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INTRODUCTION

The two fundamental problems in a pattern recognition system are feature extrac-
tion (shape measurement) and classification. The problem of extracting a vector
of shape measurements from a digital image can be further decomposed into three
subproblems. The first is the image segmentation problem, i.e., the separation of
objects of interest from their background. The cluster analysis methods discussed
in Section 54.1 are useful here. The second subproblem is that of finding the objects
in the segmented image. An example is the location of text lines in a document
as illustrated in Section 54.2. The final subproblem is extracting the shape infor-
mation from the objects detected. Here there are many tools available depending
on the properties of the objects that are to be classified. The Hough transform
(Section 54.2), polygonal approximation (Section 54.3), shape measurement (Sec-
tion 54.4), and polygon decomposition (Section 54.6), are some of the favorite tools
used here. Important to many of these tasks is finding a nice viewpoint from which
extraction is robust and efficient (Section 54.5). Proximity graphs, discussed in Sec-
tion 54.2, are used extensively for both cluster analysis and shape measurement.

The classification problem involves the design of efficient decision rules with
which to classify the feature vector. The most powerful decision rules are the
nonparametric rules which make no assumptions about the underlying distribu-
tions of the feature vectors. Of these the nearest-neighbor (NN) rule, treated in
Section 54.7, is the most well known. This section covers the three main issues
concerning NN-rules: how to edit the data set so that little storage space is used,
how to search for the nearest neighbor of a vector efficiently, and how to estimate
the future performance of a rule both reliably and efficiently.

54.1 CLUSTER ANALYSIS AND CLASSIFICATION

GLOSSARY

Cluster analysis problem: Partitioning a collection of n points in some fixed-
dimensional space into m < n groups that are “natural” in some sense. Here m
is usually much smaller than n.

Image segmentation problem: Partitioning the pixels in an image into “mean-
ingful” regions, usually such that each region is associated with one physical
object.

Block-based segmentation: Image segmentation based on characteristics of rect-
angular blocks of pixels. Often contrasted with layer-based segmentation.

Dendrogram: A tree representing a hierarchy of categories or clusters.
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Hierarchical clustering algorithms: Those that produce a dendrogram whose
root is the whole set and whose leaves are the individual points.

Graph-theoretic clustering: Clustering based on deleting edges from a prox-
imity graph.

K-means clustering: Tracking clusters over time by comparing new data with
old means.

Data mining: Algorithmic processing of large (and often unstructured) data sets
to uncover previously unknown, informative patterns.

Classical cluster analysis requires partitioning points into natural clumps. “Natu-
ral” may mean that the clustering agrees with human perception, or it may simply
optimize some natural mathematical measure of similarity or distance so that points
that belong to one cluster are similar to each other and points far away from each
other are assigned to different clusters. It is not surprising that such a general
and fundamental tool has been applied to widely different subproblems in pattern
recognition. One obvious application is to the determination of the number and
description of classes in a pattern recognition problem where the classes are not
known a priori, such as disease classification in particular or taxonomy in general.
In this case m is not known beforehand and the cluster analysis reveals it.

A fundamental problem in pattern recognition of images is the segmentation
problem: distinguishing the figure from the background. Clustering is one of the
most powerful approaches to image segmentation, applicable even to complicated
images such as those of outdoor scenes. In this approach each pixel in the N ×N
image is treated as a complicated object by associating it with a local neighborhood.
For example, we may define the 5×5 neighborhood of pixel pij , denoted by N5[pij ],
as {pmn | i− 2 ≤ m ≤ i+ 2, j − 2 ≤ n ≤ j + 2}. We next measure k properties of
pij by making k measurements in N5[pij ]. Such measurements may include various
moments of the intensity values (grey levels) found in N5[pij ], etc. Thus each pixel
is mapped into a point in k-dimensional pixel-space. Performing a cluster analysis
of all the resulting N × N points in pixel-space yields the desired partitioning of
the pixels into categories. Labeling each category of pixels with a different color
then produces the segmentation. See [BR14] for a survey of traditional and graph-
theoretical techniques for image segmentation, as well as combinations of both
approaches.

See [Gor96] for a survey of clustering methods that include constraints be-
yond similarity, or constraints on the topology of the resulting dendrograms; and
see [ZA15] for a survey of image segmentation techniques, with an emphasis on
block-based methods. See also Section 47.7 of this Handbook.

HIERARCHICAL CLUSTERING

In taxonomy there is no special number m that we want to discover; rather the
goal is the production of a dendrogram (tree) that grows all the way from one
cluster to n clusters and shows us at once how good a partitioning is obtained
for any number of clusters between one and n. Such methods are referred to as
hierarchical methods. They fall into two groups: agglomerative (bottom-up,
merging) and divisive (top-down, splitting). Furthermore, each of these methods

Preliminary version (August 10, 2017). To appear in the Handbook of Discrete and Computational Geometry,
J.E. Goodman, J. O'Rourke, and C. D. Tóth (editors), 3rd edition,  CRC Press, Boca Raton, FL, 2017.



Chapter 54: Pattern recognition 1423

can be used with a variety of distance measures between subsets to determine when
to merge or split. Two popular agglomerative clustering algorithms are the single-
link and the complete-linkage (or farthest-neighbor) algorithm. In the former,
cluster similarity is measured by the minimum of the distances between all pairs
of elements, one in each subset, whereas in the latter similarity is measured by the
maximum pairwise distance. The complete-linkage criterion tends to produce more
compact clusters, while the single-link criterion can suffer from chaining [JMF99].
Krznaric and Levcopoulos [KL02] show that a complete-linkage hierarchy can be
computed in optimal O(n log n) time and O(n) space.

GRAPH-THEORETIC CLUSTERING

The most powerful methods of clustering in difficult problems, which give results
having the best agreement with human performance, are the graph-theoretic meth-
ods [JT92]. The idea is simple: Compute some proximity graph (such as the min-
imum spanning tree) of the original points. Then delete (in parallel) any edge in
the graph that is much longer (according to some criterion) than its neighbors.
The resulting forest is the clustering (each tree in this forest is a cluster). Prox-
imity graphs have also been used effectively to design cluster validity tests [PB97],
[YL04], and for various specific problems that occur in pattern recognition such as
measuring association, outlier detection, and dimensionality reduction [Mar04].

A useful generalization is the graph-cut method, which cuts edges to optimize
some energy function. The max-cut/min-flow theorem permits energy minimization
via maximizing the flow. See [PZZ13] for a survey.

