolution
NP-hard [Gar95]

Embedded graph

test the existence of a planar straight-line

drawing with prescribed angles between

pairs of consecutive edges incident on a

vertex

NP-hard [Gar95]

Maximal planar graph

test the existence of a planar straight-line

drawing with prescribed angles between

pairs of consecutive edges incident on a

vertex

Ω(n)

trivial

O(n)

[DV96]

Planar graph

planar straight-line grid drawing with

O(n2) area and O(1/n2) angular resolu-

tion

Ω(n)

trivial

O(n)

[FPP90, Sch90]

Planar graph

planar polyline drawing with O(n2) area,

O(n) bends, and O(1/d) angular resolu-

tions

Ω(n)

trivial

O(n)

[Kan96]

Triconn planar graph

planar straight-line convex grid drawing

with O(n2) area and O(1/n2) angular res-

olution

Ω(n)

trivial

O(n)

[Kan96]

Triconn planar graph
planar straight-line strictly convex draw-

ing

Ω(n)

trivial

O(n)

[CON85,

Tut60, Tut63]

Reduced planar st-

digraph

upward planar grid straight-line domi-

nance drawing with minimum area

Ω(n)

trivial

O(n)

[DTT92]

Upward planar digraph
upward planar polyline grid drawing with

O(n2) area and O(n) bends

Ω(n)

trivial

O(n)

[DT88,

DTT92]

Planar graph

planar straight-line drawing such that the

vertices are represented by a set of given

points

NP-hard [Cab06]

Outerplanar graph

planar straight-line drawing such that the

vertices are represented by a set of given

points in general position

Ω(n logn)

[BMS97]

O(n log3 n)

[Bos02]

Planar graph

planar drawing such that the vertices are

collinear and each edge has at most one

bend

NP-hard [BK79]

Series-parallel

(di)graph

(upward) planar drawing such that the ver-

tices are collinear and each edge has at

most one bends

Ω(n)

trivial

O(n)

[DDLW06]

Planar graph

planar drawing such that the vertices are

collinear and each edge has at most two

bends

Ω(n)

trivial

O(n)

[DDLW05]

Note: n is the number of vertices.
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TABLE 55.3.3 Time complexity of some fundamental graph drawing problems: Planar

graphs and digraphs.

CLASS OF GRAPHS PROBLEM TIME COMPLEXITY

Planar deg-4 graph
planar orthogonal grid drawing with mini-

mum number of bends
NP-hard [GT95]

Planar biconnected

deg-3 graph

planar orthogonal grid drawing with mini-

mum number of bends and O(n2) area

Ω(n)

trivial

O(n5 logn)

[DLV98]

Embedded deg-3 graph
planar orthogonal grid drawing with mini-

mum number of bends (and O(n2) area)

Ω(n)

trivial

O(n)

[RN02]

Planar biconnected

deg-4 series-parallel

graph

planar orthogonal grid drawing with mini-

mum number of bends and O(n2) area

Ω(n)

trivial

O(n4)

[DLV98]

Planar biconnected

deg-3 series-parallel

graph

planar orthogonal grid drawing with mini-

mum number of bends and O(n2) area

Ω(n)

trivial

O(n3)

[DLV98]

Embedded deg-4 graph
planar orthogonal grid drawing with mini-

mum number of bends and O(n2) area

Ω(n)

trivial

O(n3/2)

[CK12]

Planar deg-4 graph
planar orthogonal grid drawing with O(n2)

area and O(n) bends

Ω(n)

trivial

O(n)

[BK98a,

Kan96, TT89]

Embedded deg-4 graph
test the existence of a PSLOg drawing with

rectangular faces

Ω(n)

trivial

O
(

n1.5

log n

)

[MHN06]

Planar deg-3 graph
test the existence of a PSLOg drawing with

rectangular faces

Ω(n)

trivial

O(n)

[RNG04]

Planar deg-3 graph test the existence of a PSLOg drawing
Ω(n)

trivial

O(n)

[RNN03]

Deg-3 series-parallel

graph

test the existence of a planar orthogonal

grid with no bends

Ω(n)

trivial

O(n)

[REN06]

Planar orthog rep
planar orthogonal grid drawing with mini-

mum area
NP-hard [Pat01]

Note: n is the number of vertices.

3. Reduce the time complexity of bend minimization for planar orthogonal draw-
ings of degree-3 graphs and degree-3 and degree-4 series-parallel graphs (Ta-
ble 55.3.3).

4. Reduce the time complexity of bend minimization for planar orthogonal draw-
ings of embedded graphs (currently O(n3/2)), or prove a superlinear lower
bound (Table 55.3.3).

5. Reduce the time complexity of testing the existence of a planar straight-line
orthogonal drawing with rectangular faces (currently O(n1.5/logn)), or prove
a superlinear lower bound (Table 55.3.3).

6. Reduce the time complexity of area minimization of hv-drawings of binary
trees (from O(n

√
n logn)), or prove a superlinear lower bound (Table 55.3.4).
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TABLE 55.3.4 Time complexity of some fundamental graph drawing problems: trees.

CLASS OF GRAPHS PROBLEM TIME COMPLEXITY

Tree
draw as the Euclidean minimum spanning

tree of a set of points in the plane
NP-hard [EW96]

degree-4 tree
minimize area in planar orthogonal grid

drawing
NP-hard [Bra90, DLT85, KL85, Sto84]

degree-4 tree
minimize total/maximum edge length in

planar orthogonal grid drawing
NP-hard [BC87, Bra90, Gre89]

Rooted tree

minimize area in a planar straight-line up-

ward layered grid drawing that displays

symmetries and isomorphisms of subtrees

NP-hard [SR83]

Rooted tree

minimize area in a planar straight-line up-

ward layered drawing that displays sym-

metries and isomorphisms of subtrees

Ω(n)

trivial

O(nk), k ≥ 1

[SR83]

Binary tree minimize area in hv-drawing
Ω(n)

trivial

O(n
√
n logn)

[ELL92]

Rooted tree
planar straight-line upward layered grid

drawing with O(n2) area

Ω(n)

trivial

O(n)

[RT81]

Rooted tree
planar polyline upward grid drawing with

O(n) area

Ω(n)

trivial

O(n)

[GGT93]

Tree

planar straight-line drawing such that the

vertices are represented by a set of given

points in general position

Ω(n logn)

[BMS97]

O(n logn)

[BMS97]

Note: n is the number of vertices, m is the number of edges.

55.4 EXAMPLE OF A GRAPH DRAWING ALGORITHM

In this section we outline the algorithm in [Tam87] for computing, for an embedded
degree-4 graph G, a planar orthogonal grid drawing with the minimum number of
bends and using O(n2) area (see Table 55.3.2). This algorithm is the core of a prac-
tical drawing algorithm for general graphs (see Section 55.5 and Figure 55.4.1 (d)).
The algorithm consists of two main phases:

1. Computation of an orthogonal representation for G, where only the bends
and the angles of the orthogonal drawing are defined.

2. Assignment of integer lengths to the segments of the orthogonal representa-
tion.

Phase 1 uses a transformation into a network flow problem (Figure 55.4.1 (a–c)),
where each unit of flow is associated with a right angle in the orthogonal drawing.
Hence, angles are viewed as a commodity that is produced by the vertices, trans-
ported across faces by the edges through their bends, and eventually consumed by
the faces. From the embedded graph G we construct a flow network N as follows.
The nodes of network N are the vertices and faces of G. Let deg(f) denote the
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number of edges of the circuit bounding face f . Each vertex v supplies σ(v) = 4
units of flow, and each face f consumes τ(f) units of flow, where

τ(f) =

{

2 deg(f)− 4 if f is an internal face
2 deg(f) + 4 if f is the external face.

By Euler’s formula,
∑

v σ(v) =
∑

f τ(f), i.e., the total supply is equal to the total
consumption.

Network N has two types of arcs:

• arcs of the type (v, f), where f is a face incident on vertex v; the flow in
(v, f) represents the angle at vertex v in face f , and has lower bound 1, upper
bound 4, and cost 0;

• arcs of the type (f, g), where face f shares an edge e with face g; the flow in
(f, g) represents the number of bends along edge e with the right angle inside
face f , and has lower bound 0, upper bound +∞, and cost 1.

The conservation of flow at the vertices expresses the fact that the sum of the angles
around a vertex is equal to 2π. The conservation of flow at the faces expresses the
fact that the sum of the angles at the vertices and bends of an internal face is equal
to π(p− 2), where p is the number of such angles. For the external face, the above
sum is equal to π(p+ 2). It can be shown that every feasible flow φ in network N
corresponds to an admissible orthogonal representation for graph G, whose number
of bends is equal to the cost of flow φ. Hence, an orthogonal representation for G
with the minimum number of bends can be computed from a minimum-cost flow
in G. This flow can be computed in O(n1.5) time [CK12]. Phase 2 uses a simple
compaction strategy derived from VLSI layout, where the lengths of the horizontal
and vertical segments are computed independently after a preliminary refinement
of the orthogonal representation that decomposes each face into rectangles. The
resulting drawing is shown in Figure 55.4.1 (d).

55.5 TECHNIQUES FOR DRAWING GRAPHS

In this section we outline some of the most successful techniques that have been
devised for drawing general graphs.