K-MEANS TYPE CLUSTERING

There are many applications where we know that there are exactly k clusters, for
example in character recognition. However, because of external factors such as the
variations in people’s hand-printing over time, or a change in the parameters of a
machine due to wear or weather conditions, the clusters must be “tracked” over
time. One of the most popular methods for doing this is the k-means algorithm .
The k-means algorithm searches for k cluster centroids in Rd with the property
that the mean squared (Euclidean) distance between each of the n points and its
nearest centroid (“mean”) is minimized [Mac67]. A determining characteristic of
this approach is that the number of clusters k is fixed. A typical heuristic starts with
an initial partition, computes centers, assigns data points to their nearest center,
recomputes the centroids, and iterates until convergence is achieved according to
some criterion. Unfortunately, this attractively simple algorithm’s performance
depends upon the initial partitioning, and in fact can be forced into a suboptimal
solution of arbitrarily high approximation ratio. Moreover, it can take exponential
(in n) time to converge, even in the plane [Vat11]. Finding the optimal solution is
NP-hard in the plane [MNV12]. This led to developing algorithms with performance
guarantees. Matoušek achieved an O(n logk n) ε-approximation algorithm under
the assumption that k and d are fixed [Mat00]. This was improved to an (9 +
ε)-approximation algorithm via a center-swap heuristic with this provable upper
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bound [KMN+04]. On the other hand, there is some evidence that the exact k-
means algorithm, even though exponential, can be implemented to work well in
practice for small d [PM99].

A variation on the k-means algorithm permits splitting and merging of clusters.
This technique is employed by the ISODATA algorithm (Interactive Self-Organizing
Data Analysis Technique) [Jen96].

DISTANCES BETWEEN SETS

A fundamental computational primitive of almost all clustering algorithms is the
frequent computation of some distance measure between two sets (subsets) of
points. This is especially so in the popular hierarchical methods discussed above.
There exists a large variety of distance and more general similarity measures for this
purpose. Here we mention a few. Most efficient algorithms for distance between
sets apply only in R2 but some methods extend to higher dimensions; see [Smi00].
Let P and Q be two convex polygons of n sides each. Two distance measures should
be distinguished: the minimum element distance, the smallest distance between a
vertex or edge of P and a vertex or edge of Q, and the minimum vertex distance,
the minimum distance between a vertex of P and a vertex of Q. The minimum
element distance can be computed in O(log n) time [Ede85]. On the other hand,
computation of the minimum vertex distance between P and Q has a linear lower
bound. For the case of two nonintersecting convex polygons several different O(n)
time algorithms are available, and the same bound can be achieved for crossing
convex polygons [Tou84]. For the case when the two polygons do not intersect,
there exist additional distance measures that apply to specific applications areas.
One such measure is the Grenander distance [Gre76], [Tou14c] defined as the sum
of the lengths of the two chords determined by the critical separating supporting
lines, less the sum of the lengths of all the edges of the polygons that belong to the
inner chains determined by the supporting lines.

Let P and Q be two x-monotonic rectilinear (isothetic) polygonal functions in
two dimensions. This setting occurs in several applications such as measuring music
similarity in which case the functions act as models of melodies, and the similarity
between two melodies P and Q is measured by the area that lies in between the
two curves [ÓMa98]. If this distance is minimized under translations of P (with Q
fixed) in the x or y directions then the problem falls under the topic of polygonal
matching problems [AFL06], [ACH91].

Let R be a set of n red points and B a set of n blue points in the plane. Both the
minimum distance and the maximum distance between R and B can be computed
in O(n log n) time. For the latter problem, two algorithms are available. The
first [TM82] is simple but does not appear to generalize to higher dimensions. The
second [BT83] works by reducing the maximum distance problem between R and B
to computing the diameter of 81 convex polygons. These are obtained by computing
the convex hulls of the unions of 81 carefully selected subsets of R and B, and then
reporting the maximum of these 81 diameters as the maximum distance. These
ideas can be extended to obtain efficient algorithms for all dimensions [Rob93].
Therefore, any improvement in high-dimensional diameter algorithms automatically
improves maximum-distance algorithms.
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Another distance that has applications to machine learning in general, and
support vector machines (SVMs) in particular, is the width of the widest empty
separating strip between the two sets of points if they are linearly separable (strong
separators), and otherwise the thinnest strip that minimizes a given number of
classification errors (weak separators) [Hou93].

DATA MINING

The explosion of the Web has given new impetus to automated methods to un-
cover informative patterns from huge, often unstructured, data repositories (“big
data”). This activity has become known as data mining. Clustering to discover
structures in the data set is a key component of data mining; see [Ber06] for a sur-
vey of clustering in data mining. The k-means algorithm and its variants remain
popular, not only in geometric domains (e.g., in geological databases [JMF99], ce-
lestial databases [PM99], image databases, and so on), but even for text-document
clustering [SKK00]. There is some movement in the literature away from point
distances for categorical attributes, for which the iterative centroid-based cluster-
ing algorithms are often inappropriate. For example, “links” [GRS00] or context-
based measures [DM00] are frequently employed, which places this work close to
graph-theoretic clustering. A related direction is finding “unusual” strings of ACTG
characters within the human genome [ABL02] [BC15].

54.2 EXTRACTING SHAPE FROM DOT PATTERNS

HOUGH TRANSFORMS

The Hough transform was originally proposed (and patented) as an algorithm to
detect straight lines in digital images [Lea92]. The method may be used to detect
any parametrizable pattern, and has been generalized to locate arbitrary shapes in
images. The basic idea is to let each above-threshold pixel in the image vote for the
points in the parameter space that could generate it. The votes are accumulated
in a quantized version of the parameter space, with high vote tallies indicating
detection.

EXAMPLES

1. Lines. Let the lines in the (x, y) image plane be parametrized as y = mx+ b.
Then a pixel at (x0, y0) is a witness to a line passing through it, that is, an
(m, b) pair satisfying y0 = mx0 + b. Thus, (x0, y0) votes for all those (m, b)
pairs: the line in parameter space dual to the pixel.

2. Circles. Parametrize the circles by their center and radius, (xc, yc, r). Then
a pixel (x0, y0) gives evidence for all the parameter triples on the circular
cone in the 3-parameter space with apex at (x0, y0, 0) and axis parallel to the
r-axis.
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3. Object location. Suppose a known but arbitrary shape S is expected to be
found in an image, and its most likely location is sought. For translation-only,
the parameter space represents the location of some fixed point of S. Each
pixel in the image of the right shading or color votes for all those translations
that cover it appropriately.

The above approaches are not necessarily optimal for the tasks listed. For example,
it was shown in [CT77] that nonuniform (maximum entropy) quantization with ρ-θ
(normal-form) parametrization for lines is superior to uniform quantization with
m-b (slope-intercept) parametrization. Since earning a patent in 1962 the Hough
transform has been generalized in a variety of ways in order to overcome several of
its limitations [MC15].

The demands of high-dimensional vote accumulators have engendered the study
of dynamic quantization of the parameter space, and geometric hashing. This
latter technique has features in the image vote for each member of a library of
shapes by hashing into a table using the feature coordinates as a key. Each table
entry may correspond to several shapes at several displacements, but all receive
votes. Geometric hashing has been applied with some success to the molecular
docking problem [LW88]; see also [MSW02].

Variants of the Hough transform inspired by results in computational geometry
have also appeared. In [AK96] two such algorithms are presented and studied
with respect to the tradeoff that exists between computational complexity and
effectiveness of line detection. They obtain efficient implementations by using the
plane-sweep paradigm.

A significant generalization of the technique is proposed in [FO12], which seeks
to detect subspace alignments in noisy multidimensional data sets.

More recent applications of the Hough transform and its variants include the
detection of lane lines in traffic and transportation science [BK13], [SSSS10], as
well as detecting land mines in mine fields [LSC97]. Present challenges in this area
include extending the existing methods that have concentrated on binary images,
to also work well on color images, and to reduce the computational complexity of
the algorithms by developing parallel implementations.

TEXT LINE ORIENTATION INFERENCE

In an automated document analysis system, given a block (paragraph) of text, the
text line orientation inference problem consists of determining the location and
direction of the lines of text on the page. Almost always these lines are either
horizontal (e.g., English) or vertical (e.g., Chinese) The fundamental geometric
property that allows this problem to be solved is the fact that according to a
universal typesetting convention guided by ease of reading, characters are printed
closer together within text lines than between text lines.

One of the most successful, robust, skew-tolerant, simple, and elegant tech-
niques for text line orientation inference was proposed by Ittner [Itt93], and later
improved by Bose et al. [BCG98]. Assume that the given text block B consists of n
black connected components (characters). The three key steps in Ittner’s procedure
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are: (1) idealize each character by a point, thus obtaining a set S of n points in
the plane; (2) construct the Euclidean minimum spanning tree MST(S) of the n
points obtained in (1); and (3) determine the text line orientation by analysis of
the distribution of the orientations of the edges in MST(S). Step (1) is done by
computing the center of the bounding box of each character. Cheriton and Tarjan
proposed a simple algorithm for computing the MST of a graph in O(E) time where
E is the number of edges in the graph [CT76]. Fortunately there are many graphs
defined on S (usually belonging to the class of proximity graphs [JT92]) that have
the property that they contain the MST(S) and also have O(n) edges. For these
graphs the Cheriton-Tarjan algorithm runs in O(n) time.

The traditional approaches to text detection described above were focused
on two-dimensional inputs such as newspapers, magazines, and books, in which
the input consisted of binary (black-white) images. More recently attention has
shifted to more difficult problems of detecting text in color images of complex three-
dimensional scenes. Ye and Doermann [YD15] provide a survey of new approaches
to these more challenging problems.

TEXT BLOCK ISOLATION

The text-block isolation problem consists of extracting blocks of text (paragraphs)
from a digitized document. By finding the enclosing rectangles around each con-
nected component (character) and around the entire set of characters we obtain a
well structured geometric object, namely, a rectangle with n rectangular “holes.”
This problem is ideally suited to a computational geometric treatment. Here we
mention an elegant method that analyzes the empty (white) spaces in the docu-
ment [BJF90]. This approach enumerates all maximal white rectangles implied by
the black rectangles. A white rectangle is called maximal if it cannot be enlarged
while remaining outside the black rectangles. Their enumeration algorithm takes
quadratic time in the worst case, but a clever heuristic exploiting properties of
layouts leads to O(n) expected time.

RELATIVE NEIGHBORHOOD GRAPHS

Relative neighborhood graphs (RNG’s), introduced in [Tou80], capture proximity
between points by connecting nearby points with a graph edge. The many pos-
sible notions of “nearby” (in several metrics) lead to a variety of related graphs,
including the sphere of influence graph (SIG). We defer to Chapter 32 for defi-
nitions and details, and only mention here several applications. The RNG was
proposed as an approach to Marr’s “primal sketch” in computer vision, and it con-
tinues to have application in low-level vision, extracting perceptually meaningful
features from images. The RNG, the SIG, and related proximity graphs find use
in nearest-neighbor searching, cluster analysis, data mining, and outlier detection.
See [Tou05], [Tou14a], and [Tou14b] for further details.
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54.3 POLYGONAL APPROXIMATION

Let P = (p1, p2, . . . , pn) be a polygonal curve or chain in the plane, consisting
of n points pi joined by line segments pipi+1. In general P may be closed and
self-intersecting. Polygonal curves occur frequently in pattern recognition either as
representations of the boundaries of figures or as functions of time representing,
e.g., speech. In order to reduce the complexity of costly processing operations,
it is often desirable to approximate a curve P with one that is composed of far
fewer segments, yet is a close enough replica of P for the intended application.
Some methods of reduction attempt smoothing as well. An important instance of
the problem is to determine a new curve Q = (q1, q2, . . . , qm) such that (1) m is
significantly smaller than n; (2) the qj are selected from among the pi; and (3)
any segment qjqj+1 that replaces the chain qj = pr, . . . , ps = qj+1 is such that the
distance between qjqj+1 and each pk, r ≤ k ≤ s, is less than some predetermined
error tolerance ω. Different notions of distance, or error criteria, lead to different
algorithmic issues. Moreover, for each distance definition, there are two constrained
optimization problems that are of interest, Min-# and Min-ε.

GLOSSARY

Distance from point p to segment s: Minimum distance from p to any point
of s.

Parallel-strip criterion: All the vertices pi, . . . , pt lie in a parallel strip of width
2ε whose center line is collinear with qjqj+1 [ET94].

Segment criterion, or Hausdorff measure: For each pk, r ≤ k ≤ s, the
distance from pk to qjqj+1 is less than ε [MO88, CC96].

Min-# problem: Given the error tolerance ε, find a curve Q = (q1, . . . , qm)
satisfying the constraint such that m is minimum.

Min-ε problem: Given m, find a curve Q = (q1, . . . , qm) satisfying the constraint
such that the error tolerance is minimized.

Fréchet distance curves: The smallest “leash length” for a master to walk
along one curve while a leashed dog walks along the other.

The main research focus has been the Min-# problem under the Hausdorff error
measure, also called ε-simplification. Near quadratic-time, O(n2 log n), algorithms
have been achieved for arbitrary polygonal curves [MO88]. The quadratic-time
barrier seems difficult to break, so approximation algorithms have been explored,
which achieve an error no more than ε but compromise on m, the min-#. A
popular algorithm is the Douglas-Peucker algorithm, iterative endpoint fitting,
which, although easily implemented, does not guarantee performance and could be
quadratic in the worst case. Now near-linear performance with a guarantee has
been achieved for simplifying monotone curves [AHM+05].

At least three other simplification directions have been pursued:

1. Rather than using the Hausdorff distance, a large amount of recent work has
explored guaranteeing a maximum Fréchet distance between the two polyg-
onal curves. Again near-linear approximations are available [AHM+05]. For
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polygonal chains in dimensions d ≥ 3, and an O(n log n) exact algorithm has
been achieved [BJW+08].

2. Tracking objects over long periods has led to exploring streaming algorithms,
with limited storage. Here O(1) competitive ratios have been achieved for sev-
eral cases under both the Hausdorff and Fréchet distance measures [ADB+10].

3. The task of polygonal approximation has been given new significance in three
dimensions for its importance in simplifying polyhedral models in computer
graphics. There is now a module within CGAL for “Triangulated Surface
Mesh Simplification.” This topic is covered in detail in Chapter 56.

54.4 SHAPE MEASUREMENT AND REPRESENTATION

MEDIAL AXIS

GLOSSARY

Medial axis: The set of points of a region P with more than one closest point
among the boundary points ∂P of the region. Equivalently, it is the set of centers
of maximal balls, i.e., of balls in P that are themselves not enclosed in another
ball in P .