PLANARIZATION

The planarization approach is motivated by the availability of many efficient and
well-analyzed drawing algorithms for planar graphs (see Table 55.3.2). If the graph
is nonplanar, it is transformed into a planar graph by means of a preliminary
planarization step that replaces each crossing with a fictitious vertex. The pla-
narization approach consists of two main steps: in the first step a maximal planar
subgraphG′ of the input graphG is computed; in the second step, all the edges of G
that are not in G′ are added to G′ and the crossings formed by each added edge are
replaced with dummy vertices. Clearly when adding an edge one wants to produce
as few crossings as possible. The two optimization problems arising in the two steps
of the planarization approach, i.e., the maximum planar subgraph problem and the
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FIGURE 55.4.1

(a) Embedded graph G. (b) Minimum cost flow in network N : the flow is shown next to each
arc; arcs with zero flow are omitted; arcs with unit cost are drawn with thick lines; a face f is
represented by a box labeled with τ (f). (c) Planar orthogonal grid drawing of G with minimum
number of bends. (d) Orthogonal grid drawing of a nonplanar graph produced by a drawing method
for general graphs based on the algorithm of Section 55.4.
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edge insertion problem, are NP-hard. Hence, existing planarization algorithms use
heuristics. The best available heuristic for the maximum planar subgraph problem
is described in [JM96]. This method has a solid theoretical foundation in polyhe-
dral combinatorics, and achieves good results in practice. A sophisticated algorithm
for edge insertion (that inserts each edge minimizing the number of crossings over
all possible embeddings of the planar subgraph) is described in [GMW05]. See
also [BCG+13] for more references.

A successful drawing algorithm based on the planarization approach and a
bend-minimization method [Tam87] is described in [TDB88] (Figure 55.4.1(d) was
generated by this algorithm). It has been widely used in software visualization
systems.

LAYERING

The layering approach for constructing polyline drawings of directed graphs trans-
forms the digraph into a layered digraph and then constructs a layered drawing.
A typical algorithm based on the layering approach consists of the following main
steps:

1. Assign each vertex to a layer, with the goal of maximizing the number of
edges oriented upward.

2. Insert fictitious vertices along the edges that cross layers, so that each edge in
the resulting digraph connects vertices in consecutive layers. (The fictitious
vertices will be displayed as bends in the final drawing.)

3. Permute the vertices on each layer with the goal of minimizing crossings.

4. Adjust the positions of the vertices in each layer with the goal of distributing
the vertices uniformly and minimizing the number of bends.

Most of the subproblems involved in the various steps are NP-hard, hence heuristics
must be used. The layering approach was pioneered by Sugiyama et al. [STT81] and
since then a lot of research has been devoted to all optimization problems in each
of the four steps above (see, e.g., [BBBH10, BK02, BWZ10, CGMW10, CGMW11,
EK86, ELS93, EW94, GKNV93, HN02, JM97, MSM99, Nag05, NY04, TNB04]).
See also [HN13] for more references.

FORCE DIRECTED

This approach uses a physical model where the vertices and edges of the graph are
viewed as objects subject to various forces. Starting from an initial configuration
(which can be randomly defined or suitably chosen), the physical system evolves into
a final configuration of minimum energy, which yields the drawing. Rather than
solving a system of differential equations, the evolution of the system is usually
simulated using numerical methods (e.g., at each step, the forces are computed and
corresponding incremental displacements of the vertices are performed).

Drawing algorithms based on the physical simulation approach are often able
to detect and display symmetries in the graph. However, their running time is
typically high. The physical simulation approach was pioneered in [Ead84, KS80].
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Sophisticated developments and applications include [BP07, DH96, DM14, EH00,
FR91, GGK04, GKN05, HJ05, HK02, KK89]. See also [Kob13] for additional ref-
erences.

55.6 SOURCES AND RELATED MATERIAL

Several books devoted to graph drawing are published [DETT99, JM03, Kam89,
KW01, NR04, Sug02, Tam13]. Among the early books, [Kam89] describes declara-
tive approaches to graph drawing;[Sug02], motivated by software engineering appli-
cations, mostly focuses on layered drawings. [DETT99] is the first book that collects
different techniques for graph drawing; [NR04] focuses on planar graphs. [KW01],
[JM03], and [Tam13] are collections of surveys by different authors; [JM03] is de-
voted to graph drawing software and libraries while [Tam13] is the most recent hand-
book on Graph Drawing and Network Visualization. Sites with pointers to graph
drawing resources and tools include the Web site http://graphdrawing.org, the
Graph drawing e-print archive (http://gdea.informatik.uni-koeln.de/), and
the Graph-Archive (http://www.graph-archive.org/doku.php).
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