Voronoi diagram: The partition of a polygonal region P into cells each consist-
ing of the points closer to a particular open edge or vertex than to any other.

The medial or symmetric axis was introduced by Blum [Blu67] to capture bi-
ological shape, and it has since found many other applications, for example, to
geometric modeling (offset computations; see Section 50.2) and to mesh genera-
tion [SNT+92] (Section 29.4). It provides a central “skeleton” for an object that
has found many uses. It connects to several other mathematical concepts, including
the cut locus and most importantly, the Voronoi diagram (Chapter 27).

The medial axis of a convex polygon is a tree with each vertex a leaf. For
a nonconvex polygon, the medial axis may have a parabolic arc associated with
each reflex vertex (Figure 50.1.5). The basic properties of the medial axis were
detailed by Lee [Lee82], who showed that the medial axis of a polygon P is just the
Voronoi diagram minus the Voronoi edges incident to reflex vertices, and provided
an O(n log n) algorithm for constructing it. After a long search by the community,
an O(n) algorithm was obtained [CSW99]. The simplest implementations are,
however, quadratic [YR91].

The medial axis has also found much use in image processing, where its digital
computation is via thinning algorithms. Pioneered by Rosenfeld, these algorithms
are very simple and easily parallelized [Cyc94].

The definition of medial axis extends to Rd, and has found application in R3.
Although an exact algorithm is available for the medial axis of (perhaps nonconvex)
polyhedra in R3 [Cul00], there is no implementation that constructs the exact
medial axis of an arbitrary semi-algebraic set [ABE09]. For applications, exact
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medial axes are rarely needed. An approximate medial axis of a set of points in R3

can be computed directly from the Voronoi diagram, with guaranteed convergence:
[DZ04]. See [TDS+16] for an overview of skeletons in R3, and [AW13] for closely
related work on the straight skeleton in R3.

POINT PATTERN MATCHING

Exact point pattern matching is an interesting algorithmic question related to string
matching, but pattern recognition applications usually require some type of approxi-
mate matching. Two types may be distinguished [AG00]: one-to-one matching, and
Hausdorff matching.

GLOSSARY

One-to-one approximate matching: Let two finite sets of points A and B have
the same cardinality. One-to-one matching requires finding a transformation (of
a given type) of B such that each point of B is mapped to within a distance of
ε of a matched point of A. The matches are either determined by labels on the
points, or the points are unlabeled and the match is to be discovered.

Decision problem: Given ε, is there such a matching?

Optimization problem: Find the minimum ε for which an approximate match-
ing exists.

Hausdorff distance: For two finite sets A and B, perhaps of different cardinal-
ities, the largest of the between-sets nearest-neighbor distances.

Hausdorff matching: Find a transformation of B that minimizes the Hausdorff
distance from A.

The most combinatorially interesting point matching (unrealistically) demands
exact matching. One version of this is the congruent subset detection problem :
Given a pattern set A of m points, find all subsets of a background set B of n points
that are congruent to A. Solving this in the plane relies on the unsolved Erdős
problem of bounding the number of unit-distance pairs among n points, whose
best upper bound is O(n4/3) (Chapter 10). Important variations are obtained by
acting on the pattern by some group, e.g., translations. Results here are surveyed
in [Bra02], from which the results shown in Table 54.4.1 are gathered (α() is the
near-constant inverse Ackermann function; cf. Chapter 28).

A window-restricted version of the problem led Brass to pose the following
interesting conjecture:

• Any set of n points in the plane contains only O(n) empty congruent triangles.

There are sets with
(
n
3

)
empty triangles.

Results on one-to-one approximate matching algorithms obtained for a
variety of permissible transformations in [AMW+88] are shown in Table 54.4.2.

Hausdorff matching leads to analysis of envelopes of Voronoi surfaces. Typical
results are shown in Table 54.4.3. Here we show the complexities when |A| = |B| =
n, although the algorithms work for sets of different cardinalities.
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TABLE 54.4.1 Subset detection of m points among n points.

GROUP DIM MATCHES ALGORITHM

Congruence 2 O(n4/3) O(mn4/3 logn)

Congruence 3 Ω(n4/3) O(mn5/3 logn2O(α(n)2)))

Translation d n− Θ(n1−1/k), k ≤ d O(mn logn)

Homothets d O(n1+1/k), k ≤ d O(mn1+1/d logn)

Similarity d O(nd) O(mnd logn)

Affine d O(nd+1) O(mnd+1 logn)

TABLE 54.4.2 One-to-one point matching in two dimensions.

MOVEMENTS LABELED ε COMPLEXITY

Translation labeled dec, opt O(n)

Translation unlabeled decision O(n6)

Translation unlabeled optimization O(n6 logn)

Rotation labeled decision O(n logn)

Rotation labeled optimization O(n2)

Trans+rot+refl labeled decision O(n3 logn)

Trans+rot+refl unlabeled decision O(n8)

TABLE 54.4.3 Hausdorff matching in the L2 metric.

MOVEMENTS DIM COMPLEXITY

Translation 2 O(n3 logn)

Translation + rotation 2 O(n6 logn)

Translation 3 O(n5+ε)

Another type of matching is order type matching (cf. Section 5.2). In [GP83],
an O(n3) algorithm is given for finding all matchings between two planar point
configurations in which their order types agree.

SYMMETRY DETECTION

Symmetry is an important feature in the analysis and synthesis of shape and form
and has received considerable attention in the pattern recognition and computer
graphics literatures. In [WWV85] an O(n log n) algorithm is presented for comput-
ing the rotational symmetries of polygons and polyhedra of n vertices, but the con-
stant in R3 is very large. Jiang and Bunke [JB91] give a simple and practical O(n2)
time algorithm for polyhedra. One of the earliest applications of computational
geometry to symmetry detection was the algorithm of Akl and Toussaint [AT79] to
check for polygon similarity. For a survey of the early work on detecting symmetry,
see [Ead88]. Since then attention has been given to other aspects of symmetry and
for objects other than polygons. Sugihara [Sug84] shows how a modification of the
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planar graph-isomorphism algorithm of Hopcroft and Tarjan can be used to find
all symmetries of a wide class of polyhedra in O(n log n) time.

Most previous methods for measuring the symmetries of polygons and poly-
hedra have focused on a binary output: an object either has or does not have
some symmetries. However, for many problems in pattern recognition a more use-
ful measure is a graded (or continuous) descriptor that yields an indication of the
amount of symmetry contained in an object. Kazhdan et al. [KCD+04] present an
algorithm that computes a reflective symmetry descriptor in O(n4 log n) time for
an n × n × n grid of voxels in 3D. The approach in [KCD+04] is to measure the
amount of reflective symmetry along an axis, through the center of gravity of the
pattern, by the amount of overlap between the original pattern and the pattern
reflected about that axis. This provides a global graded symmetry descriptor. An
alternate approach is to measure all local reflection symmetries (sub-symmetries)
rather than only global ones, and do so with respect to all locations in the object
rather than just the center of mass. Such symmetries correlate better with human
judgments of complexity than do global symmetries [TOV15].

A related topic is centers of symmetry. Given a convex polygon P , associate
with each point p in P the minimum area of the polygon to the left of any chord
through p. The maximum over all points in P is known as Winternitz’s measure
of symmetry and the point p∗ that achieves this maximum is called the center of
area. Diaz and O’Rourke [DO94] show that p∗ is unique and propose an algorithm
for computing p∗ in time O(n6 log2 n). See [BT10] for an improved implementation
and analysis of the Diaz-O’Rourke algorithm for finding the Simpson point of a
convex polygon.

THE ALPHA HULL

The α-shape Sα of a set S of n points in R3 is a polyhedral surface whose boundary
is a particular collection of triangles, edges, and vertices determined by the points
of S [EM94]. It is similar in spirit to the β-skeleton of Section 54.2 in that it is a
parametrized collection of shapes determined by an empty balls condition, but it
emphasizes the external rather than the internal structure of the set. Let T be a
subset of S of 1, 2, or 3 points. Then the convex hull of T , conv(T ), is part of the
boundary ∂Sα of the α-shape iff the surface of some ball of radius α includes exactly
the points of T while its interior is empty of points of S. Thus a triangle conv(T ) is
part of ∂Sα iff there is an open α-ball that can “erase” all of the triangle but leave
its vertices. Sα is defined for all 0 ≤ α ≤ ∞, with S0 = S and S∞ = conv(S).

Every edge and triangle of Sα is present in the Delaunay triangulation DT of S,
and every edge and triangle in DT is present in some Sα. If α is varied continuously
over its full range starting from ∞, the convex hull of S is gradually “eaten away”
by smaller and smaller α-ball erasers, eventually exposing the original set of points.
In between, the α-shape bounds a subcomplex of DT that represents the shape
of S.

The alpha shape has been used for cluster analysis, molecular modeling, and the
analysis of medical data, among other applications. High-quality code is available:
CGAL includes alpha shapes in its basic library (Chapter 68), and a package in R
is also available [LPPD16].
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54.5 NICE VIEWPOINTS AND PROJECTIONS

A robot navigating in 3D space faces a variety of pattern recognition problems that
involve classifying objects modeled as polyhedra. A polyhedral object in 3D space is
often well represented by a set of points (vertices) and line segments (edges) that act
as its features. The feature extraction process involves obtaining nice viewpoints
of the polyhedron. By a nice viewpoint of an object we mean a projective view in
which all (or most) of the features of the object, relevant for some task, are clearly
visible. Such a view is often called a nondegenerate view or projection. A recent
survey of this topic can be found in [Tou00].

GLOSSARY

Nice viewpoint: A projection of a 3D object (set of points, etc.) onto a plane
such that it has some desirable special property.

Knot diagram: A regular projection of a polygon in 3-dimensions onto a plane.

Degeneracies: Properties of objects such as three points collinear.

General position: A configuration of an object such that some specified degen-
eracies are absent.

Orthogonal projection: A projection from a point at infinity.

Perspective projection: A projection from a point not at infinity.

Robust algorithm: One that works correctly even in the presence of degenera-
cies.

Regular projection: An orthogonal projection of S such that no three points of
S project to the same point on H, and no vertex of S projects to the same point
on H as any other point of S.

Wirtinger projections: Regular projections in which no two consecutive edges
of the 3D polygon have collinear projections.

Robust nondegenerate projection: A projection that remains nondegenerate
even if the object is slightly perturbed.

Decision problem: Given an object and a projection of it, does the projection
contain a degeneracy?

Computation problem: Given an object, compute a projection that does not
contain a specified degeneracy.

Optimization problem: Given an object, compute the most robust nondegen-
erate projection.

REGULAR PROJECTIONS

The earliest work on nondegenerate orthogonal projections appears to be in the
area of knot theory. Let S be a set of n disjoint line segments in R3 specified by the
Cartesian coordinates of their endpoints (vertices of S) and let H be a plane. Let
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SH be the orthogonal projection of S onto H. An orthogonal projection of S is said
to be regular if no three points of S project to the same point on H and no vertex of
S projects to the same point on H as any other point of S [Liv93]. This definition
implies that for disjoint line segments (1) no point of SH corresponds to more than
one vertex of S, (2) no point of SH corresponds to a vertex of S and an interior
point of an edge of S, and (3) no point of SH corresponds to more than two interior
points of edges of S. Therefore the only crossing points (intersections) allowed in a
regular projection are those points that belong to the interiors of precisely two edges
of S. This condition is crucial for the successful visualization and manipulation of
knots [Liv93].

Regular projections of 3D polygons were first studied by the knot theorist
K. Reidemeister [Rei32] in 1932 who showed that all 3D polygons (knots) admit
a regular projection, and in fact almost all projections of polygons are regular.
Reidemeister however was not concerned with computing regular projections. The
computational aspects of regular projections of knots were first investigated by Bose
et al., [BGRT99] under the real RAM model of computation. Given a polygonal
object (geometric graph, wire-frame or skeleton) in R3 (such as a simple polygon,
knot, skeleton of a Voronoi diagram or solid model mesh), they consider the prob-
lem of computing several “nice” orthogonal projections of the object. One such
projection, well known in the graph-drawing literature, is a projection with few
crossings. They consider the most general polygonal object, i.e., a set of n disjoint
line segments, and show that deciding whether it admits a crossing-free projection
can be done in O(n2 log n+ k) time and O(n2 + k) space, where k is the number of
intersections among a set of “forbidden” quadrilaterals on the direction sphere, and
k = O(n4). This implies for example that, given a knot, one can determine if there
exists a plane on which its projection is a simple polygon, within the same complex-
ity. Furthermore, if such a projection does not exist, a minimum-crossing projection
can be found in O(n4) time and O(n2) space. They showed (independently of Rei-
demeister) that a set of line segments in space (which includes polygonal objects
as special cases) always admits a regular projection, and that such a projection
can be obtained in O(n3) time. A description of the set of all directions which
yield regular projections can be computed in O(n3 log n + k log n) time, where k
is the number of intersections of a set of quadratic arcs on the direction sphere
and k = O(n6). Finally, when the objects are polygons and trees in space, they
consider monotonic projections, i.e., projections such that every path from the root
of the tree to every leaf is monotonic in some common direction on the projection
plane. For example, given a polygonal chain P , they can determine in O(n) time
if P is monotonic on the projection plane, and in O(n log n) time they can find all
the viewing directions with respect to which P is monotonic. In addition, in O(n2)
time, they can determine all directions for which a given tree or a given simple
polygon is monotonic.

COMPUTER VISION

In the computer vision field there is both a theoretical [BWR93] interest in nonde-
generate projections and a practical one [DWT99]. The theoretical work resembles
the work described in the previous section in that it is assumed that the object
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consists of idealized points and line segments or polygons and polyhedra. A tool
used for computing viewpoints from which the maximum number of faces of a solid
polyhedron is visible, is the aspect graph [PD90] (Chapter 33).

WIRTINGER PROJECTIONS

That certain types of nondegenerate orthogonal projections of 3D polygons always
exist for some directions of projection was rediscovered by Bhattacharya and Rosen-
feld [BR94] for a restricted class of regular projections. Those regular projections,
in which it is also required that no two consecutive edges of the 3D polygon have
collinear projections, are known as Wirtinger projections. Bose et al. [BGRT99]
study the complexity of computing a single Wirtinger projection as well as con-
structing a description of all such projections for the more general input consisting
of disjoint line segments. These results include therefore results for 3D chains,
polygons, trees and geometric graphs in general. The description of all projections
allows one to obtain Wirtinger projections that optimize additional properties. For
example, one may be interested in obtaining the most robust projection in the sense
that it maximizes the deviation of the viewpoint required to violate the Wirtinger
property.

VISUALIZATION

In computer graphics one is interested in visualizing objects well, and therefore
nice views and nondegenerate views are major concerns. For example, Kamada
and Kawai [KK88] proposed a method to obtain nice projections by making sure
that in the projection, parallel line segments on a plane in 3D project as far away
from each other as possible. Intuitively, the viewer should be as orthogonal as
possible to every face of the 3D object. Of course this is not possible and therefore
they suggest minimizing (over all faces) the maximum angle deviation between a
normal to the face and the line of sight from the viewer. They then propose an
algorithm to solve this problem in O(n6 log n) time, where n is the number of edges
in the polyhedral object in 3D. Gómez et al. [GRT01] reduce this complexity to
O(n4) time. Furthermore, they show that if one is restricted to viewing an object
from only a hemisphere, as is the case with a building on top of flat ground, then
a further reduction in complexity is possible to O(n2) time.

A rather different optimization problem regarding projections arises in visu-
alization applications in which it is desired to display visual content on three-
dimensional real-world objects rather than on a traditional two-dimensional dis-
plays, possibly using more than one projector. The problems here consist of de-
termining optimal placements of the projectors to optimize a variety of objective
functions under possible constraints [LAM10].

REMOVING DEGENERACIES

Algorithms in computational geometry are usually designed for the real RAM (ran-
dom access machine) assuming that the input is in general position. More specif-
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ically, the general position assumption implies that the input to an algorithm for
solving a specific problem is free of certain degeneracies. Yap [Yap90] has distin-
guished between intrinsic or problem-induced and extrinsic or algorithm-induced
degeneracies (see also Chapter 45). For example, in computing the convex hull of
a set of points in the plane, where “left” turns and “right” turns are fundamental
primitives, three collinear points constitute a problem-induced degeneracy. On the
other hand, for certain vertical line-sweep algorithms, two points with the same x-
coordinate constitute an algorithm-induced degeneracy. Computational geometers
make these assumptions because doing so makes it not only much easier to design
algorithms but often yields algorithms with reduced worst-case complexities. On
the other hand, to the implementers of geometric algorithms these assumptions are
frustrating. Programmers would like the algorithms to work for any input that they
may encounter in practice, regardless of any degeneracies contained in the input.

Often a typical computational geometry paper will make a nondegeneracy as-
sumption that can in fact be removed (without perturbing the input) by a global
rigid transformation of the input (such as a rotation, for example). Once the so-
lution is obtained on the transformed nondegenerate input, the solution can be
transformed back trivially (by an inverse rotation) to yield the solution to the orig-
inal problem. In these situations, by applying suitable pre- and post-processing
steps, one obtains the exact solution to the original problem using an algorithm
that assumes a nondegenerate input, even when that input is in fact degenerate.
This approach not only handles algorithm-induced degeneracies via orthogonal pro-
jections but some problem-induced degeneracies as well with the aid of perspective
projections.

Gómez et al. [GRT01] consider several nondegeneracy assumptions that are typ-
ically made in the literature, propose efficient algorithms for performing the suitable
rotations that remove these degeneracies, analyze their complexity in the real RAM
model of computation and, for some of these problems, give lower bounds on their
worst-case complexity. The assumptions considered in [GRT01] are summarized in
Tables 54.5.1 and reftab:degen.segs λ(·) is nearly linear; cf. Section 28.10).

PERSPECTIVE PROJECTIONS AND INTRINSIC DEGENERACIES

Intrinsic degeneracies cannot be removed by rotations of the input. If a set of points
S in 3D contains three collinear points then so does every orthogonal projection
of S. This is where perspective projections come to the rescue. However, not all
intrinsic degeneracies can be removed with perspective projections. Intrinsic degen-
eracies that can be removed via perspective projections are called quasi-intrinsic
degeneracies [HS97, GHS+01].

Gómez et al. [GHS+01] consider computing nondegenerate perspective projec-
tions of sets of points and line segments in 3D space. For sets of points they give
algorithms for computing perspective projections such that (1) all points have dis-
tinct x-coordinates, (2) all points have both distinct x- and y-coordinates, (3) no
three points in the projection are collinear, and (4) no four points in the projection
are cocircular. For sets of line segments they present an algorithm for computing
a perspective projection with no two segments parallel. All their algorithms have
time and space complexities bounded by low degree polynomials.
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TABLE 54.5.1 Removing degeneracies: Point sets.

PROBLEM DECISION COMPUTATION OPTIMIZATION

2D

No two on vertical
line

Θ(n logn) O(n logn) O(n2 logn) time,
O(n2) space

O(n2) time, space
with floor functions

3D

No two on vertical
line

Θ(n logn) O(n logn) O(n2 logn) time,
O(n2) space

No two with same
x-coordinate

Θ(n logn) O(n logn) O(n4) time, space

O(n2λ6(n2) logn) time,
O(n2) space

No two with same
x, y or z-coord

Θ(n logn) O(n logn) Open

No three on
vertical plane

(3Sum-hard) (3Sum-hard)

O(n2) time, space O(n2) time, space O(n6) time and space

O(n3) time,
O(n) space

TABLE 54.5.2 Removing degeneracies: Line segments and faces.

PROBLEM DECISION COMPUTATION OPTIMIZATION

LINE SEGMENTS

2D

No vertical Θ(n) Θ(n) O(n logn) time, O(n) space

3D

No vertical Θ(n) Θ(n) O(n logn) time, O(n) space

No two on
vertical plane

O(n logn) O(n2) time, O(n)

space

O(n4) time, space

O(n2λ6(n2) logn) time,
O(n2) space

FACES

No face of poly-
hedron vertical

Θ(n) Θ(n) O(n2) time, space

O(nλ6(n) logn) time,
O(n) space

FINITE-RESOLUTION MODELS OF VIEW DEGENERACY

View degeneracy is a central concern in robotics where a robot must navigate and
recognize objects based on views of the scene at hand [DPR92a, DPR92b]. In the
idealized world assumed in the previous sections, degenerate views are not much of
a problem if a viewpoint is chosen at random, since almost all projections are not
degenerate. On the other hand, real-world digital cameras have a finite resolution
and therefore view degeneracy can no longer be ignored [KF87].
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OPEN PROBLEMS

A more practical approach would give some thickness to the objects, i.e., consider
the points as little balls and the edges of the polyhedra as thin cylinders, and then
to redesign the algorithms accordingly. This may turn out to be rather expensive.
In practice it may be much more efficient to perform a half-dozen random rotations
to obtain a nice projection. After all, for many problems in the idealized infinite
precision model, a single random rotation yields a nice projection with probability
one. Computing optimal projections on the other hand is another matter. Here
approximate algorithms may yield efficient solutions that are near-optimal, but
these are open problems.

54.6 NEAREST-NEIGHBOR DECISION RULES

GLOSSARY

Nearest-neighbor decision rule: Classifies a feature vector with the closest
sample point in parameter space.

In the typical nonparametric classification problem (see Devroye, Gyorfy and
Lugosi [DGL96]) we have available a set of d measurements or observations (also
called a feature vector) taken from each member of a data set of n objects (patterns)
denoted by {X,Y } = {(X1, Y1), (X2, Y2), . . . , (Xn, Yn)}, where Xi and Yi denote,
respectively, the feature vector on the ith object and the class label of that object.
One of the most attractive decision procedures is the nearest-neighbor rule (1-NN-
rule) [FH51]. Let Z be a new pattern (feature vector) to be classified and let Xj

be the feature vector in {X,Y } = {(X1, Y1), (X2, Y2), . . . , (Xn, Yn)} closest to Z.
The nearest neighbor decision rule classifies the unknown pattern Z into class Yj .
In the 1960s and 1970s many pattern recognition practitioners resisted using the
1-NN-rule on the grounds of the mistaken assumptions that (1) all the data {X,Y }
must be stored in order to implement such a rule, (2) to determine Yj , distances
must be computed between the unknown vector Z and all the members of {X,Y },
and (3) such a rule is difficult to implement in parallel using a neural network.
Computational geometry research in the 1980s and 1990s along with faster and
cheaper hardware has made the NN-rules a practical reality [Tou02].

MINIMAL-SIZE TRAINING-SET CONSISTENT SUBSETS

A question that has received a lot of attention in the past fifty years concerns the
problem of reducing the number of patterns in the training set {X,Y } without
degrading the performance of the decision rule. In 1968 Hart was the first to
propose an algorithm for reducing the size of the stored data for the nearest neighbor
decision rule [Har68]. Hart defined a consistent subset of the data as one that
classified the entire set correctly with the nearest neighbor rule. He then proposed
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an O(n3) time algorithm that he called CNN (Condensed Nearest Neighbor) for
selecting a consistent subset by heuristically searching for data that were near the
decision boundary. However, the method does not in general yield a minimal-size
consistent subset.

The first researchers to deal with computing a minimal-size consistent subset
were Ritter et al. [RWLI75]. They proposed a procedure they called a selective
nearest neighbor rule (SNN ) to obtain a minimal-size consistent subset of {X,Y },
call it S, with one additional property that Hart’s CNN does not have. Any
consistent subset C obtained by CNN has the property that every element of {X,Y }
is nearer to an element in C of the same class than to any element in C of a
different class. On the other hand, the consistent subset S of Ritter et al. [RWLI75]
has the additional property that every element of {X,Y } is nearer to an element
in S of the same class than to any element, in the complete set, {X,Y } of a
different class. This additional property of SNN tends to keep points closer to the
decision boundary than does CNN, and allows Ritter et al. [RWLI75] to compute
the selected subset S without testing all possible subsets of {X,Y }. Nevertheless,
their algorithm still runs in time exponential in n (Wilfong [Wil91]) in the worst
case. However, Wilson and Martinez [WM97] and Wilson [WM00] claim that the
average running time of SNN is O(n3). In 1994 Dasarathy [Das94] proposed a
complicated algorithm intended to compute a minimal-size consistent subset but
did not provide a proof of optimality. However, counter-examples to this claim were
found by Kuncheva and Bezdek [KB98], Cerverón and Fuertes [CF98] and Zhang
and Sun [ZS02]. Wilfong [Wil91] showed in 1991 that the problem of finding the
smallest size training-set consistent subset is NP-complete when there are three or
more classes. The problem is still open for two classes. Furthermore, he showed
that even for only two classes the problem of finding the smallest size consistent
selective subset (Ritter et al. [RWLI75]) is also NP-complete.

Given the computational difficulty of computing minimum-size training-set con-
sistent subsets, subsequent research has focused on computing small-size training-
set consistent subsets. The main challenges regarding the computation of small-size
training-set consistent subsets are the scalability for very large datasets as well as
for high-dimensional data. An example of this approach is the Fast Condensed
Nearest Neighbor rule, which appears to be a promising approach to tackle both
problems [Ang07]. Furthermore, since the introduction of the nearest neighbor
decision rules more than half a century ago, the Support Vector Machine (SVM)
classifier has emerged as a very popular and powerful classifier that rivals the near-
est neighbor rules in terms of classification accuracy. Hence one of the main areas
of research today is the empirical comparison of the nearest neighbor methods with
SVMs in terms of both classification accuracy and computation time, using a wide
variety of datasets [GGG+15].

TRAINING-DATA EDITING RULES

Methods have been developed [TBP85] to edit (delete) “redundant” members of
{X,Y } in order to obtain a subset of {X,Y } that implements exactly the same
decision boundary as would be obtained using all of {X,Y }. Such methods de-
pend on the computation of Voronoi diagrams and of other proximity graphs that
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are subgraphs of the Delaunay triangulation, such as the Gabriel graph. Further-
more, the fraction of data discarded in such a method is a useful measure of the
resulting reliability of the rule. If few vectors are discarded the feature space is rel-
atively empty and more training data are needed. During the past thirty-five years
proximity graphs have proven to be very useful both in theory and in practice for
solving many of the problems encountered with NN-rules. A description of many
of these graphs along with related computational geometry problems can be found
in [Tou02].

NEAREST-NEIGHBOR SEARCHING

Another important issue in the implementation of nearest-neighbor decision rules,
whether editing has or has not been performed, concerns the efficient search for
the nearest neighbor of an unknown vector in order to classify it. Various methods
exist for computing a nearest neighbor without computing distances to all the
candidates. The problem is in general quite difficult when the dimension is high,
which it is for most pattern recognition tasks. Simple brute-force search yields
O(dn) query time. To improve upon this, one builds a data structure for the points
that supports more efficient queries, often at the expense of space for the data
structure. For a set of n points in Rd, one could construct a Voronoi diagram for
the points of size O(ndd/2e) (Chapter 26), and respond to a query in O(log n) time.
But the exponential space makes this impractical beyond d ≤ 3. Range searching
(Chapter 40) supports structures with linear space and achieving slightly sublinear
time. But all constants are exponential in d. This has led to intensive work on
approximate nearest-neighbor search, where one seeks a point within (1 + ε) of the
distance to the true nearest neighbor. An example of an important early milestone
along these lines is an algorithm by Arya et al. [AMN+98], which constructs a data
structure of size O(dn) that can report approximate nearest neighbors in O(c log n)
time, with c = O(d(1 + d/ε)d). The algorithm traverses down a balanced box-
tree decomposition (BDD) of O(log n) height and stops when the approximation
criterion is satisfied. The query time is logarithmic in n but still the constant is
exponential in d. The many advances beyond this and similar algorithms with
exponential query time or space requirements are described in Chapters 43 (high
dimensions) and 32 (low dimensions).

ESTIMATION OF MISCLASSIFICATION

A very important problem in pattern recognition is the estimation of the perfor-
mance of a decision rule [McL92]. Many geometric problems occur here also, for
which computational geometry offers elegant and efficient solutions. For example,
a good method of estimating the performance of the NN-rule is to delete each
member of {X,Y } = {(X1, Y1), (X2, Y2), . . . , (Xn, Yn)} in turn and classify it with
the remaining set. Geometrically this problem reduces to computing for a given
set of points in d-space the nearest neighbor of each (the all-nearest neighbors
problem). Vaidya [Vai89] gives an O(n log n) time algorithm to solve this problem.
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54.7 PATTERN COMPLEXITY

GLOSSARY

Kolmogorov complexity: The length of the shortest algorithm that generates
the pattern.

Papentin complexity: The length of the shortest description of the pattern by
means of a specified hierarchy of description languages.

Normalized pairwise variability index (nPVI): The average variation of
a set of distances that are obtained from successive adjacent ordered pairs of
elements in the pattern.

Sub-symmetries: The contiguous subsets of a pattern that possess reflection
symmetries.

Perimetric complexity: The sum of the exterior perimeter of the pattern and
the perimeter of the holes in the pattern (interior perimeter), squared, divided
by the pattern area, and divided by 4π.

The study of complexity in pattern recognition is one of the more recent devel-
opments in the field, and it concerns two rather different problems, the solutions
to which require different approaches: the measurement of the complexity of a sin-
gle pattern, and the complexity of a dataset (training set) of patterns. A single
pattern can be one-dimensional, e.g., temporal data such as speech and music, two-
dimensional as in character recognition and image processing, or three or higher
dimensional. In addition to being of theoretical interest, in practice the complexity
of a pattern serves as a feature (shape measurement) of the pattern. For example,
in musical rhythm the complexity of a rhythm is akin to the amount of syncopation
the rhythm contains. The complexity of a collection of patterns (the training set)
is referred to as data complexity, where data consist of usually multidimensional
feature vectors (points in some space) [HBL06].

The investigation of data complexity via geometrical characteristics of training
data is motivated by the desire to determine the existence of independent factors
that contribute to the difficulty of pattern classification, and hence guide the se-
lection of an appropriate classification algorithm for a specific application [Can13].
The measures usually considered include measures of overlaps in feature values,
measures of the separability of pattern classes, and measures of the shape, density,
and interconnectedness of the data manifolds. The emphasis in this research has
been on the relative effectiveness of predicting the pattern classification accuracy
of several popular decision rules, such as nearest neighbor rules [HBL06] [CRV12].
However, investigation of the relative computational complexity of these geometric
measures remains mostly open, apart from a few exceptions such as measures of
class separability [Hou93].

Definitions of measures of the complexity of individual patterns vary depending
on the definitions of “patterns,” which depends in turn on the particular domain
that investigates patterns [TT14]. For one-dimensional patterns such as symbol
sequences, an appropriate definition for the complexity of an individual pattern
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(rather than a collection of patterns), is the Kolmogorov complexity [Kol65], which
is defined as the length of the shortest algorithm that generates the pattern. Al-
though this measure is theoretically fruitful, it is not computable in practice, and
hence there is a need for suitable approximations to the Kolmogorov complexity.
One attractive approximation (lower bound) of the Kolmogorov complexity was
proposed by Papentin [Pap80] in terms of the shortest description of the pattern
computed in a well defined efficiently computable hierarchy of specific description
languages.

A measure of one-dimensional pattern complexity that originated in computa-
tional linguistics, but has made a significant entry into the study of musical rhythm,
is the normalized pairwise variability index (nPVI) [RAR10]. The nPVI is defined
as the average variation of a set of distances that are obtained from successive
adjacent ordered pairs of elements in the pattern. For a comparison of the nPVI
to other measures of one-dimensional pattern complexity in the domain of musical
rhythm see [Tou13].

Another easily computable measure of the simplicity of one-dimensional pat-
terns is the number of sub-symmetries that the pattern contains. A sub-symmetry of
a sequence is defined as a contiguous (connected) subsequence of the sequence (pat-
tern) that possesses mirror symmetry. For example, in the pattern BBWWWBB
there are four sub-symmetries of length two (BB, WW, WW, and BB), one of
length three (WWW), one of length five (BWWWB), and one of length seven (BB-
WWWBB), for a total of seven. A pattern that contains many sub-symmetries is
considered to be simple, and one with few sub-symmetries is complex. This mea-
sure was originally shown to predict human judgments of the complexity of visual
one-dimensional patterns. However, it was recently discovered that it also predicts
human judgments of the complexity of auditory patterns (musical rhythms) [TB13].
These measures can be generalized to apply to two-dimensional patterns. The sim-
plest extension is simply to compute the one-dimensional versions for every row,
column and diagonal of the two-dimensional pattern and add up all the counts
obtained [TOV15].

A popular measure of pattern complexity with a variety of applications to
character recognition is the perimetric complexity. For continuous plane shapes
the perimetric complexity of a binary pattern with holes is defined as the sum the
exterior perimeter of the pattern and the perimeter of the holes (interior perimeter),
squared, divided by the pattern area, and divided by 4pi. Several variants for
the case of digital images, and for taking blurring into account, are proposed by
Watson [Wat12], who also cites many applications of this measure.

54.8 SOURCES AND RELATED MATERIAL

SURVEYS
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[JMF99]: A survey of clustering from the pattern recognition point of view.

[MQ94]: A survey of properties and types of sphere of influence graphs.

[MPW13]: An exhaustive survey of the state-of-the-art in symmetry detection
methods for geometric data sets.

[MC15]: An extensive survey of the Hough transform and its variants.

[ABE09]: A survey of algorithms for computing the medial axis.

[Tou91]: A survey of computer vision problems where computational geometry may
be applied. This survey references several others; the entire collection is of interest
as well.

[Tou00]: A survey on computing nice viewpoints of objects in space.

[Tou14a]: A survey on applications of the relative neighborhood graph to pattern
recognition problems.

[Tou14b]: A survey on theoretical results and applications of the sphere of influence
graph to pattern recognition problems.

[Tou14c]: A survey on pattern recognition problems, including several distance
measures between sets, that may be computed with the rotating calipers.
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[BGRT99] P. Bose, F. Gómez, P. Ramos, and G.T. Toussaint. Drawing nice projections of

objects in space. J. Visual Commun. Image Rep., 10:155–172, 1999.

[BJF90] H.S. Baird, S.E. Jones, and S.J. Fortune. Image segmentation by shape-directed

covers. In Proc. 10th IEEE Conf. Pattern Recogn., pages 820–825, 1990.

[BJW+08] S. Bereg, M. Jiang, W. Wang, B. Yang, and B. Zhu. Simplifying 3D polygonal chains
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